用户名: 密码: 验证码:
拟南芥芸苔素调控花青素的积累及分子机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以拟南芥野生型Co1-0和Ws-2以及芸苔素(Brassinosteroid,BR)相关功能缺陷型突变体为实验材料,从芸苔素的生物合成和信号转导两个方面研究了芸苔素对茉莉素(Jasmonate,JA).CTK(Cytokinin,CTK)和糖诱导花青素积累的影响及其分子机理。主要研究结果如下:
     1.芸苔素调控JA诱导的花青素积累
     研究发现,芸苔素生物合成相关突变体pscl、dwf4-102和信号转导突变体bri1-4均因体内BR功能缺陷降低了JA诱导的花青素积累;同时,外源添加Brz抑制野生型拟南芥JA诱导的花青素积累,而添加epi-BL增加野生型拟南芥JA诱导的花青素积累。而且,经外源MeJA处理后,两类突变体植株花青素含量均会有所恢复,不过花青素增加量bril*4     2.芸苔素调控CTK诱导的花青素积累
     研究发现,芸苔素相关突变体dwf4-102和bril-4降低了CTK诱导的花青素积累;同时,外源添加6-BA增加野生型拟南芥CTK诱导的花青素积累。而且,经外源6-BA处理后,两类突变体植株花青素含量均会有所恢复,不过花青素增加量bril-4     3.芸苔素影响糖诱导的花青素积累
     研究发现,芸苔素相关突变体dwf4-102和bril-4均降低了不同浓度蔗糖(30、60、90、120、150mM)诱导的花青素积累量。而外源epi-BL可以提高野生型糖诱导的花青素积累;恢复及促进dwf4-102糖诱导的花青素积累;不能恢复bril-4降低的糖诱导的花青素积累,表明芸苔素通过信号转导途径参与糖诱导的花青素积累。Real-time PCR分析显示,芸苔素对糖诱导的花青素合成途径早期基因PAL、 CHS和CHI的表达影响不明显,主要是通过调控晚期基因DFR.LDOX和UF3GT的表达介导对糖诱导花青素积累的影响,并且,芸苔素只通过介导MYB类转录因子PAP1、PAP2的表达调控糖诱导的晚期基因的表达,而bHLH类转录因子GL3.EGL3和WD40蛋白TTGl对此过程无没明显调控作用。
     上述研究的完成发现了芸苔素影响拟南芥幼苗花青素的生物合成,并探析了芸苔素调控JA.CTK和糖诱导的花青素积累的分子机理,对进一步揭示及完善植物花青素的生物合成和调控机理具有重要的理论价值和应用前景。
In this paper, Wild types Col-0,Ws-2and dwf4-102, bril-4mutants were used to study the mechanism by which the cross-talks between brassinosteroid (BR) and jasmonate (JA) or cytokinin (CTK), sucrose regulate anthocyanin accumulation from the biosynthesis and signal transduction of brassinosteroids in Arabidopsis seedlings. The following is the main results:
     1. Brassinosteroid regulate JA-induced anthocyanin accumulation
     In this study it was shown that the JA-induced anthocyanin accumulation was reduced in the BR mutants or wild type treated with brassinazole, an inhibitor of BR biosynthesis, whereas was promoted by an application of exogenous BR. It was also shown that the'late'anthocyanin biosynthesis genes including DFR, LDOX, and UF3GT, were induced slightly by jasmonate in the BR mutants relative to wild type. Moreover, the expression level of JA-induced MYB transcription factors such as PAP1, PAP2, and bHLH transcription factor GL3, was lower in the BR mutants than that in wild type. These results suggested that BR affects the JA-induced anthocyanin accumulation by regulating the'late'anthocyanin biosynthesis genes and this regulation might be mediated by MYB/bHLH transcription factors.
