用户名: 密码: 验证码:
Bi_2O_3涂覆Al_(18)B_4O_(33)晶须增强铝复合材料的界面反应及高温变形行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用化学沉淀方法对硼酸铝晶须表面进行Bi_2O_3涂覆处理,利用挤压铸造法制备了晶须体积分数为20%的硼酸铝晶须增强铝基复合材料(Bi_2O_3和晶须的质量比分别为0、1:10、1:20、1:30和1:40,简写为ABOw/Al、10、20、30和40ABOw/BO/Al复合材料)。利用扫描电镜、透射电镜、X射线衍射和差热扫描分析仪等方法研究了复合材料微观组织结构并确定了界面反应;分析了Bi_2O_3含量对复合材料挤压铸造过程中的渗透压力、拉伸性能和热膨胀性能的影响规律;研究了Bi_2O_3含量对复合材料高温压缩变形和热挤压变形行为的影响机制,并对挤压态复合材料的力学性能进行了测定。
     差热分析和透射电镜观察均证实,晶须表面涂覆的Bi_2O_3和液态铝在复合材料的挤压铸造过程中发生了反应,在硼酸铝晶须和基体的界面上生成了低熔点的金属铋。界面反应改善了晶须和液态铝的润湿性,一方面,降低了复合材料在挤压铸造过程中渗透压力,提高了复合材料的成品率;另一方面,减少了复合材料中微孔洞的数量,提高了复合材料的拉伸性能,特别是断裂延伸率。但Bi_2O_3含量不易超过0.55mass%(40ABOw/BO/Al复合材料),否则由于低强度涂层含量的增加反而恶化了复合材料的拉伸性能。另外,结合金属铋在凝固时体积膨胀及熔化时能松弛晶须周围应力的现象,阐述了含Bi_2O_3的复合材料物理热膨胀系数随温度变化幅度较大的原因。
     复合材料高温压缩变形的研究结果表明:由于在晶须和基体的界面上引入低熔点的金属铋,可以松弛高温变形过程中界面应力,使晶须和基体的界面容易滑动,降低了晶须周围的位错密度,其结果是,改善了ABOw/BO/Al复合材料的高温塑性,降低了复合材料最大压缩流变应力;并且,减轻了晶须折断程度,弱化了ABOw/BO/Al复合材料的应变软化现象。另外,两种复合材料的最大流变应力均随温度的升高或应变速率的降低而逐渐减小。
     由于挤压温度高于界面上金属铋的熔点,那么挤压过程中界面上液相铋有助于改善复合材料的热挤压成型能力。随着Bi_2O_3含量的增加,复合材料的挤压力越来越小。而且,含有Bi_2O_3的挤压态复合材料表面质量不受挤压温度的影响,表面光滑无裂纹,远好于挤压态ABOw/Al复合材料的表面质量。更为重要的是,挤压后复合材料晶须的长度也随着Bi_2O_3含量的增加而增加。挤压态复合材料拉伸性能和硬度由晶须的长度、挤压温度和脆性Bi_2O_3含量共同决定,挤压态40ABOw/BO/Al复合材料的拉伸性能和硬度在挤压温度400℃达到最大值。
Bi_2O_3 was coated onto the surface of aluminum borate whisker using chemical precipitation method. All of Al18B4O33 whisker reinforced aluminum matrix composites were fabricated using squeeze casting method, and the volume of whisker was 20%. The mass ratios between Bi_2O_3 and ABOw were 0, 1:10, 1:20, 1:30 and 1:40,and the corresponding abbreviations of composites are ABOw/Al, 10, 20, 30 and 40ABOw/BO/Al composites, respectively. The microstructure and interfacial reaction of composites were studied by transmission electronic microscope (TEM), scanning electronic microscope (SEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD),and so on. The effects of Bi_2O_3 coating content on the infiltration pressure, tensile properties and thermal expansion behaviors were analyzed. The hot extrusion and compression behaviors of composites with different Bi_2O_3 coating contents were also investigated, and the mechanical properties of the extruded composites were performed.
     Both DSC and TEM observation of the composite indicated that during the squeeze casting process, Bi_2O_3 coating could react with aluminum matrix in the composite, which produced the low melting-point Bi on the interface between whisker and matrix. The interfacial reaction improved the whisker/liquid aluminum wettability, which not only decreased the infiltration pressure of composite and enhanced the fabricated quality of composite, but also reduced the quantity of microhole and increased the tensile properties of composite, especially elongation to fracture. But if Bi_2O_3 coating content was above 0.55mass%(40ABOw/BO/Al composite), lots of brittle coating deteriorated the tensile properties of composite. The thermal expansion analysis of the composites showed that the changing amplitude of the thermal expansion coefficient of ABOw/BO/Al composite with temperature was much larger than that of ABOw/Al composite. The difference of the thermal expansion curves between ABOw/BO/Al and ABOw/Al composites was represented by the abrupt volume expansion as the solidification of Bi and the relaxing stress concentration of the interface as the melt of Bi.
