用户名: 密码: 验证码:
MgSiO_3钙钛矿高温高压状态方程、Fe-S-C熔化研究及相关地学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
(Mg,Fe)SiO_3钙钛矿作为下地幔最主要的组成矿物,其高压物性(如状态方程,热力学稳定性等)的研究对于准确限定地幔矿物组成,了解地幔动力学过程(如地幔对流模式,地震火山形成机理等)具有十分重要的意义。本学位论文采用静高压与冲击压缩技术相结合的手段,并辅以计算机模拟技术,对(Mg,Fe)SiO_3钙钛矿开展了高温高压状态方程及相稳定性的理论、实验研究。这些研究为建立准确、合理的下地幔矿物学组成模型提供了确凿的数据。提升了我们对于地球深部物理的了解与认识。
     本学位论文还利用静高压大腔体技术对地核的可能组成元素体系Fe-S-C开展了一系列高温高压熔化实验研究。基于对淬火样品的定量定性分析,初步掌握该三元合金体系熔化关系随压力、温度、初始组份的变化规律。这对于推测星体演化过程中核元素的分布及建立行星核矿物组成模型有极为重要的意义。
     本文的主要研究内容和认识如下:
     (1)通过对大腔体压机样品装配腔的设计与改进,利用活塞圆筒压机和大压机成功合成了适合冲击波实验尺寸要求的大块钙钛矿MgSiO_3样品。通过微区电子探针、拉曼光谱和X射线衍射分析证实合成材料确为钙钛矿MgSiO_3,为下一步的冲击波高压实验研究提供了所必须的初始样品,使得在高压下对钙钛矿MgSiO_3开展直接冲击压缩研究成为可能。
     (2)在47-107 GPa冲击压力(估算温度为600-3300K)范围内进行了初始样品为钙钛矿MgSiO_3的冲击压缩状态方程测量实验。这是国际上首次开展的以钙钛矿MgSiO_3为冲击样品的动高压实验,是本文的创新点之一。得到冲击波速度(Us)与粒子速度(u_p)关系:U_s=6.42+1.48u_P。通过Rankin-Hugoniot方程拟合得到了Grüneisen参数γ_0=1.33(q=1)。利用三阶欧拉有限应变方程拟合得到的绝热体积模量K_(0S)及其对压力的一阶偏导数K_(0S)'分别是254(±10)GPa和3.9(±0.17)。通过与以顽火辉石为初始样品的冲击数据的对比,发现:MgSiO_3钙钛矿在下地幔温压条件下无化学分解反应发生,并且90GPa冲击压力以上时MgSiO_3顽火辉石才彻底转变为钙钛矿相。本文的数据完全排除了低压相顽火辉石的影响,首次提供了通过直接冲击压缩钙钛矿所得到的状态方程参数,为今后构建地幔矿物学组成模型提供了更准确的热力学约束。也为进一步利用冲击手段研究地幔高压物性做了有益的探索。
     (3)在3.5-20GPa,1100-1700℃范围内开展了Fe-C-S三元体系的高温高压熔化实验研究,通过对淬火样品纹理的仔细观察,并结合扫描电镜、电子探针等测试分析手段,考察了压力、温度、组份对该体系高压相关系的影响。低压下,该体系将出现富S熔体与富C熔体的不互溶现象。随着压力的升高,不互溶液体渐渐融合,并最终在4.9GPa成为一个化学均匀的熔体。压力的改变还促使了一系列复杂中间相的生成,共熔温度随之变化。在等压线上随着温度的降低,Fe-C合金首先结晶,继而是熔点较低的Fe-S合金结晶出溶。使用两种不同的初始样品导致固相线下形成的矿物相迥异。我们的实验结果对于了解在行星演化过程中,(富含C,S)行星核的分化历史及对核元素组成的限定具有非常重要的意义:当行星核分化过程中核压小于5GPa时,由于熔体的不互融,将出现分层的核,即富S的液体外核及富C的液体内核。随着核的冷却,Fe-C合金将慢慢析出形成固体内核。而对于核压大于5GPa的行星体,在其核内将无分层现象。特别地,基于本文的研究推论,我们提出了含C的固体内地核及富含S(贫C)的液态外地核模型。
     (4)采用密度泛函理论和平面波赝势方法针对MgSiO_3钙钛矿开展了第一性原理计算研究。模拟得到了0-120GPa范围内MgSiO_3钙钛矿零温晶格常数、密度、声速等弹性数据,模拟得到的状态方程参数(K_0=264GPa,K_0'=3.83)与实验数据较好符合,证实了本文所采用的计算方法的可靠性。考虑到真实下地幔的高温环境,我们利用热力学方法对模拟得到的声速、密度、体模量进行了温度修正,并将修正后的数据与地球初步参考模型的相应剖面比较,对比结果很好的支持了以MgSiO_3钙钛矿为主要组成矿物的下地幔矿物组成模型。
     (5)针对MgSiO_3和(Mg_x,Fe_(1-x))SiO_3钙钛矿在高压下可能存在的微结构相变,我们采用密度泛函理论和平面波赝势方法分别对MgSiO_3(Pbnm-P4mbm-Pm(?)m)及(Mg_x,Fe_(1-x))SiO_3 (Pm-Pmmm-P4mmm)的可能相变序列在0-150GPa内开展了第一性原理计算模拟研究。基于在同一压力下不同相的焓差的比较,钙钛矿MgSiO_3在高压下的相稳定序列(由稳定到次稳定)是:Pbnm(orthorhombic)-P4mbm(tetragonal)-Pm(?)m(cubic).而对于(Mg_(0.75),Fe_(0.25))SiO_3来说,相应的相稳定序列是pm(orthorhombic)-pmmm(tetragonal)-p4mmm(cubic)。我们的计算结果支持具有低对称性的正交MgSiO_3较其他相结构在下地幔压力条件下更为稳定,此外,在MgSiO_3加入少量Fe将使得其稳定性降低。
(Mg,Fe) SiO_3 perovskite is the most abundant mineral in the Lower mantle.Its high pressure physical properties,such as equation of state,phase stability,are very crucial for constraining the mineralogy composition and describing dynamics process (such like mantle convection,earthquake and volcano mechanism) of the Earth interior.In my work,the eqation of state,crystal structure and thermodynamic stability of (Mg,Fe)SiO_3 perovskite have been investigated at lower mantle high pressure and temperature condition by combination of shock wave loading,static compression and computer simulation.Our results have significant implications for modeling lower mantle mineral composition model accurately.Hence it will improve our further understanding about the interior of the Earth.
     This dissertation is also devoted to the study of melting behavior of Fe-C-S ternary system under high pressure.Based on the analysis of quenched sample texture,we demonstrate how the melting relations,subsolidus formations and element partition in this system change along with pressure,temperature and starting component.Our results have important implications for planetary differentiation and core composition stratification of planetary body.