     2. Brassinosteroid regulate CTK-induced anthocyanin accumulation
     In this study it was shown that the CTK-induced anthocyanin accumulation was reduced in the BR mutants, whereas was induced in wild type by treatment with exogenous BR. It was also shown that the expression of the'late'anthocyanin biosynthesis genes was reduced by cytokinins in the BR mutants, yet was increased in wild type. Furthermore, the expression level of CTK-induced bHLH transcription factors including GL3, EGL3, was lower in the BR mutants than that in wild type. These results indicated that BR affects the CTK-induced anthocyanin accumulation by regulating the 'late' anthocyanin biosynthesis genes and this regulation might be mediated by bHLH ranscription factors.
     3. Brassinosteroid affect sucrose-induced anthocyanin accumulation
     In this study it was shown that the sucrose-induced anthocyanin accumulation was reduced in the BR mutants, but was enhanced in wild type by an application of exogenous BR. It was also shown that the'late' anthocyanin biosynthesis genes including DFR, LDOX, and UF3GT, were induced slightly by sucrose in the BR mutants relative to wild type. Furthermore, the expression level of sucrose-induced MYB transcription factors such as PAP1, PAP2, was lower in the BR-insensitive mutant bril-4than that in wild type. However, the expression level of bHLH transcription factors such as GL3, EGL3, and WD-repeat protein TTG1remain unchange in both the bril-4mutant and wild type. Therefore, these results suggested that BR affects the sucrose-induced anthocyanin accumulation by regulating the'late' anthocyanin biosynthesis genes and this regulation might be mediated by MYB transcription factors.
引文
[1]Arteca JM, Arteca RN. Brassinosteroid-induced exaggerated growth in hydroponically grown Arabidopsis plants[J]. Physiol Plant,2001,112(1):104-112.
    [2]Ayala-Zavala J, Wang S, Wang C, et al. Methyl jasmonate in conjunction with ethanol treatment increases antioxidant capacity, volatile compounds and postharvest life of strawberry fruit[J]. Eur Food Res Technol,2005,221(6): 731-738.
    [3]Azpiroz R, Wu Y, Locascio J C, et al. An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation[J]. Plant Cell,1998,10(2):219-230.
    [4]Ban T, Shiozaki S, Ogata T, et al. Effects of abscisic acid and shading treatment on the levels of anthocyanin and resvratrol in skin of Kyoho gape berry [J]. Acta Hortic,2000,51:83-89.
    [5]Ban T, Ishimaru M, Kobayashi S, Shiozaki S, Goto-Yamamoto N, Horiuchi S. Abscisic acid and 2,4-dichlorohenoxyacetic acid affect the expression of anthocyanin biosynthetic pathway genes in 'Kyoho' grapeberries[J]. Journal of Horticultural Science and Biotechnology,2003,78:586-589.
    [6]Baudry A, Heim M A, Dubreucq B, et al. TT2, TT8, and TTG1 synergistically specify the exp ression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana[J]. Plant Journal,2004,39:366-380.
    [7]Borevitz JO, Xia Y, Blount J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis[J]. Plant Cell,2000,12(12): 2383-2394.
    [8]Brugiere N, Jiao S, Hantke S, et al. Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress[J]. Plant Physiol,2003,132(3):1228-1240.
    [9]Carey CC, Strahle JT, Selinger DA, et al. Mutations in the pale aleurone colorl regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana[J]. Plant Cell,2004,16(2):450-464.
    [10]Chae HS, Faure F, Kieber JJ. The etol, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein[J]. Plant Cell,2003,15(2):545-559.
    [11]Chalker-Scott L. Environmental significance of anthocyanins in plant stress responses[J]. Photochem Photobiol,1999,70(1):1-9.
    [12]Chen QF, Liang-Ying D, Shi X, Yun-Sheng W, Xiong-Lun L, Guo-Liang W. The COI1 and DFR genes are essential for regulation ofjasmonate-induced anthocyanin accumulation in Arabidopsis[J]. Journal of Integrative Plant Biology,2007,49:1370-1377.
    [13]Cheng H, Song S, Xiao L,et al. Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis[J]. PLoS Genet,2009,5:e1000440.