     The investigation of the hot compressive deformation of composites showed that the low melt-point Bi on the whisker/matrix interface might relax the interfacial stress during deformation, which lead to decreasing the dislocation density near the whisker. So, the coating might improve the thermal plasticity of composite and decrease its maximum compressive flow stress. On other hand, the strain softening effect of ABOw/BO/Al composite was also smaller than that of ABOw/Al composite because the coating decreased the degree of whisker fracture. In addition, the maximum compressive flow stresses of two composites decreased with the temperature increase or the strain rate decrease.
     Because the extruded temperatures were above the melting point of Bi, the liquid phase on the interface must influence the hot extruded formability of composites. On one hand, the steady-state extruded load of the extrude composites decreased gradually with the Bi_2O_3 coating content increasing. On the other hand, many fir-tree cracks could be seen on the surface of the extruded ABOw/Al composite rods at all extrusion temperatures, especially at 450℃, but no cracks could be found on the surface of the extruded ABOw/BO/Al composite rods. Therefore, the addition of Bi_2O_3 coating improved the hot extruded formability of composites. In addition, the whisker length of the extruded composites also increased gradually with the Bi_2O_3 coating content increasing. The whisker length, extruded temperature and brittle coating content influenced the tensile properties and hardness of the extruded composites together, and then the tensile properties and hardness of the extruded 40ABOw/BO/Al composite attained the maximum values at the extruded temperature 400℃.
引文
1 G.Q. Tong, K.C. Chan. High Stain-rate Superplasticity of an Al-4.4Cu -1.5Mg/SiCw Composite Sheet. Materials Science and Engineering A. 2000,286(2):218~224
    2 L.H. Han, J.T. Niu, T. Imai. Effect of AlN Particulate Size on Superplasticity of AlNp/6061Al Composites. Rare Metals. 2001,20(1):43~46
    3 B.Y. Lou, T.D. Wang, J.C. Huang, T.G. Longdon. On the Activation Energies Observed in Al-based Materials Deformed at Ultrahigh Temperatures. Materials Science Form. 2001,357-359(3):545~550
    4 T.D. Wang. High Strain Rate Superplasticity Deformation in 6061Alloy with 1%SiO2 Nano-particles. Materials Science Form. 2001,35(3):515~520
    5 T. Hikosaka, T. Imai, H. Toda. High Strain Rate Superplasticity of the SiCp/7075 Aluminum Alloy Composite Made by a Vortex Method. Journal of Japan Institute of Light Metals. 2001,51(3):169~174
    6 M. Mabuchi, K. Higashi. Experimental Investigation of a Superplastic Constitutive Equation in Al-Mg-Si Alloy Composites Reinforced with Si3N4 Whiskers. International Journal of Plasticity. 2001,17(3):399~407
    7 L.H. Han, D.M. Jiang. High Strain Rate Superplasticity of AlN Particulate Reinforced 6061Al Composite. Acta Metallurga Sinica. 2001,14(2):127~131
    8 高技术新材料要览编委会. 高技术新材料要览. 中国科学技术出版社. 北京, 1993:5~8
    9 T.F. Kliuowicz. The Large-Scale Commercialization of Aluminum Matrix Composites. JOM. 1994,11:49~53
    10 F.H. Froes, J.R. Picknes. Powder Metallurgy of Light Metal Alloys for Demanding Application. Journal of Metals. 1984,36(1):14~28
    11 X.G. Ning, J. Pan, H. Fukunaga. Whisker-Matrix Interfacial Reactions in SiC, Si3N4 and Al18B4O33 Whisker-Reinforced Aluminum-Matrix Composites. Journal of Materials Science Letters. 1993,12(20):1644~1647
    12 J.H. Kim, D.N Lee, K. Huan. Tensile Property of Short Fiber-Reinforced SiC/Al Composites. Scripta Materialia. 1993,29(7):377~382.
