用户名: 密码: 验证码:
纳米结构氧化铝纤维及其膜的制备、表征与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铝纤维因其优异的机械力学性能、高温隔热性能等吸引了许多研究者广泛的研究兴趣。本论文采用溶胶-凝胶结合静电纺丝的方法,制备了柔性γ-Al2O3纳米纤维膜,研究了其抗拉伸机械力学性能。此外,还利用不同组成的铝溶胶制备了柔性的γ和α氧化铝纤维,研究了不同溶胶组成对氧化铝纤维微观结构和隔热性能的影响。本论文不仅首次制备了具有一定强度的柔性γ-Al2O3纳米纤维膜,为氧化铝在纤维膜领域的应用提供了技术支持,还为溶胶-凝胶制备氧化铝纤维提供了一定的理论基础和实验依据。
     1.柔性γ-Al2O3纳米纤维膜的制备及其力学性质
     采用溶胶-凝胶结合静电纺丝的方法制备了具有一定强度的柔性γ-Al2O3纳米纤维膜,对纤维膜抗拉伸强度进行了表征,并探讨了纤维微观结构对纤维柔韧性和强度的影响。具体的制备方法是以氯化铝和异丙醇铝为铝源,酒石酸为纺丝助剂,浓盐酸为催化剂,乙醇的水溶液为溶剂制备铝溶胶,添加聚乙烯吡咯烷酮(PVP K90)调节溶胶粘度,通过静电纺丝制备凝胶纤维膜,经过800℃高温烧结,成功制备了由随机取向纤维构成的γ-Al2O3纳米纤维膜。纤维膜完整均匀,无明显的裂纹和孔洞等缺陷,膜厚度大于10μm,由平均直径为188nm的纤维构成。纤维比较致密,由15~30nm的纳米颗粒组成。较小的组成颗粒、随机的纤维排布方式、较少的膜缺陷等有利于纤维膜获得较好的力学性能。γ-Al2O3纤维膜表现出非常好的柔韧性和抗拉伸强度,其抗拉伸强度可以达到1.01MPa。较好的力学性能使该氧化铝纤维膜在高温过滤和催化过滤等领域具有潜在的应用价值。
     2.溶胶组成对氧化铝纤维微观结构及性质的影响
     以氯化铝和铝粉为铝源,以水为溶剂,乙醇为辅助溶剂,通过调节原料中氯化铝和铝粉的比例控制合成了含不同比例铝单体和Al13的铝溶胶,利用静电纺丝的方法制备了凝胶纤维,经过干燥和高温烧结获得了柔软的棉絮状γ-Al2O3和α-Al2O3纳米纤维。探究了不同溶胶组成对氧化铝纤维微观结构、物相转变和纤维隔热性能的影响。Al13能够推迟纤维的物相转变,溶胶中Al13含量较多能够使γ-Al2O3纤维的气孔和组成颗粒增大,降低γ-Al2O3纤维的比表面积,并使γ-Al2O3纤维和α-Al2O3纤维的导热系数降低。其中So14对应的γ-A12O3纤维和α-Al2O3纤维的导热系数仅为0.08087和0.1251W/m·k,该数据表明,溶胶中较高的Al_(13)含量有利于提高纤维材料的隔热性能。
Alumina fibers have attracted great interests due to their excellent mechanical property and high temperature heat insulation performance and so on. In this paper, γ-Al2O3flexible nano fibrous membranes were synthesized through sol-gel combined electrospinning method, and the tensile strength was studied, y and a flexible alumina nano fibers were prepared using aluminum sol with different composition. Microstructure of the alumina fibers affected by the composition of aluminum sol and heat insulation performance of the fibers were studied. This paper provided theoretical basis and experimental data for fundamental research of the preparation of alumina fibers by sol-gel method. The preparation of γ-Al2O3flexible nanofibrous membranes with tensile strength provided technical support for the use of alumina in the field of fibrous membrane.