    [14]Choe S., Dilkes B. P., Fujioka S., et al. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22alpha-hydroxylation steps in brassinosteroid biosynthesis[J]. Plant Cell,1998,10(2):231-243.
    [15]Choe S, Fujioka S, Noguchi T, et al. Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis[J]. Plant Journal,2001,26(6):573-582.
    [16]Choe S, Noguchi T, Fujioka S, et al. The Arabidopsis dwf7/stel mutant is defective in the delta7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis[J]. Plant Cell,1999,11(2):207-222.
    [17]Choe S, Tanaka A, Noguchi T, et al. Lesions in the sterol Δ7 reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis[J]. Plant Journal,2000,21(5):431-443.
    [18]Chory J, Wu D. Weaving the complex web of signal transduction[J]. Plant Physiol,2001,125(1):77-80.
    [19]Clouse SD. Molecular genetic studies confirm the role of brassinosteroids in plant growth and development[J]. Plant Journal.1996,10:1-8
    [20]Clouse SD, Sasse J M. Brassinosteroids:essential regulators of plant growth and development[J]. Annu Rev Plant Biol,1998,49(1):427-451.
    [21]Clouse S D. Brassinosteroid signal transduction:from receptor kinase activation to transcriptional networks regulating plant development[J]. Plant Cell,2011, 23(4):1219-1230.
    [22]Crafts-Brandner SJ, Law R. D. Effect of heat stress on the inhibition and recovery of the ribulose-1,5-bisphosphate carboxylase/oxygenase activation state[J]. Planta,2000,212:67-74.
    [23]Das PK, Shin DH, Choi SB, et al. Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis[J]. Mol Cells.2012,34(1):93-101.
    [24]Davies K M, Schwinn K E. Transcrip tional regulation of secondary metabolism[J]. Functional Plant Biology,2003,30 (9):913-925.
    [25]De Grauwe L., Vandenbussche F., Tietz O., et al. Auxin, Ethylene and Brassinosteroids:Tripartite Control of Growth in the Arabidopsis Hypocotyl[J]. Plant and Cell Physiology,2005,46(6):827-836.
    [26]Deikman J, Hammer P E. Induction of Anthocyanin Accumulation by Cytokinins in Arabidopsis thaliana[J]. Plant Physiol,1995,108(1):47-57.
    [27]Devoto A, Ellis C, Magusin A, Chang HS, Chilcott C, Zhu T, Turner JG. Expression profiling reveals COI1 to be a key regulator of genes involved in wound-and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions[J]. Plant Molecular Biology,2005,58:497-513.
    [28]Feys B., Benedetti CE., Penfold CN., et al. Arabidopsis mutantsselected for resistance to the phytotoxin coronatine are male sterile, insensitive to Methyl Jasmonate, and resistant to a bacterial pathogen[J]. Plant Cell,1994,6(5): 751-759.
    [29]Fry SC. Phonolic components of the primary cell wall and their possible role in the hormonal regulation of growth[J]. Planta,1979,146(3):343-351.
    [30]Fujioka S, Li J, Choi Y. H, et al. The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis [J]. Plant Cell,1997,9(11):1951-1962.
    [31]Fujioka S, Yokota T. Biosynthesis and metabolism of brassinosteroids[J]. Annu Rev Plant Biol,2003,54(1):137-164.
    [32]Goda H, Sawa S, Asami T, et al. Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis[J]. Plant Physiol,2004, 134(4):1555-1573.
    [33]Gonzalez M C, Hidalgo C A, Barab A Si A L. Understanding individual human mobility patterns[J]. Nature,2008,453(7196):779-782.
    [34]Grotewold E. The genetics and biochemistry of floral pigments[J]. Annu Rev Plant Biol,2006,57:761-780.
    [35]Han DH, Lee SM, Lee CH, Kim SB. Effects of ABA and ethephon treatments on coloration and fruit quality in Kyoho grape[J]. Journal of the Korean Society for Horticultural Science,1996,37:416-420.
    [36]Hara M, Oki K, Hoshino K, et al. Enhancement of anthocyanin biosynthesis by sugar in radish (Raphanus sativus) hypocotyl[J]. Plant Sci,2003,164(2): 259-265.