    13 M. Mabuchi, T. Imai, K. Higashi. Production of Superplastic Aluminum Composites Reinforced with Si3N4 by Powder-Metallurgy. Journal of Materials Science. 1993,28(24):6582~6586
    14 隗学礼.硼酸铝晶须的研制. 材料科学进展. 1991, 5(3):276~276
    15 K. Suganuma et al. Aluminum Composites Reinforced with New Aluminum Borate Whisker. Journal of Materials Science Letters.1990,9:633~635
    16 C. Goujon, P. Goeuriot. Solid State Sintering and High Temperature Compression Properties of Al-Alloy5000/AlN Nanocomposites. Materials Science and Engineering A. 2001,315:180~188
    17 W.L. Zhang. Clad-Extrusion for Producing SiCw/6061Al Composite Tubes. Journal of Materials Science Letters. 2001,20:1519~1520
    18 王桂松, 耿林, 郑镇洙, 王德尊, 姚忠凯. 液-固两相区压缩变形速率对SiCw/6061A l 复合材料组织和性能的影响. 材料工程. 2000,7:37~48
    19 R.K. Goswami. Extrusion Characteristics of Aluminum Alloy/SiCp Metal Matrix Composites. Materials Science and Technology. 1999,15:443~449
    20 A. Ureina. Interfacial Reaction in an Al-Cu-Mg(2009)/SiCw Composite during Liquid Processing. Journal of Materials Science. 2001,36:419~428
    21 P.J.Gielisse. The system Al2O3-B2O3. Nature, 1962,195(836):69~70
    22 四国化学工业株式会社,硼酸铝晶须技术资料(基础篇)
    23 李武. 硼酸铝晶须的性质、制备和开发前景. 盐湖研究. 2000,8(3):40~43
    24 李武. 无机晶须. 化学工业出版社. 2005:52~187
    25 靳治良, 张志宏, 李武. 无机盐晶须材料的研究进展. 海湖盐与化工. 2002,31(5):4~13
    26 B. Ralph, H.C. Yuen, W.B. Lee. Processing of Metal Matrix Composite: a Review. Journal of Materials Processing Technology. 1997,63:339~353
    27 T.S. Srivatsan. Processing Techniques for Particulate-Reinforced Aluminum Matrix Composites. Journal of Materials Science. 1991,26:5969~5978
    28 F. Fell. Structure Fracture Toughness and Fatigue of Two Aluminum Matrix Composites Produced by Vertical Squeeze Casting Technique. Materials Science and Technology. 1997,135:420~428
    29 T.Y. Um. Production of Al/TiAl3 Composites by In-Situ Infiltration Combustion Synthesis. Journal of Japan Institute Metals. 1994,5:559~563
    30 耿林. 压铸 SiCw/LD2 复合材料中晶须及界面的微观结构. 哈尔滨工业大学博士论文.1990, 35~56
    31 K. Asano, H. Yoneda. Microstructure and Mechanical Properties of Al-Cu-Mg Alloy Matrix Hybrid Composites Fabricated by Squeeze Casting. International Journal of Cast Metal Research. 2002,14(4):199~205
    32 C.M. Hsu, C.G. Chao. Effect of Heat Treatment on In-Situ Al2O3/TiAl3 Composites Produced from Squeeze Casting of TiO2/A356 Composites. Metallurgical and Materials Transactions. 2002,33(1):33~40
    33 M. Zhao, L.T. Jiang. TiB2p/Al Composite Fabricated by Squeeze Casting Technology. Materials Science and Engineering A. 2004,374(1~2):303~306
    34 胡津,姚忠凯. 晶须预制件的研究. 兵器材料科学与工艺. 1994,17(4):3~6
    35 金培鹏,丁雨田,许广济,王怀志. 硼酸铝晶须预制块制备工艺的研究. 青海师范大学学报. 2005,2:29~31
    36 M. Torralba, C. E. Costa. P/M Aluminum Matrix Composites: an Overview. Journal of Materials processing Technology. 2003,133(1~2):203~206
    37 B.L. Xiao. Hot Deformation and Processing Map of 15%SiCp/2009Al Composite. Journal of Materials Science. 2005,40:5757~5762
    38 A. Borrego, R Fernàndez. Influence of Extrusion Temperature on the Microstructure and the Texture of 6061Al-15vol%SiCw PM Composite. Composites Science and Technology. 2002,62:731~742