     1. Fabrication and mechanical properties of γ-Al2O3flexible nanofibrous membranes
     Flexible γ-Al2O3nanofibrous membranes were prepared by sol-gel combined electrospinning technique, the tensile strength was characterized, and the impacts of microstructure on the flexibility and tensile strength of the membranes were investigated. The preparation steps were carried out as follows, using aluminum chloride and aluminum isopropoxide as raw materials, tartaric acid as spinning aid, concentrated hydrochloric acid as catalyst, and ethanol aqueous solution as solvent. Polyvinylpyrrolidone (PVP K90) were added to adjust the viscosity of sol. Gel fibrous membranes were prepared by electropinning method. After calcination at800℃, γ-Al2O3nanofibrous membranes composed of randomly oriented fibers were fabricated. The fibrous membranes are complete and uniform, and there are no defects like cracks or big through-holes in the membranes. The thickness of the membrane is greater than10μm. The fibers has an average diameter of188nm. And the compact fibers are composed of nanoparticles ranged from15to30nm. The small size of the grains, random orientation of the fibers, and less defects are good for excellent flexibility and high tensile strength. The γ-Al2O3membranes present excellent flexibility and tensile strength, and the tensile strength is1.01MPa. The membrane prepared in this method will have longer service life, and have a lot of potential applications in the field of high-temperature filtration and catalytic filtration.
     2. The sol composition's impacts on the microstructure and properties of alumina fibers
     Using aluminum chloride and aluminum as raw materials, pure water as solvent, ethanol as aid solvent, alumina sols containing different proportions of alumina monomer and Al13were prepared by adjusting the proportion of aluminum chloride and aluminum. Then, gel fibers were prepared by electrospinning, and flexible flocculence γ-Al2O3and α-Al2O3fibers were fabricated after drying and calcination at high temperatures. Xerogel fibers were calcined at different temperatures. The composition of sol impact on the microstructure of fibers, phase transformation and insulation performance were investigated. Al13can delay the phase transformation of the fibers, more content of Al13in sol can enlarge the size of pore and grain of γ-Al2O3fibers, and reduce specific surface area as well as the thermal conductivity of alumina fibers. The thermal conductivity of y and a alumina fibers prepared by So14is only0.08087and0.1251W/m·k, indicating that high content of Al13is good for improving the thermal insulation properties of the fibers.
引文
1.崔之开陶瓷纤维.化学工业出版社:北京,2004.
    2. Symes, W. R.; Rastetter, E. Alumina fiber-a polycrystalline refractory fiber for use up to 1600 ℃. Inter. Ceram.1982,31,215-220.
    3. Birchall, J. D. The preparation and properties of polycrystalline aluminum oxide fibres. Trans. J. Br. Ceram. Soc.1983,82,143-145.
    4. Cooke, T. F. Inorganic fibers-a literature review. J. Am. Ceram. Soc.1991,74, 2959-2978.
    5. Dhingra, A. K. Alumina fibre FP. Phil. Trans. R. Soc.1980, A294,411-417.
    6. Jakus, K.; Tulluri, V. Mechanical behavior of a Sumitomo alumina fiber at room and high temperature. Ceram. Eng. Sci. Proc.1989,10,1338-1349.
    7. Bunsell, A. R.; Berger, M. H. Fine diameter ceramic fibres.J. Eur. Ceram. Soc. 2000,20,2249-2260.
    8. Chiou, Y. H.; Tsai, M. T.; Shih, H. C. The preparation of alumina fibre by sol-gel processing.J. Mater. Sci.1994,29,2378-2388.
    9. Nguyen, L. T. H.; Chen, S.; Elumalai, N. K.; Prabhakaran, M. P.; Zong, Y.; Vijila, C.; Allakhverdiev. S. I.; Ramakrishna, S. Biological, chemical, and electronic applications of nanofibers. Macromol. Mater. Eng.2012,1-46.
    10. Li, D.; Xia, Y. Electrospinning of nanofibers:reinventing the wheel? Adv. Mater. 2004,16,1151-1170.
    11. Greiner, A.; Wendorff, J. H. Electrospinning:a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Edit.2007,46 (30),5670-5703.
    12. Li, D.; Mccann, J. T.; Xia, Y.; Marquez, M. Electrospinning:a simple and versatile technique for producing ceramic nanofibers and nanotubes. J. Am. Chem. Soc.2006,89,1861-1869.
    13. Ding, B.; Wang, M.; Wang, X.; Yu, J.; Sun, G. Electrospun nanomaterials for ultrasensitive sensors. Mater. Today.2010,13,16-27.