    [37]Harborne JB, Williams CA. Advances in flavonoid research since 1992[J]. Phytochemistry,2000,55(6):481-504.
    [38]Haubrick LL, Torsethaugen G, Assmann SM. Effect of brassinolide, alone and in concert with abscisic acid, on control of stomatal aperture and potassium currents of Vicia faba guard cell protoplasts[J]. Physiologia Plantarum,2006, 128:134-143.
    [39]Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis[J]. Plant Cell,1995,7(7):1071.
    [40]Huang Y, Han C, Peng W, et al. Brassinosteroid negatively regulates jasmonate inhibition of root growth in Arabidopsis[J]. Plant Signaling & Behavior,2010,5: 140-142.
    [41]Hu Y, Bao F, Li J. Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis[J], Plant Journal,2000,24(5): 693-701.
    [42]Iwasaki T, Shibaoka H. Brassinosteroids act as regulators of tracheary-element differentiation in isolated zinnia mesophyll Cells[J]. Plant Cell Physiol,1991, 32(7):1007-1014.
    [43]Jeong SW, Das PK, Jeoung SC, et al. Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis[J]. Plant Physiol,2010,154(3): 1514-1531.
    [44]Jeong ST, Goto-Yamamoto N, Kobayashi S, Esaka M. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins[J]. Plant Science,2004,167: 247-252.
    [45]Jin H, Cominelli E, Bailey P, et al. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis[J], Embo J, 2000,19(22):6150-6161.
    [46]Kauschmann A, Jessop A, Koncz C, et al. Genetic evidence for an essential role of brassinosteroids in plant development[J]. Plant Journal,1996,9(5):701-713.
    [47]Kim H, Park PJ., Hwang H. J., et al. Brassinosteroid signals control expression of the AXR3/IAA17 gene in the cross-talk point with auxin in root development[J]. Biosci Biotechnol Biochem,2006,70(4):768-773.
    [48]Kim JS, Lee BH, Kim SH, Oh KH, Yun Cho K. Response toenvironmental and chemical signals for anthocyanin biosynthesis in nonchlorophyllous corn (Zea mays L.) leaf[J]. Journal of Plant Biology,2006,49:16-25.
    [49]Kim TW, Wang ZY. Brassinosteroid signal transduction from receptor kinases to transcription factors[J]. Annu Rev Plant Biol,2010,61:681-704.
    [50]Kinoshita T, Seto H. Brassinosteroid combines with the extracellular domain of receptor kinase BRI1 of plants[J]. Cell,2005,24(4):384-385.
    [51]Kubo H, Peeters A J, Aarts M G, et al. ANTHOCYANINLESS2, a homeobox gene affectinganthocyanin distribution and root development in Arabidopsis[J]. Plant Cell,1999,11(7):1217-1226.
    [52]Kwon Y, Oh J, Noh H, et al. The ethylene signaling pathway has a negative impact on sucrose-induced anthocyanin accumulation in Arabidopsis[J]. J Plant Res,2011,124(1):193-200.
    [53]Laxmi A, Paul L, Raychaudhuri A, et al. Arabidopsis cytokinin-resistant mutant, cnrl, displays altered auxin responses and sugar sensitivity [J]. Plant Mol Biol, 2006,62(3):409-425.
    [54]Lepiniec L, Debeaujon I, Routaboul JM, et al. Genetics and biochemistry of seed flavonoids[J]. Annu Rev Plant Biol,2006,57:405-430.
    [55]Leubner-Metzger G. Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways[J]. Planta,2001,213(5):758-763.
    [56]Li J, Nagpal P, Vitart V, et al. A role for brassinosteroids in light-dependent development of Arabidopsis[S]. Science,1996,272(5260):398-401.
    [57]Lorenzo O, Piqueras R, Sanchez-Serrano JJ, et al. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense[J]. Plant Cell,2003,5:165-178.
    [58]Loreti E, Povero G, Novi G, et al. Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis[J]. New Phytol,2008,179(4):1004-1016.