    39 A. Borrego, G. Gonza′lez-Doncel. Calorimetric Study of 6061Al-15 vol.% SiCw PM Composites Extruded at Different Temperatures. Materials Science and Engineering A. 1998,245:10~18
    40 M. A. Abd-Elwahed. Fabrication of Metal Matrix by Infiltration Process-part
    2: Experimental Study. Journal of Materials Processing Technology. 1999, 86:152~158
    41 王浩伟, 张国定,吴人杰. 纤维增强金属基复合材料液相浸渗填充过程. 复合材料学报. 1995,12(1):2013~2020
    42 S. Long, H.M. Flower. Characterization of Liquid Metal Infiltration of a Chopped Fibre Preform Aided by External Pressure-Ⅱ:Model Validation and Quantification. Acta Materialia. 1996,44(10):4233~4240
    43 A. Rudajevova′, P. Luka′c. Interfacial Effects on the Thermal Conductivity of QE22 Alloy in SiC/QE22 Composites. Materials Science and Engineering A. 2002,(324):118~121
    44 杨波.Al-TiO2-C体系反应动力学与燃烧过程的研究. 哈尔滨工业大学博士论文. 1999, 53~66
    45 J. Subrahmanyam. Review Self-Propagating High-Temperature Synthesis. Journal of Materials Science. 1992,27:6249~6237
    46 H. Mabuchi. Combustion Synthesis of TiAl-Matrix Composites in the Ti-Al-BN System. Scripta Materialia. 1995,32(2):252~261
    47 吕维洁, 张荻, 张小农. 原位合成TiC/Ti复合材料的微观结构和力学性能.上海交通大学学报. 2001,35(5):663~650
    48 郑镇洙. 反应生成(TiB+TiC)/Ti复合材料的微观组织与高温变形行为. 哈尔滨工业大学博士论文. 2006, 30~38
    49 Y.F. Li, C.D. Qin, D.H.L. Ng. Morphology and Growth Mechanism of Alumina Whiskers in Aluminum-Base Metal Matrix Composites. Journal of Materials Research. 1999,14(7):2997~3000
    50 J.Y. Uan, L.H. Chen, T.S. Lui. On The Extrusion Microstructural Evolution of Al-Al3Ni In-Situ Composite. Acta Mater. 2001,49:313~320
    51 J.Y. Uan, T.S. Lui, L.H. Chen. Superplasticity-Like Behavior of Al-Al3Ni Eutectic Alloy. Materials Chemistry and Physics. 1996,43:278~282
    52 耿林, 郑镇洙等. 热压反应自生钛基复合材料高温拉伸断裂分析. 中国有色金属学报. 2004,4:155~158
    53 P. Lawrence. Some Theoretical Considerations of Fiber Pull-Out from an Elastic Matrix. Journal Materials Science. 1972,7:1~6
    54 D.M. Schuster, E. Scala. The Mechanical Interaction of Sapphire Whiskers with a Bi-Refringent Matrix. Report. 1963,166:4~5
    55 R.J. Arsenault. The strengthening of 6061Al by Fiber and Silicon Carbide. Materials Science and Engineering A. 1984,64(2):171~181
    56 T.W. 克莱因, P.J. 威瑟斯. 金属基复合材料导论. 余永宁, 房志刚译. 北京冶金工业出版社. 1996, 80~81
    57 Nina Dahl. 日本国立四国工业研究所研究报告 (II)1993:9
    58 Nina Dahl, Takao Kitamura. Proc. IUMRS-ICAM, Tokyo, 1993:17
    59 K. Suganuma. Mechanical Properties of Aluminum Borate Whisker Reinforced Aluminum Alloys and Interface Structure. Composites Design, Manufacture, and Application. Proceedings of ICCM/8. 1991:19D1~19D12
    60 W.D. Fei, Y.B. Li. Effect of NiO Coating of Whisker on Tensile Strength ofAluminum Borate Whisker-Reinforced Aluminum Composite. Materials Science and Engineering A. 2004,379:27~32
    61 W.D. Fei, W.G. Chu, W. Yang. Tensile Properties of Thermally Exposed Aluminum Borate Whisker Reinforced 6061Al Aluminum Alloy Composite. Materials Science and Technology. 2000,16:431~435
    62 姚力军. 硼酸铝晶须增强铝基复合材料的微观组织结构. 哈尔滨工业大学博士论文. 1996, 64~71
    63 斋藤尚文, 井择纪久. 名古屋工业技术研究报告. 1993,42(10): 11~27
    64 S.H. Hong, K.H. Chung, C.H. Lee. Effects of Hot Extrusion Parameters on the Tensile Properties and Microstructures of SiCw-2124Al Composites. Materials Science and Engineering A. 1996,206:225~232