    14.王策;卢晓峰 有机纳米功能材料:高压静电纺丝技术与纳米纤维.科学工业出版社 北京,2011.
    15.丁彬;俞建勇静电纺丝与纳米纤维.中国纺织出版社 北京,2011.
    16. Huang, Z. M.; Zhang, Y.Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol.2003,63,2223-2253.
    17. Formhals, A. Process and apparatus for preparing artificial threads. US Patent 1934,1975504.
    18. Harold, S. Process and apparatus for producing patterned non-woven fabrics. US Patent 1966,3280229.
    19. Taylor, G. Disintegration of water drops in an electric field. Proc. R. Soc. London, Ser. A, Math. Phys. Sci.1964,280 (1382),383-397.
    20. Baumgarten, P. K. Electrostatic spinning of acrylic microfibers. J. Colloid Interface Sci.1971,36,71-79.
    21. Shao, C.; Kim, H.; Gong, J.; Lee, D. A novel method for making silica nanofibres by using electrospun fibres of polyvinylalcohol/silica composite as precursor. Nanotechnology.2002,75,635-637.
    22. Fang, J.; Niu, H.; Lin, T.; Wang, X. Applications of electrospun nanofibers. Chin. Sci. Bull.2008,53 (15),2265-2286.
    23. Geffcken, W.; Berger, E. German Patent.1939,736411
    24. Dislich, H. New routes to multicomponent oxide glass. Angew. Chem. Int. Ed. 1971,10,363-370.
    25.黄剑锋 溶胶-凝胶原理与技术.化学工业出版社 北京,2005.
    26. Nogami, M.; Moriya, Y. Glass formation through hydrolysis of Si(OC2H5)4 with NH4OH and HC1 solution. J. Non-Cryst. Solids.1980,37,191-201.
    27. Colby, M. W.; Osaka, A.; Mackenzie, J. D., Effects of temperature on formation of silica gel. J. Non-Cryst. Solids.1986,82,37-41.
    28. Maneeratana, V.; Sigmund, W. M. Continuous hollow alumina gel fibers by direct electrospinning of an alkoxide-based precursor. Chem. Eng. J.2008,137,137-143.
    29. Azad, A. M. Fabrication of transparent alumina(Al2O3) nanofibers by electrospinning. Mater. Sci..Eng. A.2006,435-436,468-473.
    30. Panda, P. K.; Ramakrishna, S. Electrospinning of alumina nanofibers using different precursors. J. Mater. Sci.2007,42,2189-2193.
    31. Akitt, J. W.; Farthing, A. Aluminium-27 nuclear magnetic resonance studies of the hydrolysis of aluminium(Ⅲ). Part 2. Gel-permeation chromatography. J. Chem. Soc. Dalton. Trans.1981,0,1606-1608.
    32. Chen, Z.; Luan, Z.; Fan, J.; Zhang, Z.; Peng, X.; Fan, B. Effect of thermal treatment on the formation and transformation of Keggin Al13 and Al30 species in hydrolytic polymeric aluminum solutions. Colloid Surf. A-Physicochem. Eng. Asp. 2001,292,110-118.
    33. Wang, W.; Wentz, K. M.; Hayes, S. E.; Johnson, D. W.; Keszler, D. A. Synthesis of the hydroxide cluster [Al13(μ13-OH)6(μ-OH)18(H2O)24]15+ from an aqueous solution. Inorg. Chem.2011,50(11),4683-4685.
    34. Qian, Z.; Feng, H.; Yang, W.; Miao, Q.; He, L.; Bi, S. Supermolecule density functional calculations on the water exchange of aquated Al(ⅲ) species in aqueous solution. Chem. Commun.2008.0(33),3930-3932.
    35. Kang, L. S.; Han. S. W.; Jung, C. W. Synthesis and characterization of polymeric inorganic coagulants for water treatment. Korean. J. Chem. Eng.2001,18(6). 965-970.
    36. Chen, Z.; Luan, Z.; Jia, Z.; Li, X. Study on the hydrolysis/precipitation behavior of Keggin Al13 and Al30 polymers in poly aluminum solutions.J Environ. Manage. 2009,40,2831-2840.