     The main achievements in this study are as followings:(1) Large MgSiO_3-perovskite samples were successfully synthesized by using modified multi-anvil sample assembly.The recovered samples are confirmed to be MgSiO_3 perovskite by electron microscopy analysis and Raman spectrum.Successful syntheses provide essential starting sample for further shock loading experiments.(2) Shock wave data on the pre-synthesized perovskite samples up to 107 GPa yielded a linear relationship between the shock wave velocity U_s and particle velocity u_p described by U_s=6.47(±0.63)+1.56(±0.31) u_p.Fitting experiment data to the Rankin-Hugoniot equation,we obtained the Grüneisen parameterγ_0= 1.33 with q=1.The best fitted values for the adiabatic bulk modulus K_(0S) and its pressure derivative K_(0S)' are 254(±10) GPa and 3.9(±0.17),respectively,which are in general agreement with values derived from static compression data.By direct comparison with dynamic compression data using enstatite as starting material,we observed that MgSiO_3 enstatite completely transformed into perovskite phase above 90GPa shock pressure.Improvement of the precision in determining the Hugoniot relationship by additional shock wave data is needed to further constrain the thermoelastic properties of perovskite.However,this is the first demonstration that direct shock wave loading of the pre-synthesized perovskite samples can provide a new way to determining the thermal equation of state of silicate perovskite without the complication of phase transformations along the Hugoniot path,ultimately leading to a better constrained thermoelastic parameters for this important mantle mineral.
     (3) High pressure melting experiments for Fe-S-C ternary system have been conducted on a piston-cylinder and multi-anvil press by using starting material with different Fe/(C+S) ratio from 3.5 to 20GPa and up to 1700K.For Fe(90wt%)-S(5 wt%)-C(5 wt%),two immiscible C-rich and S-rich Fe-C-S liquids were observed at 3.5GPa,1873 K.At 5GPa,only one homogeneous liquid is quenched,which indicates the miscibility gap close between 3.5GPa and 5GPa.Pressure changes the subsolidus phase relations fundamentally.At 5GPa,Fe_3Ccrystallize first with temperature decrease and coexist with FeS.However,Fe_7C_3appear instead of Fe_3C between 10-20GPa,which means Fe_3C melt incongruently above 5GPa.Meanwhile,FeS melts incongruently into Fe_3S_2+liquid above 10GPa.In the contrast group of Fe(90w%)-C(w2%)-S(8w%),Fe_3C,FeS and Fe are the major crystallized phases under solidus up to 10GPa.Given probable Earth's core element composition of Fe-C-S,our results document no composition stratification is expected in the planetary core with P>5GPa.Based on the crystallization sequence a C-rich solid inner core and S-rich liquid outer core can be deduced for the Earth.
     (4) High-pressure behavior of orthorhombic MgSiO_3 perovskite crystal has been simulated using density functional theory and plane-wave pseudopotentials approach up to 120 GPa pressure at zero-temperature.The lattice constants and mass density of the MgSiO_3 crystal as functions of pressure were computed and the corresponding bulk modulus and bulk velocity were evaluated.Our theoretical results agree well with high-pressure experiments data.A thermodynamic method was introduced to correct the temperature effect on the 0 K first-principles results of bulk wave velocity,bulk modulus and mass density to lower mantle P/T range. Taking into account the temperature corrections,the corrected mass density,bulk modulus and bulk wave velocity of MgSiO_3-perovskite estimated from the first-principles results is 2%,4%,and 1% lower than Preliminary Reference Earth Model (PREM) profile,respectively,supporting MgSiO_3-perovskite primarily composed lower mantle model.
     (5) Relative stability of different phases for MgSiO_3 and (Mg_(0.75),Fe_(0.25))SiO_3 within 0-120GPa are investigated using first-principles method.For MgSiO_3,the computed equation of state for orthorhombic phase of Pbnm space group agrees well with experimental results.The relative stability reduces from observed Pbnm orthorhombic phase to intermediated tetragonal P4mbm phase,and then to hypothetical cubic Pm(?)m phase.For (Mg_(0.75),Fe_(0.25))SiO_3 ,same sequence of relative phase stability is observed.Thus,our work suggests the low-symmetric orthorhombic MgSiO_3 should be favored in the lower mantle condition.However,adding Fe into MgSiO_3 will make it less stable at the same depth.
引文
1. Condie KC, Earth as an Evolving Planetary System. Elsevier Academic Press (2005).
    