    65 张广安,Csf/2A12 复合材料的高压浸渗制备及热挤压的研究. 哈尔滨工业大学博士论文. 2003, 75~88
    66 A. Kalambur, I.W. Hall. Dynamic Compressive Behavior of a SiCw/Al Composite. Scripta Materialia. 1997,37:193~198
    67 W.D. Fei, W.Z. Li,C.K. Yao. Hot Rolling Behaviors of Whisker Reinforced Aluminum Composites. Journal of Materials Science. 2002,37:211~215
    68 W.G. Chu, W.D. Fei. Microstructures Evaluation of Isothermally-Forged SiCw/Al Composites. Journal of Materials Science. 1999,34:565~569
    69 C.A. Stanford-Beale. Extrusion and High-Temperature Deformation of Fibre-Reinforced Aluminum. Composites Science and Technology 1989,35:121~157
    70 A.H. Feng, L. Geng, J. Zhang, C.K. Yao. Hot Compressive Deformation Behavior of a Eutectic Al-Si Alloy Based Composite Reinforced with α-Si3N4 Whisker. Materials Chemistry and Physics. 2003,82:618~621
    71 张文龙, 吴培莲, 姜传海, 丁冬雁, 王德尊, 姚忠凯. SiCw/6061Al 复合材料的晶须取向与压缩变形行为. 哈尔滨工业大学学报. 1999,31(1):5~9
    72 朱和祥. SiCw 增强铝合金及其轧制性能. 材料科学进展. 1992, 6:88~92
    73 C.G. Kang, N.H. Kim, B.M. Kim. The Effect of Die Shape on the Hot Extrudability and Mechanical Properties of 6061 Al/Al2O3 Composites. Journal of Materials Processing Technology. 2000,100:53~62
    74 张文龙, 姜传海, 丁冬雁, 王德尊, 姚忠凯. 挤压铸造 SiCw/L3 复合材料的热挤压.宇航材料工艺1998,3:31~35
    75 V.V. Ganesh. Effect of Particle Orientation Anisotropy on Tensile Behavior of Metal Matrix Composites: Experiments and Microstructure-based Simulation. Materials Science and Engineering A. 2005,391:42~53
    76 Y.H. Seo, C.G. Kang. Effects of Hot Extrusion through a Curved Die on the Mechanical Properties of SiCp/Al Composites Fabricated by Melt-Stirring. Composites Science and Technology. 1999,59(5):643~654
    77 谢建新, 刘静安著. 金属挤压理论与技术. 冶金工业出版社. 2001,24~50
    78 M. Lieblichi. Extrudability of PM 2124/SiCp Aluminium Matrix Composite. Journal of Materials Science Letters. 1997,16(9):726~728
    79 K. Suganuma, T. Fujita. Hot Extrusion of AA7178 Reinforced with Alumina Short Fiber. Materials Science and Technology. 1989,5:249~254
    80 W.L. Zhang. Forming Process of Hot Extruded SiCw/6061Al Composites. Transactions of Nonferrous Metals Society of China. 1998,8(3):432~436
    81 K. Suganuma, T. Okamoto, N. Suzuki. Semisolid Extrusion of Aluminum Alloys Reinforce with Alumina Short Fibre Cladding. Journal of Materials Science Letters. 1987,6:1347~1348
    82 颜鸣皋,韩雅芳等. 第四届先进材料技术研讨会论文集. 北京. 《材料工程》.编辑部. 1997,86
    83 曾凡文, 张绪虎, 胡欣华, 关盛勇, 苏肇健, 巫世杰. SiCp/2014Al 复合材料的挤压研究. 稀有金属.1999,23(3):177~180
    84 肖林, 丁伟明, 张国定. SiCp/Al 复合材料挤压棒材缺陷分析. 中国有色金属学报. 1994,4(1):43~57
    85 R.J. Lederich. Extrusion and High-Temperature Deformation of Fibre- Reinforced Aluminum. Materials Science and Engineering A. 1982,55: 143~149
    86 V.V. Ganesh, N. Chawla. Effect of Particle Orientation Anisotropy on the Tensile Behavior of Metal Matrix Composites: Experiments and Microstructure-Based Simulation. Materials Science and Engineering A. 2005,391:342~353
    87 C.R. Crowe, C.A. Henshall, J. Wadsworth. Superplasticity of SiCw/Al Composites. ICCM, V:843
    88 T.G. Nieh, C.A. Henshall. Superplasticity of High Strain Rates in a SiC Whiskers Reinforced Al Alloy. Scripta Materialia. 1984,18:1405~1411