    37. Qian, Z.; Feng, H.; Yang, W.; Bi, S. Theoretical investigation of water exchange on the nanometer-sized polyoxocation AlO4Al12(OH)24(H2O)127+(Keggin-Al13) in aqueous solution. J. Am. Chem. Soc.2008,130(44),14402-14403.
    38. Johansson, G.; Gullman, L.-O.; Kjekshus, A.; Soderquist, R., On the crystal structure of some basic aluminium salts.Acta Chem. Scand.1960,14,111-113.
    39.居学海;范晓薇;马海霞;赵天生水合铝离子单体和二聚体的DFT研究.环境化学 2007,26,347-351.
    40. Annenkov, V. V.; Filina, E. A.; Danilovtseva, E. N.; Zinchenko, S. V.; Mikhaleva, A. I. Aluminum complexes with a donor polymer:new route to organic/inorganic polymer hybrids. J. Sol-Gel Sci. Technol.2003,27(2),163-166.
    41. Allouche, L.; Taulelle, F. Conversion of Al13 Keggine-ε into Al30:a reaction controlled by aluminum monomers. Inorg. Chem. Commun.2003,6,1167-1170.
    42. Shafran, K.; Deschaume, O.; Perry, C. C. High temperature speciation studies of Al-Ion hydrolysis. Adv. Eng. Mater.2004,6(10).836-839.
    43. Parthasarathy, N.; Buffle, J. Study of polymeric aluminium(ⅲ) hydroxide solutions for application in waste water treatment. Water Res.1985,19,25-36.
    44. Casey, W. H. Large aqueous aluminum hydroxide molecules. Chem. Rev.2005, 106(1),1-16.
    45. Casey, W. H. Large aqueous aluminum hydroxide molecules. Chem. Rev.2006, 106,1-16.
    46. Kang W.; Cheng B.; Li Q.; Zhuang X.; Ren Y. A new method for preparing alumina nanofibers by electrospinning technology. Text. Res. J.2011,81(2),148-155.
    47. Zhang, P.; Chen, D.; Jiao, X. Fabrication of flexible a-alumina fibers composed of nanosheets. Em.J. Inorg. Chem.2012.2012(26),4167-4173.
    48. Azad, A. M. Fabrication of transparent alumina(Al2O3) nanofibers by electrospinning. Mater. Sci. Eng. A 2006,435-436,468-473.
    49. Zhang, S.; Cao, X.; Ma, Y. Fabrication of alumina ribbons with mixed solvent system in electrospinning.J. Optoelectron. Adv. M.2011,13,425-427.
    50. Zhang, P.; Jiao, X.; Chen, D. Fabrication of electrospun Al2O3 fibers with CaO-SlO2 additive. Mater. Lett.2013,91,23-26.
    51. Su, V.; Terehov, M.; Clyne, B. Filtration performance of membranes produced using nanoscale alumina fibers(NAF). Adv. Eng. Mater.2012,74(12),1088-1096.
    52. Mahapatra, A.; Mishra, B. G.; Hota, G. Studies on electrospun alumina nanofibers for the removal of chromium(VI) and fluoride toxic ions from an aqueous system. Ind. Eng. Chem. Res.2012,52(4),1554-1561.
    53. Yu, H.; Guo, J.; Zhu, S.; Li, Y.; Zhang, Q.; Zhu, M., Preparation of continuous alumina nanofibers via electrospinning of PAN/DMF solution. Mater. Lett.2012,74, 247-249.
    1. Kang, W.; Cheng, B.; Li Q.; Zhuang X.; Ren Y. A new method for preparing alumina nanofibers by electrospinning technology. Text. Res. J.2011,81 (2),148-155.
    2. Zhang, P.; Chen, D.; Jiao, X., Fabrication of flexible a-alumina fibers composed of nanosheets. Eur. J. Inorg. Chem.2012,26,4167-4173.
    3. Azad, A. M. Fabrication of transparent alumina(Al2O3) nanofibers by electrospinning. Mater. Sci. Eng. A 2006,435-436,468-473.
    4. Zhang, S.; Cao, X.; Ma, Y. Fabrication of alumina ribbons with mixed solvent system in electrospinning. J. Optoelectron. Adv. M.2011,13,425-427.