    2. Dziewonski AM and Anderson DL, Preliminary reference Earth model.Phys Earth Planet Inter 25:297-356 (1981).
    
    3. Knittle E and Jeanloz R, Synthesis and equation of state of (Mg , Fe)SiO_3 perovskite over 100 giga-pascals. Science 235:668-670 (1987).
    
    4. Meade C, Mao HK and Hu J, High-temperature phase transition and dissociation of (Mg , Fe )SiO_3 perovskite at lower mantle pressures.Science 268:1743-1745 (1995).
    
    5. Saxnea SK, Dubrovinsky LS and Lazor PY, Stability of perovskite (MgSiO_3) in the Earth's mantle. Science 274:1357-1359 (1996).
    
    6. Badro J, Struzhkin VV and Shu J, Magnetism in FeO at megabar pressures from X-ray emission spectroscopy. Phys Rev Lett 83:4101-4104 (1999).
    
    7. Fei YW and Wang YB, Maximum solubility of FeO in (Mg , Fe)SiO_3 perovskite as a function of temperature at 26GPa : Implication for FeO content in the lower Mantle. J Geophys Res 101(B5): 11525-11530 (1996).
    
    8. Funamorin N and Yagi T, Thermoelastic properties of MgSiO_3 perovskite determined by in-situ X-ray observations to 30 GPa and 2000 K. J Geophys Res 101(B4):8257-8269 (1996).
    
    9. Mao HK, Hemley RJ and Fei YW, Effect of pressure, temperature, and composition on lattice parameters and density of (Mg , Fe)SiO_3-perovskite to 30 GPa. J Geophys Res 96:8069-8079 (1991).
    
    10. Fiquet G and Dewaele AD, Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions. Geophy Res Lett 27:21-24 (2000).
    
    11. Shim SH, Duffy TS and Shen GY, Stability and structure of MgSiO_3 perovskite to 2300-km depth conditions. Science 293:2437-2440 (2001).
    
    12. Shim SH, Duffy TS and Shen GY, Stability and crystal structure of MgSiO_3 perovskite to the core-mantle boundary. Geophy Res Lett 31:L10603 (2004).
    
    13. Serghiou G, Zerr A and Boehler R, (Mg , Fe) SiO_3-perovskite stability under lower mantle conditions. Science 280:2093-2085 (1998).
    14. Murakami M,Hirose K and al.KKe,Post-perovskite phase transition in MgSiO_3.Science 304:855-858 (2004).
    15. Badro J,Fiquet G and F.Guyot ea,Iron partitioning in Earth's mantle :Toward a deep lower mantle discontinuity.Science 300:789-791 (2003).
    16. Badro J,Rueff JP and Vanko G,Electronic transitions in perovskite :Possible nonconvecting layers in the lower mantle.Science 305:383-386(2004).
    17. Li J,Struzhkin VV and al HKMe,Electronic spin state of iron in lower mantle perovskite.Proc Natl Acad Sci 101(39):14027-14030 (2004).
    18. Lin J,Struzhkin VV and Jacobsen S,In situ X-ray diffraction and X-ray emission study of magnesio-wustite in Earth's lower mantle conditions :Implications to the geophysics and geochemistry of the lower mantle.EOS Trans A GU 85(47):Abstract MR14A-06 (2004).
    19. Milner A,Pasternak M and al.VELe,Spin transition in Earth's lower mantle :(Mg_x,Fe_(1-x)) O magnesio-wustite at high pressures.EOS Trans AGU85(47):Abstract MR14A-05 (2004).
    20. Trunin RF and Gonshakova VI,Solid earth.Lzv Acad Sci US S R Phys Engl Trans 8:579-586 (1965).
    21. Mcqueen RC,Marsh SP and Fritzj N,Hugoniot equation of state of twelve rocks.J Geophys Res 72:4999-2036 (1967).
    22. Watt JR and Ahrens TJ,Shock wave equation of state of enstatite.J Geophys Res 91(B7):7495-7503 (1986).
    23. Gong ZZ,Xie HS and al FQJe,High-pressure sound velocity of (Mg_(0.92),Fe_(0.08)) SiO_3-perovskite and possible composition of Earth's lower mantle Chin Phys Lett 16(9):695-697 (1999).
    24. Zhang L,Gong ZZ and Fei YW,Stability of perovskite under lower mantle pressure and temperature conditions.EOS Trans AGU 84(46):Abstract T22D-03A (2003).
    25. Zhang L,Gong ZZ and Liu H,Phase stability of (Mg ,Fe) SiO_3 perovskite at lower mantle pressure and temperature conditions.Chin J High Pressure Physics 18(2):179-176 (2004).
    26. Luo SN,Mosenfelder JL and al PDAe,Direct shock wave loading of stishovite to 235GPa :Implications for perovskite stability relative to an oxide assemblage at lower mantle conditions.Geophys Res Lett 29:10.1029/GL 015627(2002).
    27. Akins JA,Luo SN and al PDAe,Shock-induced melting of MgSiO_3 perovskite and implications for melts in Earth's lower mantle. Geophys Res Lett 3l:L14612, doi: 14610.11029 (2004).
    
    28. Dubrovinsky LS, Saxena SK and al RAe, Theoretical study of the stability of MgSiO_3-perovskite in deep mantle. Geophy Res Lett 23:4253-4256 (1998).
    
    29. Oganov A, Brodhol JP and Price GD, The elastic constants of MgSiO_3 perovskite at pressures and temperatures of the Earth's mantle. Nature (2001).
    