    [59]Mandava NB. Plant growth-promoting brassinosteroids[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1988,39(1):23-52.
    [60]Martinez GA, Chaves AR, Anon MC. Effect of exogenous application of gibberellic acid on color change and phenylalanine ammonia-lyase, chlorophyllase, and peroxidase activities during ripening of strawberry fruit (Fragaria × ananassa Duch.)[J]. Journal of Plant Growth Regulation,1996,3: 139-146.
    [61]Mathews H, Clendennen SK, Caldwell CG, et al. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport[J]. Plant Cell,2003,15(8):1689-1703.
    [62]Moalem-Beno D, Tamari G, Leitner-Dagan Y, et al. Sugar-dependent Gibberellin-induced chalcone synthase gene expression in Petunia Corollas[J]. Plant Physiol,1997,113(2):419-424.
    [63]Mori K, Saito H, Goto-Yamamoto N, Kitayama M, Kobayashi S, Sugaya S, Gemma H, Hashizume K. Effects of abscisic acid treatment and night temperatures on anthocyanin composition in Pinot noir grapes[J].2005, Vitis 44: 161-165.
    [64]Mori T, Sakurai M, Seki M, Furusaki S. Use of auxin and cytokinin to regulate anthocyanin production and composition in suspension cultures of strawberry cell[J]. Journal of the Science of Food and Agriculture,1994,65:271-276.
    [65]Morillon R, Catterou M, Sangwan RS, et al. Brassinolide may control aquaporin activities in Arabidopsis thaliana[J]. Planta,2001,212(2):199-204.
    [66]Mouchel CF., Briggs GC, Hardtke CS. Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root[J]. Genes and Development,2004,18(6):700-714.
    [67]Moyano E, Martinez-Garcia JF, Martin C. Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in Antirrhinum flowers[J]. Plant Cell,1996,8(9):1519-1532.
    [68]Munoz JA, Coronado C, Perez-Hormaeche J, et al. MsPG3, a Medicago sativa polygalact uronase gene expressed during the alfalfa-rhizobium meliloti interaction[J]. Proc Natl Acad Sci U S A,1998,95(16):9687-9692.
    [69]Mussig C. Brassinosteroid-promoted growth[J]. Plant Biology,2005,7(2): 110-117.
    [70]Nakajima N, Shida A, Toyama S. Effects of brassinosteroid on cell division and colony formation of Chinese cabbage mesophyll protoplasts [J]. Jpn J. Crop Sci. 1996,65,114-118.
    [71]Nakamura A, Higuchi K, Goda H, et al. Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling[J]. Plant Physiol,2003,133(4): 1843-1853.
    [72]Nakamura A, Goda H, Shimada Y, et al. Brassinosteroid selectively regulates PIN gene expression in Arabidopsis[J]. Biosci Biotechnol Biochem,2004,68(4): 952-954.
    [73]Nakamura A, Shimada Y, Goda H, et al. AXR1 is involved in BR-mediated elongation and SAUR-AC1 gene expression in Arabidopsis[J]. FEBS Lett,2003, 553(1-2):28-32.
    [74]Nakaya M, Tsukaya H, Murakami N, et al. Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana[J]. Plant and Cell Physiology, 2002,43(2):239-244.
    [75]Nemhauser JL, Mockler TC, Chory J. Interdependency of brassinosteroid and auxin signaling in Arabidopsis[J]. PLoS Biol,2004,2(9):E258.
    [76]Nesi N, Debeaujon I, Jond C, et al. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques[J]. Plant Cell,2000,12(10):1863-1878.
    [77]Nesi N, Jond C, Debeaujon I, et al. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed[J]. Plant Cell,2001,13(9):2099-2114.
    [78]Noguchi T, Fujioka S, Choe S, et al. Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids[J]. Plant Physiol,1999,121(3): 743-752.
    [79]Oh MH, Clouse SD. Brassinolide affects the rate of cell division in isolated leaf protoplasts of Petunia hybrida[J]. Plant Cell Reports,1998,17:921-924.