    5. Zhang, P.; Jiao, X.; Chen, D., Fabrication of electrospun A12O3 fibers with CaO-SiO2 additive. Mater. Lett.2013,91,23-26.
    6. Su, V.; Terehov, M.; Clyne, B. Filtration performance of membranes produced using nanoscale alumina fibers (NAF). Adv. Eng. Mater.2012,14 (12),1088-1096.
    7. Mahapatra, A.; Mishra, B. G.; Hota, G. Studies on electrospun alumina nanofibers for the removal of chromium(VI) and fluoride toxic ions from an aqueous system. Ind. Eng. Chem. Res.2012,52 (4),1554-1561.
    8. Yu, H.; Guo, J.; Zhu, S.; Li, Y; Zhang, Q.; Zhu. M. Preparation of continuous alumina nanofibers via electrospinning of PAN/DMF solution. Mater. Lett.2012,74, 247-249.
    9. Nguyen, L. T. H.; Chen, S.; Elumalai, N. K.; Prabhakaran, M. P.; Zong, Y.; Vijila. C.; Allakhverdiev, S. I.; Ramakrishna, S. Biological, Chemical, and electronic applications of nanofibers. Macromol. Mater. Eng.2012,1-46.
    10. Ding, B.; Wang, M.; Wang, X.; Yu, J.; Sun, G. Electrospun nanomaterials for ultrasensitive sensors. Mater. Today 2010,13,16-27.
    11. Mao, X.; Si, Y.; Chen, Y.; Yang, L.; Zhao, F.; Ding, B.; Yu, J. Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration. RSCAdv.2012,2 (32),12216-12223.
    12. Panda, P. K. Ceramic nanofibers by electrospinning technique-a review. T. Indian Ceram. Soc.2007,66 (2),65-76.
    13. Ge, J.; Si, Y.; Fu, F.; Wang, J.; Yang, J.; Cui, L.; Ding, B.; Yu, J.; Sun, G. Amphiphobic fluorinated polyurethane composite microfibrous membranes with robust waterproof and breathable performances. RSC Adv.2013,5(7),2248-2255.
    14. Clark, J. E.; Olesik, S. V. Technique for ultrathin layer ehromatography using an electrospun, nanofibrous stationary phase. Anal. Chem.2009,67,4121-4129.
    15. Park, S. J.; Chase, G.; Jeong, K. U.; Kim, H. Mechanical properties of titania nanofiber mats fabricated by electrospinning of sol-gel precursor. J. Sol-Gel Sci. Technol.2010,54 (2),188-194.
    16. Biswas, A.; Park, H.; Sigmund, W. M. Flexible ceramic nanofibermat electrospun from TiO2-SiO2 aqueous sol. Ceram. Int.2012,38,883-886.
    17. Huang, Y L.; Xue, D. S.; Zhou, P. H; Ma, Y; Li, F. S. α-Fe-Al2O3 nanocomposites prepared by sol-gel method. Mater. Eng. A 2003,359,332-337.
    18. Yoldas, B. E. Effect of variations in polymerized oxides on sintering and crystalline transformations. J. Am. Ceram. Soc.1982,65 (8),387-393.
    19. Yalcin, D.; Ozcalik, O.; Altiok, E.; Bayraktar, O. Characterization and recovery of tartaric acid from wastes of wine and grape juice industries.J Therm. Anal. Calorim. 2008,94(3),767-771.
    20. Nuansing, W.; Ninmuang, S.; Jarernboon, W.; Maensiri, S.; Seraphin, S. Structural characterization and morphology of electrospun TiO2 nanofibers. Mater. Sci. Eng.B 2006.131,147-155.
    21. Mahapatra, A.; Mishra, B. G.; Hota, G. Synthesis of ultra-fine α-Al2O3 fibers via electrospinning method. Ceram. Int.2011,37,2329-2333.
    22. Chen, X.; Gu, L. The sol-gel transition of mullite spinning solution in relation to the formation of ceramic fibers. J. Sol-Gel Sci. Technol.2008,46 (1),23-32.