    30. Zhang L, Gong ZZ and Chen XF, Thermodynamic calculations on the stability of MgSiO_3 perovskite at lower mantle conditions. Chin J High Pressure Physics (2004).
    
    31. Stixrude L and Cohen RE, Stability of orthorhombic Mg_2SiO_3 perovskite in the Earth's lower mantle. Nature 364:613-616 (1993).
    
    32. Wentzcovitch RM, Ross NL and Price GD, Ab initio study of MgSiO_3 and CaSiO_3 perovskites at lower-mantle pressures. Phys Earth Planet Inter 90:101-112(1995).
    
    33. Belonoshko AB and Dubrovinsky LS, Equations of state of MgSiO3-perovskite and MgO (periclase) from computer simulations. Phys Earth Planet Inter 98:47-54 (1996).
    
    34. Belonoshko AB, Molecular dynamics of MgSiO_3 perovskite at high pressures : Equation of state , structure ,and melting transition. Geochim Cosmochim Acta 58:4039-4047 (1994).
    
    35. Chaplot SL, Chudhuru N and Rao KR, Molecular dynamics simulation of phase transitions and melting in MgSiO3 with the perovskite structure. Am Mineral 83:937-941 (1998).
    
    36. Tsuchiya T, Tsuchiya J and al KUe, Phase transition in MgSiO_3 perovskite in the Earth's lower mantle. Earth Planet Sci Lett 224:241-248 (2004).
    
    37. Iitaka T, Hirose K, Kawamura K and Murakami M, The elasticity of the MgSiO_3 postperovskite phase in the Earth's lowermost mantle. Nature 430:442-445 (2004).
    
    38. Oganov AR and Ono S, Theoretical and experimental evidence for a post perovskite phase of MgSiO_3 in the Earth's D". Nature 430:445-448 (2004).
    
    39. Sidorin I, Gurnis M and Helmberger DV, Evidence for a ubiquitous seismic discontinuity at the base of the mantle. Science 286:1326-1331 (1999).
    
    40. Jacobs JA, Deep Interior of the Earth Chapman &Hall London (1992).
    41. Nguyen JH and Holmes NC,Melting of iron at the physical conditions of the Earth's core.Nature 427:339-342 (2004).
    42. Yoo CS,Akella J,Campbell AJ,Mao HK and Hemley RJ,Phase diagram of iron by in situ X-ray diffraction:implication for Earth's core.Science 270:1473-1474(1995).
    43. Jephcoat A and Olson P,Is the inner core of the Earth pure iron? Nature 325:333-335 (1986).
    44. Knopoff L and MacDonald JG,An equation-of-state for the core of the Earth.Geophys J R Astron Soc 3:68-77 (1960).
    45. Brown JM and McQueen RG,The equation-of-state for iron and the earth's core.Advances in Earth and planetary Sciences.Center for Academic Publishing,Tokyo(1966).
    46. Anderson OL and Isaak DG,Another look at the core density deficit of Earth's outer core.Phys Earth Planet Inter 131:19-27 (2002).
    47. Alfé D and Gillian MJ,First principles calculations of liquid Fe-S under earth' core condition.Phys Rev B 58:8248-8255 (1998).
    48. Stevenson DJ,Models of the Earth's core.Science 214:611-619 (1981).
    49. Allegre CJ,Dupre B and Brevart O,Chemical aspects of the formation of the core.Philos Trans R Soc London 306:49-59 (1982).
    50. Oversby VM and Ringwood AE,Time of formation of the Earth's core Nature 234:463-465 (1970).
    51. Poirier JP,Light elements in the Earth's outer core:A critical review.Phys Earth Planet Inter 85:319-337 (1994).
    52. Distin PA,Whiteway SG and Masson CR,Solubility of oxygen in liquid iron from 1785 to 1960C.A new technique for the study of slag-metal equilibria.Can Met Quart 10:13-18(1971).
    53. Baker H,ASM Handbook:Alloy phase diagrams.ASM International,Material Park (1992).
    54. Ringwood AE and Hibberson W,The system Fe-FeO revisited.Phys Chem Mater 17:313-319(1989).
    55. Li J and Agee CB,Element partitioning constraints on the light element composition of the Earth's core.Geophy Res Lett 28:81-84 (2001).
    56. O'Neill HSC,Canil D and Rubie DC,Oxide-metal equilibria to 2,5001C and 25 GPa:implications for core formation and the light component in the Earth's core.J Geophys Res 103:12239-12260 (1998).
    57. Alfé D,Gillan MJ and Price GD,Constraints on the composition of the Earth's core from ab initio calculations. Nature 405:172-175 (2000).
    
    58. Alfe D, Price GD and Gillan MJ, Thermodynamic stability of Fe/O solid solution at inner-core conditions. Geophys Res Lett 27:2417-2420 (2000).
    
    59. Asahara Y, Rubie DC, Frost DJ and Langenhorst F, Oxygen Solubility in Liquid Iron and Consequences for the Early Differentiation of Earth and Mars, in 37th Annual Lunar and Planetary Science Conference, League City, Texas (2006).
    
    60. Boehler R, Melting of the Fe-FeO and the Fe-FeS systems at high pressure: constraints on core temperatures. Earth Planet Sci Lett 111:217-227(1992).
    
    61. Knittle E and Jeanloz R, Earth's core-mantle boundary: results of experiments at high pressures and temperatures. Science 251:1438-1443 (1991).
    
    62. Shen G, Mao HK, Hemley RJ, Duffy TS and Rivers ML, Melting and crystal structure of iron at high pressures and temperatures. Geophys Res Lett 25:373-376 (1998).
    