    [80]Ohlsson AB, Berglund T. Gibberellic acid-induced changes in glutathione metabolism and anthocyanin content in plant tissue[J]. Plant Cell, Tissue and Organ Culture,2001,64:77-80.
    [81]Ohmiya A. Effects of auxin on growth of peach fruit[J]. Sci Hortic,2000,84: 309-319.
    [82]Pasqua G, Monacelli B, Mulinacci N, et al.The efect of growth regulators and sucrose on anthocyanin production in Camptotheca acuminata cell cultures [J]. Plant Physiol Biochem,2005,43:293-298.
    [83]Plata N, Konczak-Islam I, Jayram S, McClelland K, Woolford T, Franks P. Effect of methyl jasmonate and p-coumaric acid on anthocyanin composition in a sweet potato cell suspension culture [J]. Biochemical Engineering Journal,2003, 14:171-177.
    [84]Pelletier MK, Murrell JR, Shirley BW. Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis. Further evidence for differential regulation of "early" and "late" genes [J]. Plant Physiol,1997,113: 1437-1445.
    [85]Piazza P, Procissi A, Jenkins GI, Tonelli C. Members of the cpl/pll regulatory gene family mediate the response of maize aleurone and mesocotyl to different light qualities and cytokinins[J]. Plant Physiology,2002,128:1077-1086.
    [86]Pustovoitova TN, Zhdanova NE, Zholkevich VN. Epibrassinolide increases plant drought resistance[J]. Doklady Biochemistry and Biophysics,2001,376(1): 36-38.
    [87]Quattrocchio F, Wing J, Koes R, et al. Molecular analysis of the anthocyanin2 gene of Petunia and its role in the evolution of flower color[J]. Plant Cell,1999, 11:1433-1444.
    [88]Ralf S, Hirofumi I, Gunnar H, et al. Differential regulation of closely related R2R32MYB transcrip tion factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J]. Plant Journal,2007,50(4): 660-677.
    [89]Ramsay NA, Glover BJ. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity[J]. Trends Plant Sci,2005,10(2):63-70.
    [90]Ren CM, Han CY, Peng W, Huang Y, Peng Z, Xiong X, Zhu Q, Gao B, and Xie D. A leaky mutation in DWF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by jasmonate in Arabidopsis[J]. Plant Physiology, 2009,151:1412-1420.
    [91]Ren CM, Zhu Q, Gao BD,et al. Transcription factor WRKY70 displays important but no indispensable roles in jasmonate and salicylic acid signaling[J]. J Integr Plant Biol,2008,50:630-637.
    [92]Ronchi A, Farina G, Gozzo F, et al. Effects of a triazolic fungicide on maize plant metabolism:modifications of transcript abundance in resistance-related pathways[J]. Plant Sci,1997,130(1):51-62.
    [93]Rudell DR, Mattheis JP, Fan X, et al. Methyl jasmonate enhances anthocyanin accumulation and modifies production of phenolics and pigments in'Fuji' apples[J]. Journal of the American Society for Horticultural Science,2002,127 (3):435-441.
    [94]Sairam MR, Zaky AA, Hassan AA. Isolation and characterization of distinct bioactive forms of LH from male buffalo pituitaries:differences localized to their alpha subunits[J]. J Endocrinol,1994,143(2):313-323.
    [95]Saijrr MC. External control of anthocvanin formation in apple[J]. Sci Hortic, 1990,42:181-218.
    [96]Sasse JM, Recent progress in brassinosteroids research[J]. Physiol Plant,1997, 100:696-701.
    [97]Shan X, Zhang Y, Peng W, et al. Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis[J]. Journal of Experimental Botany, 2009,60 (13):3849-3860.
    [98]Shi Q, Yang X, Song L, et al. Arabidopsis MSBP1 is activated by HY5 and HYH and is involved in photomorphogenesis and brassinosteroid sensitivity regulation[J]. Molecular Plant,2011,4(6):1092-1104.