    89 M. Okumiya, Y. Tsunekawa, T. Ozaki. Effect of Plastic Flow during Hot Extrusion on Alignment and Length of Fibers in delta-Al2O3/Al Composites. Journal of Japan Institute of Light Metals. 1987,37(4): 285-290
    90 A. Borrego. Influence of Extrusion Temperature on the Aging Behavior of 15%SiCw/2024Al Composites. Scripta Materialia. 1996,34(3):471~478
    91 T.G. Nieh, R.F. Karlak. Ageing Characteristics of B4C-Reinforced 6061 Aluminum. Scripta Materialia. 1984,18:25~28
    92 I. Dutta. Influence of Dislocation Density and Distribution on the Aging Behavior of 6061Al-SiCw Composites. Acta Materialia. 1990,38:2041~2052
    93 Z. Xiong, L. Geng. Investigation of High-Temperature Deformation Behavior of a SiCw/6061Al Composite. Composites Science and Technology. 1990,21(2):127~131
    94 李爱滨. SiCw/6061Al 复合材料热压缩变形的数值模拟研究. 哈尔滨工业大学博士论文. 2004, 56~90
    95 费维栋. SiCw/Al-Ni 复合材料高温压缩变形及界面结构的研究. 哈尔滨工业大学博士论文. 1993, 51~63
    96 张文龙. SiCw/Al 复合材料大应变变形和再结晶. 哈尔滨工业大学博士论文. 1999, 75~93
    97 H.Iwasaki, K.Higashi. Improvement of Post-deformation Properties by Static Annealing for a High Strain Rate Superplastic Composite. Key Engineer Materials. 2000,177-180(6):667~672
    98 X.J. Xu, C.Z. Zhao, D. Zhang, Z.L. Shi, R.J. Wu. High Strain Rate Superplasticity of SiC Whisker Reinforced Pure Aluminum Composites. Transactions of Nonferrous Metals Society of China.1999,9(3):500~504
    99 F.J. Humphreys. Local Lattice Rotation at Second Phase Particles in Deformed Metals. Acta Materialia.1979,27(12):1801~1814
    100 L. Geng, S. Ochia, J.Q. Hu. Compression Testing of a SiCw/Al Composite at Temperature Close to and Above the Solidus of Matrix Alloy. Materials Science and Engineering A. 1998,246:302~305
    101 胡俊青. SiCw/6061Al 复合材料液固两相区高温压缩变形行为的研究. 哈尔滨工业大学硕士论文. 1997, 51~60
    102 T.W. Clyne, P.J. Withers. An Introduction to Metal Matrix Composites. Cambridge University Press. London, 1996,327~335
    103 梅志, 顾明元, 吴人洁. 金属基复合材料界面表征及其进展. 材料科学与工程. 1996,14(3):1~5
    104 S.V. Nair, J.K. Tim, R.C. Bates. SiC Reinforced Aluminum Metal Matrix Composite. International Materials Review. 1985,30:275~295
    105 D.J. Lioyd. Particle Reinforced Aluminum and Magnesium Matrix Composites. International Materials Review. 1994,39 :1~23
    106 潘进. 晶须/Al 复合材料的界面反应及界面结构研究. 哈尔滨工业大学博士论文. 1994, 29~149
    107 吴昆. SiCw/AZ9 镁基复合材料的界面结构和失效行为. 哈尔滨工业大学博士论文. 1995, 35~55
    108 日本国立实验研究所技术开发研究报告. 硼酸铝纤维强化合金制造技术的相关研究. 1995,1~20
    109 李荣久. 陶瓷-金属复合材料. 冶金工业出版社. 1995:1~5
    110 陈建, 潘复生. 氧化铝膜对铝基复合材料润湿行为的影响. 材料科学与工程. 1999,17(2):85~90
    111 张国定. 金属基复合材料界面问题. 材料研究学报. 1997,11(6):649~657
    112 于家康. 金属基复合材料增强相涂层. 稀有金属材料与工程. 1996,25(6): 14~18
    113 P. K. Rohatgi, D. Nath and S. Ziyam. Coating of Copper on Graphite Fibers. Zeitschrift fuer Metallkunde.1991,82(10):763~765
    114 T. Suzuki, H. Umehara. Mechanical Properties and Metallography of Aluminum Matrix Composites Reinforced by the Cu- or Ni-Plating Carbon Multifilament. Journal Materials Research. 1993,8:492~498
    115 S. Abraham, B.C. Pai. Studies on Nickel Coated Carbon Fibres and their Composites. Journal of Materials Science. 1990,25(6):2839~2845
    116 S.G. Warrier, C.A. Blue and R.Y. Lin. Control of Interfaces in Al-C Fibre Composites. Journal of Materials Science. 1993,28 (3):760~768
    117 王玉庆, 周本濂, 王作明, 师昌绪等. 涂层对复合材料残余应力的影响.复合材料学报. 1994,11(4):76~80