    63. Kuwayama Y and Hirose K, Phase relations in the system Fe-FeSi at 21GPa Am Mineral 89:273-276 (2004).
    
    64. Zhang J and Guyot F, Thermal equation of state of iron and Fe_(0.91)Si_(0.09) Phys Chem Miner 26:206-211 (1999).
    
    65. Yagi T, Formation of iron hydrides under the condition of the Earth's interior—implication for the core formation process. In The Earth's Central Part: Its Structure and Dynamics Terra Scientific Publishing Company, Tokyo (1995).
    
    66. Okuchi T and The melting temperature of iron hydride at high pressures and its implications for the temperature of the Earth's core. J Phys:Condens Matter 10:11595-11598 (1998).
    
    67. Yang HT and Secco RA, Melting boundary of Fe-17% Si up to 5.5 GPa and the timing of core formation. Geophys Res Lett 26:263-266 (1999).
    
    68. Baker H, ASM Handbook: Alloy Phase Diagrams. ASM International,Materials park, OH. (1992).
    
    69. Wood BJ, Carbon in the core. Earth Planet Sci Lett 117:593-607 (1993).
    
    70. Fei Y, Wang Y and Deng L, Melting relations in the Fe-C-S system at high pressure: implication for the chemistry of the cores of the terrestrial planets, in Lunar and Planetary Science, p 1231 (2007).
    