    23. Chandradass, J.; Balasubramanian, M. Sol-gel processing of alumina fibres.J. Mater. Pro. Tech.2006,173,275-280.
    24. Tan, E. P. S.; Lim, C. T. Physical properties of a single polymeric nanofiber. Appl. Phys. Lett.2004,84,1603-1605.
    1. Zhang,P.:Jiao,X.;Chen,D.Fabrication of electrospun Al2O3 fibers with CaO-SiO2 additive. Mater. Lett.2013,91,23-26.
    2. Su, V.; Terehov, M.; Clyne, B. Filtration performance of membranes produced using nanoscale alumina fibers (NAF). Adv. Eng. Mater.2012,14 (12),1088-1096.
    3. Kang W.; Cheng B.; Li Q.; Zhuang X.; Ren Y. A new method for preparing alumina nanofibers by electrospinning technology. Text. Res. J.2011.81 (2),148-155.
    4. Zhang, P.; Chen. D.; Jiao. X. Fabrication of flexible a-alumina fibers composed of nanosheets. Eur. J. Inorg. Chem.2012,2012 (26),4167-4173.
    5. Azad, A.-M. Fabrication of transparent alumina (AI2O3) nanofibers by electrospinning. Mater. Sci. Eng. A 2006,435-436,468-473.
    6. Zhang, S.; Cao, X.; Ma, Y. Fabrication of alumina ribbons with mixed solvent system in electrospinning. J. Optoelectron. Adv. Mater.2011,13,425-427.
    7. Mahapatra. A.; Mishra, B. G.; Hota, G. Studies on electrospun alumina nanofibers for the removal of chromium(VI) and fluoride toxic ions from an aqueous system. Ind. Eng. Chem. Res.2012,52 (4),1554-1561.
    8. Yu, H.; Guo, J.; Zhu. S.; Li, Y.; Zhang, Q.; Zhu, M. Preparation of continuous alumina nanofibers via electrospinning of PAN/DMF solution. Mater. Lett.2012,74, 247-249.
    9. Tan, E. P. S.; Lim, C. T. Physical properties of a single polymeric nanofiber. Appl. Phys. Lett.2004,84,1603-1605.
    10. li, D.; Xia, Y. Electrospinning of nanofibers:reinventing the wheel? Adv. Mater. 2004,76(14),1151-1170.
    11. Bag, S.; Trikalitis, P. N.; Chupas, P. J.; Armatas, G S.; Kanatzidis, M. G. Porous semiconducting gels and aerogels from chalcogenide clusters. Science 2007,317 (5837),490-493.
    12. Mohanan, J. L.; Arachchige, I. U.; Brock, S. L. Porous semiconductor chalcogenide aerogels. Science 2005,307 (5708),397-400.
    13. Maneeratana, V.; Sigmund, W. M. Continuous hollow alumina gel fibers by direct electrospinning of an alkoxide-based precursor. Chem. Eng. J.2008,137,137-143.
    14. Azad. A. M. Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning. Mater. Sci. Eng. A 2006,435-436,468-473.
    15. Panda, P. K.; Ramakrishna, S. Electrospinning of alumina nanofibers using different precursors. J. Mater. Sci.2007,42,2189-2193.
    16. Akitt, J. W.; Farthing, A. Aluminium-27 nuclear magnetic resonance studies of the hydrolysis of aluminium(III). Part 2. Gel-permeation chromatography../. Chem. Soc. Dalton Tram.1981,0 (7),1606-1608.
    17. Chen, Z.; Luan, Z.; Fan, J.; Zhang, Z.; Peng, X.; Fan, B. Effect of thermal treatment on the formation and transformation of Keggin Al13 and Al30 species in hydrolytic polymeric aluminum solutions. Colloid Surf. A-Physicochem. Eng. Asp. 2001,292,110-118.
    18. Wang, W.; Wentz, K. M.; Hayes, S. E.; Johnson, D. W.; Keszler, D. A. Synthesis of the hydroxide cluster [Al13(μ3-OH)6(μ-OH)18(H2O3)24]15+] from an aqueous solution. Inorg. Chem.2011,50 (11),4683-4685.
    19. Qian, Z.; Feng, H.; Yang, W.; Miao, Q.; He, L.; Bi, S. Supermolecule density functional calculations on the water exchange of aquated Al(iii) species in aqueous solution. Chem. Commun.2008,0 (33),3930-3932.