    [99]Sivitz AB, Reinders A, Ward JM. Arabidopsis Sucrose Transporter AtSUCl Is Important for Pollen Germination and Sucrose-Induced Anthocyanin Accumulation[J]. Plant Physiol,2008,147(1):92-100.
    [100]Solfanelli C, Poggi A, Loreti E, et al. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis[J]. Plant Physiol,2006, 140(2):637-646.
    [101]Song L, Shi Q, Yang X, et al. Membrane steroid-binding protein 1 (MSBP1) negatively regulates brassinosteroid signaling by enhancing the endocytosis of BAK1[J]. Cell Res,2009,19(7):864-876.
    [102]Spelt C, Quattrocchio F, Mol J, et al. Anthocyaninl of Petunia encodes a basic helix-loop-helix protein that directly activates transcrip tion of structural anthocyanin genes. Plant Cell,2000,12:1619-1631.
    [103]Springob K, Nakajima J, Yamazaki M, et al. Recent advances in the biosynthesis and accumulation of anthocyanins[J]. Nat. Prod. Rep.,2003,20(3):288-303.
    [104]Steber CM, McCourt P. A role for brassinosteroids in germination in Arabidopsis[J]. Plant Physiol,2001,125(2):763-769.
    [105]Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F,Niehaus K, Weisshaar B. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J]. Plant J.2007,50(4):660-677.
    [106]Sudha G, Ravishankar GA. Elicitation of anthocyanin production in callus cultures of Daucus carota and the involvement of methyl jasmonate and salicylic acid[J]. Acta Physiologiae Plantarum,2003,3:249-256.
    [107]Szekeres M, Nemeth K, Koncz-Kalman Z, et al. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis[J]. Cell,1996,85(2):171-182.
    [108]Szekeres M. Brassinosteroid and systemin:two hormones perceived by the same receptor[J]. Trends Plant Sci,2003,8(3):102-104.
    [109]Tamari G, Borochov A, Atzorn R, Weiss D. Methyl jasmonate induces pigmentation and flavonoid gene expression in petunia corollas:a possible role in wound response[J]. Physiologia Plantarum,1995,94:45-50.
    [110]Tanaka Y, Sano T, Tamaoki M, et al. Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis[J]. J Exp Bot,2006,57(10):2259-2266.
    [111]Teng S, Keurentjes J, Bentsink L, et al. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene[J]. Plant Physiol,2005,139(4):1840-1852.
    [112]Tiryaki I, Staswick PE. An Arabidopsis mutant defective in jasmonate response is allelic to the auxin-signaling mutant axrl[J]. Plant Physiol,2002,130: 887-894.
    [113]Tohge T, Nishiyama Y, Hirai MY, et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription Factor[J]. Plant Journal,2005,42: 218-235.
    [114]Tsukaya H, Ohshima T, Naito S, et al. Sugar-dependent expression of the CHS-A gene for chalcone synthase from Petunia in transgenic Arabidopsis [J]. Plant Physiol,1991,97 (4):1414-1421.
    [115]Wachsman MB, Lopez EM, Ramirez JA, et al. Antiviral effect of brassinosteroids against herpes virus and arenaviruses[J]. Antivir Chem Chemother,2000,11(1):71-77.
    [116]Weiss D. Regulation of flower pigmentation and growth:Multiple signaling pathways control anthocyanin synthesis in expanding petals[J]. Physiologia Plantarum,2000,110(2):152-157.
    [117]Weiss D, vander-Luit A, Knegt E, et al. Identification of endogenous gibberellins in petunia flower, induction of anthocyanin biosynthetic gene expression and the antagonistic effect of abscisic acid[J]. Plant Physiol,1995, 107:695-702.
    [118]Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress[J]. Curr Opin Plant Biol,2002,5(3):218-223.
    [119]Winkel-Shirley B. Flavonoid biosynthesis:A colorful model for genetics, biochemistry, cell biology, and biotechnology[J]. Plant Physiol,2001,126(2): 485-493.
    [120]Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG. COI1:an Arabidopsis gene required for jasmonate-regulated defense and fertility[J]. Science,1998, (280):1091-1094.