    71. Shterenberg LE, Slesarev VN, Korsunskaya LA and Kamenetskaya DS, The experimental study of the interaction between the melt carbides and diamond in the iron-carbon system at high pressures.High Temp High Press 7:517-522 (1975).
    72. McDonough WF,Compositional model for the Earth's core,in Treatise on Geochemistry.Elsevier,New York (2003).
    73. Kuwbaschewski 0,Iron Binary phase diagrams.Berlin:Springer-Verlag,New York (1982).
    74. Kato T and Ringwood AE,Melting relationships in the system Fe-FeO at high pressures:implications for the composition and formation of the Earth's core.Phys Chem Miner 16:524-538 (1989).
    75. Chudinovskikh L and Boehler R,Eutectic melting in the system Fe-S to 44 GPa.Earth Planet Sci Lett 257:97-103 (2007).
    76. Fei YW,Bertka CM and Finger LW,High-pressure iron-sulfur compound,Fe_3S_2,and melting relations in the system Fe-FeS at high pressure.Science 275:1621-1624(1997).
    77. Fei Y,Li J,Bertka CM and Prewitt CT,Structure type and bulk modulus of Fe_3S,a new iron-sulfur compound.Am Mineral 85:1830-1833 (2000).
    78. Birch F,Elasticity and constitution of the Earth's interior.J Geophys Res 57:227-286(1952).
    79. Fukai Y and Akimoto S,Hydrogen in the Earth's core.Proc Jpn Acad,ser B 59:158-162(1983).
    80. Suzuki T,Akimoto S and Yagi T,Metal-silicate-water reaction under high pressure:1.Formation of metal hydride and implications for composition of the core and mantle.Phys Earth Planet Inter 56:377-388 (1989).
    81. Suzuki T,Akimoto S and Fukai Y,The system iron-enstatite-water at high pressures and temperatures梖ormation of iron hydride and some geophysical implications Phys Earth Planet Inter 36:135-144 (1984).
    82. Fukai Y,From metal hydrides to the metal-hydrogen system.J Less-Common Metals 172:8-19 (1991).
    83. Yagi T and Hishinuma T,Iron Hydride Formed by the Reaction of Iron,Silicate,and Water:Implications for the Light Element of the Earth's Core.Geophys Res Lett 22:1933-1936 (1995).
    84. Okuchi T and Takahashi E,Hydrogen in molten iron at high pressure:The first measurement:In High Pressure-Temperature Research:Properties of Earth and Planetary Materials in American Geophysical Union,ed by Manghnani MH and Yagi T,pp 249-260 (1998).
    85.Boehler R,Fe-FeS eutectic temperatures to 620 kbar.Phys Earth Planet Inter 96:181-186 (1996).
    86. Ryzhenko B and Kennedy GC,The effect of pressure on the eutectic in the system Fe-FeS.Am J Sci 273 803-810 (1973).
    87. Usselman TM,Experimental approach to the state of the core:Part Ⅰ.The liquidus relations of the Fe-rich portion of the Fe-Ni-S system from 30 to 100 kbar.Am J Sci 275:278-290 (1975).
    88. Williams Q and Jeanloz R,Melting relations in the iron-sulfur system at ultra-high pressures:implications for the thermal state of the Earth.J Geophys Res 95:19299-19310(1990).
    89. Boehler R,Temperatures in the Earth's core from melting-point measurements of iron at high static pressures.Nature 363 534-536 (1993).
    90. Okuchi T,Hydrogen Partitioning into Molten Iron at High Pressure:Implications for Earth's Core.Science 278:1781-1784 (1997).
    91. Wang C,Hirama J,Nagasaka T and Ban-Ya S,Phase equilibria of liquid Fe-S-C ternary system.ISIJ International 31:1292-1299 (1991).
    92. Urakawa S,Kato M,Takahashi N and Katsura T,Closer of Liquid Immiscibility Gap in the System Fe-C-S at High Pressure.Eos Trans AGU,Fall Meet Suppl 86:52 (2005).
    93. 经福谦,实验物态方程引导(第二版).科学出版社,北京(1999).
    94. Sherman WF and Stadtmuller AA,Experimental techniques in high pressure research.Wiley:Chichester (1987).
    95. Lees J,In advances in high pressure research.Academic Press:London (1966).
    96. Bertka CM and Fei YW,Mineralogy of the Martian interior up to core-mantle boundary pressures.J Geophys Res 102:5251-5264 (1997).
    97. Hirose K.and Fei YW,Subsolidus and melting phase relations of basaltic composition in the uppermost lower mantle.Geochim Cosmochim Acta 66:2099-2108(2002).
    98. Shi SC,Chen PS and Huang Y,Velocity measurement of magnet induced system for projectile.Chin J High Pressure Physics 5:205-214 (1991).
    99. McQueen RG,Shock waves in condensed matter:their properties and the equation of state of materials derived from them,in High-pressure Equation of State:Theory and Applications.(1991).
    100. Duffy TS and Ahrens TJ,Sound velocities at high pressure and temperature and their geophysical implications.J Geophys Res 97:4503-4520 (1992).
    101. Gong ZZ,Fei YW,Dai F,Zhang L and Jing FQ,Equation of state and phase stability of (Mg0.92,Fe0.08)SiO_3 perovskite up to 140GPa.Geophys Res Lett 31:L04614 (2004).
    102. Anderson OL,Masuda K and Isaak DG,Limits on the value of δT andyfor MgSiO_3 perovskite.Phys Earth Planet Inter 98:31-46 (1996).
    103. Mitchell AC and Nellis WJ,Shock compression of aluminum,copper,and tantalum.J Appl Phys 52:3363-3374 (1981).
    104. Heinz DL and Jeanloz R,The equation of state of the gold calibration standard.J Appl Phys 55:885-893 (1984).
    105. Ahrens TJ and Jeanloz R,pyrite:shock compression,isentropic release,and composition of the Earth's core.J Geophys Res 92(B10):10,363-310,375 (1987).
    106. Li B and Zhang J,Pressure and temperature dependence of elastic wave velocity of MgSiO_3 perovskite and the composition of the lower mantle.Phys Earth Planet Inter 151 143-154 (2005).
    107. Sinogeikin SV,Zhang J and Bass JD,Elasticity of single crystal and polycrystalline MgSiO_3 perovskite by Brillouin spectroscopy.Geophys Res Lett 31:L06620 (2004).
    108. Ross NL and Hazen RM,High-pressure crystal chemistry of MgSiO_3 perovskite.Phys Chem Miner 17:228-237 (1990).
    109. Yagi T,Mao HK,Bell PM and Advances in Physical Chemistry:Hydrostatic compression of perovskite-type MgSiO_3.Springer-Verlag,,New York (1982).
    110. 杨金科,龚自正,费英伟,代福,经福谦,顽火辉石(Mg0.92,Fe0.08)SiO3的冲击相变和高压状态方程及其地球物理意义.高压物理学报 20(2)(2006).
    111. Brown JM and Mcqueen RG,The equation of state for iron and earth's core:High pressure research in gophysics.(1982).
    112. Brown JM,Ahrens TJ and Shampine DL,Hugoniot data for pyrrhotite and the earth's core.J Geophys Res 89:6041-6048 (1984).
    113. Raghavan V,Phase diagrams of ternary iron alloys:Part 2.Ternary systems containing iron and sulphur.Indian Institute of Metals,Calcutta (1988).
    114. Corgne A,Keshav S,Wood BJ,McDonough WF and Fei YW,Metal-silicate partitioning and constraints on core composition and oxygen fugacity during Earth accretion.Geochim Cosmochim Acta 72 574-589 (2008).
    115. L.Chudinovskikh and Boehler R,Eutectic melting in the system Fe-S to 44 GPa.Earth and Planetary Science Letters 257:97-103 (2007).
    116. Wang YB,Guyot F,Yeganeh-Haeri A and Liebermann RC,Twinning in MgSiO3 Perovskite Science 248 468-471 (1990).
    117. Redfern SAT,High-temperature structural phase transitions in perovskite J Phys:Condense Matter 8 8267-8275 (1996).
    118. Kennedy BJ,Howard CJ and Chakoumakos BC,Phase transitions in perovskite at elevated temperatures - a powder neutron diffraction study J Phys:Condens Matter 11 1479-1488 (1999).
    119. Kudoh Y,Ito and Takeda H,Effect of pressure on the crystal structure of perovskite-type MgSiO_3.Phys Chem Miner 14 350-354 (1987).
    120. Parise JB,Wang Y,Yeganeh-Haeri A,Cox DE and Fei YW,Crystal structure and thermal expansion of (Mg,Fe)SiO_3 perovskite Geophys Res Lett 17 2089-2092 (1990).
    121. Hohenberg P and Kohn W,Inhomogeneous Electron Gas.Phys Rev B 136:864-871 (1964).
    122. Slater JC,A simplification of the Hartree-Fock method Phys Rev B 81:385-390(1951).
    123. Winger E, On the Interaction of Electrons in Metals.Phys Rev B 46:1002-1011 (1934).
    124. Kohn W and Sham LJ,Self-Consistent Equations Including Exchange and Correlation Effects.Phys Rev B 140:1133-1138 (1965).
    125. Payne MC,Teter MP and Allen DC,Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients Rev Mod Phys 64:1045-1097 (1992).
    126. Perdew JP and Wang Y,Accurate and simple analytic representation of the electron-gas correlation energy Phys Rev B 45:13244-13249 (1992).
    127. Monkhorst HJ and Pack JD,Special points for Brillouin-zone integrations.Phys Rev B 13:5188-5192 (1976).
    128. Troullier N and Martins JL,Efficient pseudopotentials for plane-wave calculations Phys Rev B 43:1993-2006 (1991).
    129. Teter M,Additional condition for transferability in pseudopotentials Phys Rev B 48:5031-5041 (1993).
    130. Wentzcovitch RM,Martins JL and Price GD,Ab initio molecular dynamics with variable cell shape: application to MgSiO_3 Phys Rev Lett 70:3947-3950 (1993).
    