    118 M. Rabinovitch. Approach to Optimize Interfaces in Carbon/Aluminum and Carbon/Magnesium Metal Matrix Composites Elaborated by Hot Pressing. Metal Matrix Composites. 1993,1:683~690
    119 J.K. Yu. Functionally Gradient Coating on Carbon Fibre for A/AlComposites. Journal of Materials Science. 1994,29(10):2641~2647
    120 孙国雄等. 颗粒增强金属基复合材料的制备技术和界面反应的控制. 特种铸造及有色合金. 1998,4:12~17
    121 P.K. Rohatgi, R. Asthana. Interfaces in Cast Metal-Matrix Composites. Materials Science & Engineering A. 1993,162:163~174
    122 Y.L. Liu. Coated and Uncoated SiC in Molten Aluminum-Reactivity of Commercial Particulates. Scripta Materialia 1992,27(10): 1367~1372
    123 L.N. Thanh. Influence of Oxide Coating on Chemical Stability of SiC Particles in Liquid Aluminum. Scripta Materialia. 1991,25(12):2781~2786
    124 J.P. Rocher, R. Naslain. Wetting Improvement of Carbon or Silicon Carbied by Aluminum Alloy Based on K2ZrF6 Surface Treatment Application to Composite Material Casting. Journal Materials Science. 1989,24:2697~2703
    125 M. Fishkis et al. 欧洲专利 EP0505990,1992
    126 于志强, 武高辉, 姜龙涛. 亚微米 Al2O3 颗粒表面稀土改性对 Al 基复合材料界面润湿性的影响. 中国有色金属学报. 2005,15 (7):1087~1091
    127 T.K. Mitchell, L.C. Jonghe. Processing and Properties of Particulate Compo sites from Coated Powders. Journal of the American Ceramic Society. 1995, 78 (1):199~204
    128 W.B. Johnson, B. Sonuparlak. Diamond/Al Metal Matrix Composites Formed by the Pressureless Metal Infiltration Process. Journal of Materials Research. 1993,8(5):1169~1173
    129 H.Q. Gao, W.D. Fei. Interfacial Reaction and Tensile Strength of 6061Al Matrix Composite Reinforced with Copper-Coated Al18B4O33w. Materials Letters. 2005,59:3756~3760
    130 G. Bi. Controlling the Interface Reaction in Al18B4O33w/AC8A Composite by Nitrided Nano-Coating. Materials Letters. 2004,58:833~836
    131 丁冬雁. 表面涂覆硼酸铝晶须对 6061Al 基复合材料组织性能的影响. 哈尔滨工业大学博士论文. 2004, 81~100
    132 H.Y. Yue. An Aluminum Borate Whisker-Reinforced Aluminum Matrix Composite with High Plasticity. Materials Science and Engineering A. 2006,430:260~265
    133 李宜彬. 晶须NiO涂层对 Al18B4O33w/Al复合材料微观组织和拉伸性能的影响. 哈尔滨工业大学硕士论文. 2002, 16~35
    134 M.F. Amateau. Progress in Development of Graphite Aluminum Composites Using Liquid Infiltration Technology. Journal of Composite Material. 1976, 10:279~296
    135 S. Lemieux. Thermal Expansion of Isotropic Duralcan Metal-Matrix Composites. Journal of Materials Science. 1998,33(17):4381~4387
    136 S. Sastry, M. Krishna, J. Uchil. Effect of Thermal on the Thermal Expansion and Damping Behavior of ZA-27/Aluminite Metal Matrix Composites. Journal of Materials Engineering and Performance. 2001,10(2):220~224
    137 U.R. Vaidya,K.K. Chawla. Thermal Expansion of Metal-Matrix Composites. Composites Science and Technology. 1994,50:13~22
    138 M. Hu, W. D. Fei, C. K. Yao. A Study on Correlation of Thermal Mismatch Stress of SiCw/Al Composite through Curves of Thermal Expansion Coefficient. Scripta Materialia. 2002,46:563~567
    139 W.D. Fei, M.Hu, C. H. Yao. Study of Thermal Expansion Behaviors of SiCw/Al Composite. Materials Chemistry and Physics. 2003,77(3):882~ 888
    140 A. Rudajevová, P. Lukáˇc. Thermal Expansion Behavior of Mg-Saffil Fibre Composites. Materials Science and Engineering A. 2004, 387–389:892~895