    [121]Yamazaki M, Makita Y, Sp ringob K, et al. Regulatory mechanisms for anthocyanin biosynthesis in chemotypes of Perilla frutescens var. crispa[J]. Biochemical Engineering Journal,2003,14:191-197.
    [122]Zhang F, Gonzalez A, Zhao M, et al. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis[J]. Development, 2003,130:4859-4869.
    [123]Zimmermann I, Heim M, Weisshaar B, et al. Comp rehensive identification of Arabidopsis thaliana MYB transcrip tion factors interacting with R/B2 like BHLH p roteins[J]. Plant Journal,2004,40:22-34.
    [124]Ziska L. H. Growth temperature can alter the temperature dependent stimulation of photosynthesis by elevated carbon dioxide in albutilon theophrasti[J]. Physiol Plant,2001,111(3):322-328.
    [125]蔡华,赵荣.不同生育期喷施油菜素内酯对番茄产量的影响[J].安徽农业科学,2000,(3):355-356.
    [126]曹云英,赵华.高温胁迫下油菜素内酯对水稻幼苗的保护作用[J].中国水稻科学,2007,(5):525-529.
    [127]邓天福,吴艳兵,李广领,等.油菜素内酯提高植物抗逆性研究进展[J].广东农业科学,2009,(11):21-25.
    [128]丁锦新,马国瑞,黄素青,等.表油菜素内酯对黄瓜的生理效应[J].浙江农业大学学报,1995,(6):615-621.
    [129]高红明,温爽,张小丽,等.表油菜素内酯浸种对干旱胁迫下玉米种子萌发及幼苗生长的影响[J].安徽农业科学,2006,(20):5208-5209.
    [130]胡文海,黄黎锋,毛伟华,等.油菜素内酯对黄瓜苗期叶片光合机构调节作用的研究[J].园艺学报,2006,(14):762-766.
    [131]李翠花,邹华文.不同植物生长物质处理对玉米幼苗生理指标的影响[J].安徽农学通报,2009,(9):65-66.
    [132]李倩,张立军,张旭,等.糖对植物花色素苷合成和积累的调节[J].生命的化学,2009,29:218-222.
    [133]姜卫兵,徐莉莉,翁忙玲,等.环境因子及外源化学物质对植物花色素苷的影响[J].生态环境学报,2009,18:1546-1552.
    [134]廖新华,张建华.芸苔素内酯对水稻孕穗期冷害的防治初报[J].云南大学学报(自然科学版),1999,21(2):150-155.
    [135]尚庆茂,张志刚,董涛,等.油菜素内酯诱导黄瓜幼苗抗灰霉病研究[J].应用与环境生物学报,2007,13(5):630-634.
    [136]沈瑛,陈振宇.油菜素类固醇(BRs):一类植物生长发育基础的调节剂[J].农业科技译丛,1999,(2):16-18.
    [137]王红红,李凯荣,侯华伟.油菜素内酯提高植物抗逆性的研究进展[J].干旱地区农业研究,2005,23(3):213-219.
    [138]翁晓燕,蒋德安,陆庆,陶月良,表油菜素内酯对水稻产量和光合特性的影响[J].浙江农业大学学报,1995,21(1):51-54.
    [139]耶兴元,仝胜利,张燕.油菜素内酯对高温胁迫下猕猴桃苗耐热性相关生理指标的影响[J].西北农业学报,2011,(9):113-116.
    [140]尹金华,高飞飞,胡杜兵,等.ABA和乙烯对荔枝果实成熟和着色的调控[J].园艺学报,2001,28:65-67.
    [141]张宁,胡宗利,陈绪清,等.植物花青素代谢途径分析及调控模型建立[J].中国生物工程杂志,2008,(1):97-105.
    [142]张永平,杨少军,陈幼源.2,4-表油菜素内酯对高温胁迫下甜瓜幼苗抗氧化酶活性和光合作用的影响[J].西北植物学报,2011,(7):1347-1354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700