    131. Gong ZZ, Xie HS and Jing FQ, The Temperature coefficient of sound velocity of perovskite and lateral thermal heterogeneity in earth's lower mantle. Chin Phys Lett 17(3):218-220 (2000).
    
    132. Anderson OL, Oda H and Isaak DG, A model for the computation of thermal expansivity at high compression and high temperature: MgO as an example Geophys Res Lett 19:1987-1990 (1992).
    
    133. Birch F, Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K. J Geophys Res 83:1257-1268(1978).
    
    134. Mao HK, Hemley RJ, Fei YW, Shu JF, Chen LC, Jephcoat AP, Wu Y and Bassett WA, Effect of pressure, temperature, and composition on lattice parameters and density of (Fe,Mg)SiO3-perovskites to 30 GPa Geophys Res Lett 96(B5):8069-8079 (1991).
    
    135. Oganov AR, Brodholt JP and Price GD, Ab initio elasticity and thermal equation of state of MgSiO_3 perovskite Earth Planet Sci Lett 184 555-560 (2001).
    
    136. Anderson OL and Masuda KA, A thermodynamic method for computing thermal expansivity, alpha, versus T along isobars for silicate perovskite.Phys Earth Planet Inter 85: 227-236 (1994).
    
    137. Anderson OL, Thermoelastic properties of MgSiO3 perovskite using the Debye approach. Am Mineral 83:23-35 (1998).
    
    138. Fiquet G, Andrault D, Dewaele A, Charpin T, Kunz M and Hauserman D,P-V-T equation of state of MgSiO3 perovskite. Phys Earth Planet Inter 105 21-31(1998).
    
    139. Saxena SK, Dubrovinsky LS, Tutti F and Biham TL, Equation of state of MgSiO3 with the perovskite structure based on experimental measurement.Am Mineral 84:226-232 (1999).
    
    140. Stixrude L, Hemley RJ and Fei YW, Thermoelasticity of silicate perovskite and magnesiowustite and stratification of the Earth's mantle. Science 257:1099-1101 (1992).
    
    141. Wang Y, Weidner DJ and Liebermann RC, P-V-T equation of state of (Mg,Fe) SiO3 perovskite: constraints on composition of the lower mantle. Phys Earth Planet Inter 83:13-40 (1994).
    