    141 W. D. Fei, L. D. Wang. Thermal Expansion Behavior and Thermal Mismatch Stress of Aluminum Matrix Composite Reinforced by β-Eucryptite Particle and Aluminum Borate Whisker. Materials Chemistry and Physics. 2004,85: 450~457
    142 A. Rudajevova′, P. Luka′c. Thermal Strain in Mg Composites. Acta Materialia. 2003,51:5579~5586
    143 李刚. 含铁氧体颗粒硼酸铝晶须增强铝基复合材料的组织和性能. 哈尔滨工业大学博士论文. 2006, 53~70
    144 S.Q. Wu, Z.S. Wei, S.C. Tjong. Mechanical and Thermal Expansion Behavior of an Al-Si Alloy Composite Reinforced with Potassium Titanate Whisker. Composites Science and Technology. 2000,60(15):2873~2880
    145 L. Geng, S. Ochiai, C. K. Yao. Study on Temperature Dependence of Thermal Expansion Behavior of SiCw/Al Composite by Internal Stress Analysis. Journal of Materials Science Letters. 1998,17(22):1933~1935
    146 马森林. 超细颗粒增强铝基复合材料的微观结构与拉伸行为. 哈尔滨工业大学博士论文. 1999:99~101
    147 M.L. Dunn, Z. Li. Thermal Expansion of Morphologically Textured Short-Fiber Composite. Materials Transactions A. 1999,30A:203~211
    148 胡锐, 李华伦, 魏明, 张志宏, 李武. 挤压铸造硼酸铝晶须增强 Al 基复合材料浸渗过程理论分析. 复合材料学报. 2002,19(5):62~65
    149 丁冬雁, 孟庆昌等. 涂层硼酸铝晶须对铝基复合材料界面与力学性能的影响. 金属学报. 2000,36:109~112
    150 潘进,宁小光等. 硼酸铝晶须增强铝基复合材料的性能及界面结构. 金属 学报. 1993,6:29~33
    151 E. Carreno-mrelli, S.E. Urreta, R. Schaller. Mechanical Spectroscopy of Thermal Stress Relaxation at Metal-Ceramic Interface in Aluminum-Based Composites. Acta. Materilla. 2000,48(18-19):4725~4733
    152 D. R. Clarke. Residual Stress Induced Fracture in Glass-Sapphire Composites Cylindrical Geometry. Acta Metallurgica. 1990,38(2):259~267
    153 H. C. Cao. Residual Stresses and Cracking in Brittle Solids Bonded with a Thin Ductile Layer. Acta Metallurgica. 1988,36(8):2037~2046
    154 汪立果. 冶金和金属材料-化工百科全书. 冶金工业出版社. 1998:23
    155 J.J. Moore. Chemical Metallurgy. London-Boston: Butterworths.1981,87
    156 A.A. Mazen. Effect of Deformation Temperature on the Mechanical Behavior and Deformation Mechanisms of Al-Al2O3 Metal Matrix Composites. Journal of Material Engineering Perform. 1999,8(4):487~495
    157 N.L. Thanh. Microstructure and Compression Behavior in the Semisolid State of Short-Fibre-Reinforced A356 Aluminum Alloys. Materials Science and Engineering A. 1995,196(1–2):33~44
    158 长崎诚三, 平林真. 二元和金状态图集. 刘安生译. 北京冶金工业出版社. 2004, 26
    159 胡连喜,罗守靖,杨绮雯,姜秋华. Al2O3sf/LY12 复合材料在高温下的流动应力与塑性变形行为. 2000,24(4):282~285
    160 J. Cadek, H. Oikawa. Threshold Creep Behavior of Discontinuous Aluminum and Aluminum Alloy Matrix Composites: an Overview. Materials Science and Engineering A. 1995,190:9~23
    161 Y. Li, F.A. Mohamed. Investigation of Creep Behavior in a SiC-2124Al Composite. Acta Metallurgica. 1997,4:4775~4785
    162 E.W. Hart. A Phenomenological Theory for Plastic Deformation. ActaMetallurgica.1970,18:599~668
    163 Y.L. Liu. Recrystallization Microstructure in Cold-Rolled Aluminum Composites Reinforced by SiC Whisker. Materials Transactions A. 1989,20:1743~1753.
    164 F.J. Humphreys. Microstructureal Development during Thermomechanical Processing of Particulate Metal-Matrix Composites. Materials Science and Technology. 1990,6:1157~1166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700