    20. Kang, L.-S.; Han, S.-W.; Jung, C.-W. Synthesis and characterization of polymeric inorganic coagulants for water treatment. Korean J. Chem. Eng.2001,18 (6), 965-970.
    21. Chen, Z.; Luan, Z.; Jia, Z.; Li, X. Study on the hydrolysis/precipitation behavior of Keggin Al13 and Al30 polymers in polyaluminum solutions.J. Environ. Manage. 2009,90,2831-2840.
    22. Qian, Z.; Feng, H.; Yang, W.; Bi, S. Theoretical investigation of water exchange on the nanometer-sized polyoxocation AlO4Al12(OH)24(H2O)127+(Keggin-Al13) in aqueous solution. J. Am. Chem. Soc.2008,130 (44),14402-14403.
    23.居学海;范晓薇;马海霞;赵天生水合铝离子单体和二聚体的DFT研究.环境化学2007,26,347-351.
    24. Parthasarathy, N.; Buffle, J. Study of polymeric aluminium(iii) hydroxide solutions for application in waste water treatment, properties of the polymer and optimal conditions of preparation. Water Res.1985,19,25-36.
    25. Venkatesh, R.; Ramanan, S. R. Influence of processing variables on the micro structure of sol-gel spun alumina fibres. Mater. Lett.2002,55,189-195.
    26.工趁义;罗明标;毕树平 环境中羟基聚合铝型体的形成和形态转化规律.会析科学学报 2003,19(4).383-388.
    27. Annenkov, V. V.; Filina, E. A.; Danilovtseva, E. N.; Zinchenko, S. V.; Mikhaleva, A. I. Aluminum complexes with a donor polymer:new route to organic/inorganic polymer hybrids.J Sol-Gel Sci. Technol.2003,27(2),163-166.
    28. Allouche, L.; Taulelle, F. Conversion of A113 Keggine ε into Al30:a reaction controlled by aluminum monomers. Inorg. Chem. Commun.2003,6,1167-1170.
    29. Casey, W. H. Large Aqueous aluminum hydroxide molecules. Chem. Rev.2005, 706(1),1-16.
    30. Wang, S. L.; Wang, M. K.; Tzou, Y. M. Effect of temperatures on formation and transformation of hydrolytic aluminum in aqueous solutions. Colloid Surf. A Physicochem. Eng. Asp.2003,231,143-157.
    31. Yalcin, D.; Ozcalik, O.; Altiok, E.; Bayraktar, O. Characterization and recovery of tartaric acid from wastes of wine and grape juice industries.J. Therm. Anal. Calorim. 2008,94(3),767-771.
    32. Nuansing, W.; Ninmuang, S.; Jaremboon, W.; Maensiri, S.; Seraphin, S. Structural characterization and morphology of electrospun TiO2 nanofibers. Mater. Sci. Eng.52006,131,147-155.
    33. Mahapatra, A.; Mishra, B. G.; Hota, G. Synthesis of ultra-fine a-A12O3 fibers via electrospinning method. Ceram. Int.2011,37,2329-2333.
    34. Chen, X.; Gu, L. The sol-gel transition of mullite spinning solution in relation to the formation of ceramic fibers. J.Sol-Gel Sci. Tech.2008,46 (1),23-32.
    35. Chandradass, J.; Balasubramanian, M. Sol-gel processing of alumina fibres. J. Mater. Process. Tech.2006,173,275-280.
    36. Chiou, Y. H.; Tsai, M. T.; Shih, H. C. The preparation of alumina fibre by sol-gel processing. J. Mater. Sci.1994,29 (9),2378-2388.
    37. Yogo, T.; Iwahara. H. Synthesis of a-alumina fibre from modified aluminium alkoxide precursor. J.Mater. Sci.1992.27(6),1499-1504.
    38. Sing. K. S. W.; Everett. D. H.; Haul. R. A. W.:Moscou. L.; Pierotti, R. A.: Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure. Appl. Chem.1984,57(4),603-619.
    39.张娜:张玉军;田庭艳;刘超高温低热导率隔热材料的研究现状及进展.中国陶瓷2006,42(1),16-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700