    142. Mao HK, Hemley RJ, Fei Y, Shu JF, Chen LC, Jephcoat AP, Wu Y and Bassett WA,JGeophys Res 96:8069 (1991).
    143. Hemley RJ and Cohen RE,Silicate perovskite.Annu Rev Earth Planet Sci 20 553-600(1992).
    144. Katsura T and Ito E,Determination of Fe-Mg Partitioning between Perovskite and Magnesiowüstite.Geophys Res Lett 23 2005-2008 (1996).
    145. Sidorin I,Gurnis M,Helmberger DV and Ding X,Interpreting D" seismic structure using synthetic waveforms computed from dynamic models.Earth Planet Sci Lett 163:31-41 (1998).
    146. Sidorin I,Gurnis M and Helmberger DV,Dynamics of a phase change at the base of the mantle consistent with seismological observations.J Geophys Res 104:15005-15023 (1999).
    147. Tsuchiya T,Tsuchiya J,Umemoto K and Wentzcovitch RM,Elasticity of post-perovskite MgSiO_3. Geophys Res Lett 31:L14603,doi:14610.11029/12004GL020278.(2004).
    148. Oganov AR,Martonak R,A AL,Raiteri P and Parrinello M,Anisotropy of Earth's D" layer and stacking faults in the MgSiO_3 post-perovskite phase.Nature 438:1142-1144 (2005).
    149. Masters G and Gubbins D,On the resolution of density within the Earth.Phys Earth Planet Inter 140:159-167 (2003).
    150. Mitchell BJ and Helmberger DV,Shear velocities at the base of the mantle from observations of S and ScS.J Geophys Res 78:6009-6020 (1973).
    151. Lay T and Helmberger DV,A lower mantle S wave triplication and the shear velocity structure of D".Geophys JR Astron Soc 75:799-838 (1983).
    152. Ono S,Kikegawa T and Ohishi Y,High-pressure phase transition of hematite,Fe_2O_3.J Phys & Chem Solids 65:1527-1530 (2004).
    153. Oganov AR and Brodholt JP,High-pressure phases in the Al_2SiO_5 system and the problem of aluminous phase in the Earth's lower mantle: ab initio calculations.Phys Chem Miner 27:430-439 (2000).
    154. Urusov VS,Theoretical Crystal Chemistry.Moscow State Univ.Press,Moscow [in Russian] (1987).
    155. Ono S,Ohishi Y and Mibe K,Phase transition of Ca-perovskite and stability of Al-bearing Mg-perovskite in the lower mantle.Am Mineral 89:1480-1485(2004).
    156. Panning M and Romanowicz B,Inferences on flow at the base of Earth's mantle based on seismic anisotropy.Science 303:351-353 (2004).
    157. Su WJ and M.Dziewonski A,Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle.Phys Earth Planet Inter 100:135-156(1997).
    158. Masters G,Earth's Deep Interior:Mineral Physics and Tomography from the Atomic to the Global Scale,in American Geophysical Union,pp 63-87 (2000).
    159. Brown MJ and Shankland TJ,Thermodynamic parameters in the earth as determined from seismic profiles.Geophys J R Astron Soc 66:579- 596 (1981).
    160. Lay T,Williams Q and Garnero EJ,The core-mantle boundary layer and deep Earth dynamics.Nature 392:461-468 (1998).
    161. Pulliam J and Sen MK,Seismic anisotropy in the core-mantle transition zone.Geophys J Int 135:113-128 (1998).
    162. Martonak R,Laio A and Parrinello M,Predicting crystal structures:The Parrinello-Rahman method revisited Phys Rev Lett 90:075503 (2003).
    163. Marto(?)ák R,Laio A,Bernasconi M,Ceriani C,Raiteri P,Zipoli F and Parrinello M,Simulation of structural phase transitions by metadynamics.Zeitschrift für Kristallographie 220:489-498 (2005).
    164. Laio A and Parrinello M,Escaping free-energy minima.Proc Natl Acad Sci 20:12562-12566 (2002).
    165. Wentzcovitch RM,Tsuchiya T and Tsuchiya J,MgSiO_3 postperovskite at D"conditions.Proc Natl Acad Sci 103:543-546 (2006).
    166. Karki BB,Wentzcovitch RM,S SdG and Baroni S,First principles determination elastic anisotropy and wave velocities of MgO at lower mantle conditions.Science 286:1705-1707 (1999).
    167. Stixrude L,in Core-Mantle Boundary Region,Geodynamics Series in American Geophysical Union,ed by Gurnis M,Wysession ME,Knittle E and Buffet B (1998).
    168. Hirose K,Kawamura K,Ohishi Y,Tateno S and Sata N,Stability and equation of state of MgGeO_3 post-perovskite phase.Am Mineral90:262-265 (2005).
    169. Ross NL and Navrotsky A, Study of the MgGeO_3 polymorphs(orthopyroxene,clinopyroxene,and ilmenite structures) by calorimetry,spectroscopy,and phase equilibria.Am Mineral 73:1355-1365 (1988).
    170. Leinenweber K,Wang Y,Yagi T and Yusa H,An unquenchable perovskite phase of MgGeO_3 and comparison with MgSiO3 perovskite.Am Mineral 79:197-199(1994).
    171. Miyajima N,Ohgushi K,Ichihara M and Yagi T,Crystal morphology and dislocation microstructures of CaIrO_3:A TEM study of an analogue of the MgSiO_3 post-perovskite phase.Geophys Res Lett 33:L12302,doi:12310.11029/12005GL025001 (2006).
    172. Yamazaki D,Yoshino T,Ohfuji H,Ando J and Yoneda A,Origin of seismic anisotropy in the D" layer inferred from shear deformation experiments on post-perovskite phase. Earth and Planetary Science Letters 252 372-378 (2006).
    173. Merkel S,Kubo A,Miyagi L,Speziale S,Duffy TS,Mao HK and Wenk H,Plastic Deformation of MgGeO_3 Post-Perovskite at Lower Mantle Pressures.Science 311:644-646 (2006).
    174. Ono S,Kikegawa T and Ohishi Y,Equation of state of CaIrO3-type MgSiO3 up to 144 GPa.Am Mineral 91:475-478 (2006).
    175. Anderson OL,Isaak DG and Yamamoto S,Anharmonicity and the equation of state for gold.J Appl Phys 65:1534-1543 (1989).
    176. Jamieson JC,Fritz JN and Manghnani MH,Pressure measurement at high temperature in X-ray diffraction studies:gold as a primary standard High-Pressure Res in Geophys:27-48(1982).
    177. Dewaele A,Loubeyre P and Mezouar M,Equations of state of six metals above 94 GPa.Phys Rev B 70 094112 (2004).
    178. Shieh SR,Duffy TS,Kubo A,Shen GY,Prakapenka VB,Sata N,Hirose K and Ohishi Y,Equation of state of the postperovskite phase synthesized from a natural (Mg,Fe)SiO3 orthopyroxene. Proc Natl Acad Sci 103:3039-3043 (2006).
    179. Tateno S,Hirose K,Sata N and c YO,Solubility of FeO in (Mg,Fe)SiO_3 perovskite and the post-perovskite phase transition.Phys Earth Planet Inter 160:319-325 (2007).
    180. Murakami M,Sinogeikin SV,Bass JD,Sata N,Ohishi Y and Hirose K,Sound velocity of MgSiO_3 post-perovskite phase:A constraint on the D" discontinuity.Earth Planet Sci Lett 259:18-23 (2007).
    181. Mao WL,Mao HK,Sturhahn W,Zhao JY,Prakapenka VB,Meng Y,Shu JF,Fei YW and Hemley RJ,Iron-Rich Post-Perovskite and the Origin of Ultralow-Velocity Zones.Science 312:564-565 (2006).
    182. Wysession ME,Lay T,Revenaugh J,Williams Q,Garnero E,Jeanloz R and Kellog L,The D" discontinuity and its implications:The Core-Mantle Boundary Region,in American Geophysical Union,ed by Gurnis M, Wysession ME,Knittle E and Buffet BA,Washington,D.C.,pp 273-297 (1998).
    183. Mao WL,Mao HK,Prakapenka VB,Shu JF and Hemley RJ,The effect of pressure on the structure and volume of ferromagnesian post-perovskite.Geophys Res Lett 33:L12S02 (2006).
    184. Badro J,Fiquet G,Guyot F,Rueff JP,Struzhkin VV,Vankó G and Monaco G,Iron Partitioning in Earth's Mantle:Toward a Deep Lower Mantle Discontinuity.Science 300:789- 791 (2003).
    185. Yamazaki D and Karato S,Fabric development in (Mg,Fe)O during large strain,shear deformation:Implications for seismic anisotropy in Earth's lower mantle.Phys Earth Planet Inter 131:251-267 (2002).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700