用户名: 密码: 验证码:
特殊等离子体环境物理信息获取与处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业和电子技术的进步,等离子体概念的范畴也在不断扩大,从早期的气体放电逐步扩展到当今社会的方方面面。在航空航天领域,随着“神七”上天和大飞机项目上马,人们发现了很多急待解决的工程问题,如飞船再入过程中的通讯中断,目标识别,降低运动物体的雷达散射截面等。这样,超声速飞行器在大气层飞行中产生的激波,火箭发动机燃料中掺有的铯、钾、钠等易电离成分所形成的喷流,宇宙飞船再入阶段的表面烧蚀等特殊等离子体环境的物理信息获取与处理的研究就受到越来越多的重视。美俄等国已经在这一领域进行了充分的实验积累,而国内由于缺乏相应的实验技术和环境,该工作尚处在起步阶段。在能源领域,人们借助托卡马克中产生的高温等离子体进行可控热核聚变的研究,可以解决传统的化学燃料效率低和污染重的问题,为人类寻找新的清洁能源。上述等离子体往往处在具有高温、高压和高流速等特殊环境中,它们的密度和存在时间跨度很大(密度从10~9到10~(13)cm~(-3),存在时间从1ms到几十分钟),因此其性质与传统的稳态等离子体有较大差异。
     为了获取这些特殊等离子体环境下的物理信息,探讨它们与载体的相互关系,更好的将其应用到航空航天、能源等领域中,本文根据相关课题的要求,在模拟各种空间环境的地面实验装置上,依照特殊等离子体环境的特点,设计并自主研发了对应的数据采集与处理平台,包括数据采集、结果的在线分析和存储等,配备了相应的软硬件系统。实验中本文尝试采用多种手段获取同一等离子体参数,独立的比较各种方法所得结果之间的差异,尽可能的还原出真实的物理信息。本文还对等离子体数据处理进行了深入的研究,借助各种物理数学模型和专用的科学计算工具,离线求解出相应的等离子体参数,如电子温度、电子密度,电子碰撞频率等。
     本论文的主要内容如下:
     1.根据课题研究和测试环境的需求,本文建立了相应的等离子体数据获取平台,包括静电探针集成诊断系统、十路探针阵列诊断系统和多路光纤光谱仪,并对每种采集系统都进行了标定与测试。
     2.在项目预研阶段,为了验证数据获取与处理方法的可行性和可靠性,本文在直流辉光稳态装置上,结合静电探针与发射光谱方法,分别获得了辉光正柱区的电子温度与电子密度,对两种方法的特点进行了比对,并在后续特殊等离子体环境数据获取与分析中进行了改进和推广。
     3.本文从实验上研究了特殊等离子体环境中静电探针数据获取和处理方法。文中使用的静电探针主要是单探针和三探针。特殊等离子体环境一般具有高温高压等特点,普遍存在电磁干扰,所以本文在设计数据采集系统时充分考虑了屏蔽和隔离的问题。在数据处理方法上,由于传统的基于无碰低气压假设的探针理论已经失效,本文在充分调研的基础上,选择了Smy和Kiel等人的基于高气压强碰撞假设的探针电流收集理论,在仔细分析特殊等离子体环境的基础上加以应用,获得了电子密度和电子温度等参数及其时空分布。
     4.根据项目要求,本文分别在飞行环境地面实验装置、固体助推剂成分实验装置和粉末激波管上使用静电探针完成了电子密度、电子温度和碰撞频率等参数的测定。飞行环境地面实验要求获得电子密度在实验腔体内部的分布情况,因此运动探针阵列被用来获得了喷流等离子体的电子密度和电子温度的时空分布图,为推进器的型号筛选和性能改进提供实验依据。助推器的燃料成分实验装置空间有限,所以单探针被选作诊断方法。在粉末激波管等离子体参数诊断中,由于来流存在时间短,传统的单探针扫描的方法已经不能使用,所以无需扫描电源的三探针诊断方法被采用,同时高速信号采集技术被用来获得了探针的饱和电流,再通过相关的物理模型计算出该等离子体电子密度和电子温度的时间分布,并导出碰撞频率。
     5.本文在飞行环境地面实验装置上使用多路光纤光谱仪获得了氩气放电的发射光谱。这里的等离子体电子温度相对较低,维持导电主要是依靠电子碰撞使气体电离,因此这种放电形式属于弱电离、非平衡态放电,其发射光谱主要是原子谱线的辐射。这种条件下,由于激发态的粒子布居密度偏离Boltzmann分布,所以本文在分析原子发光的机理基础上,使用了Fermi-Dirac模型、基于非平衡态日冕模型、两种电子激发碰撞截面模型四种新的模型或方法重新计算电子温度。并对这几种方法的计算结果进行了比对,确认了双曲函数模型是在该条件下计算电子激发温度的最佳模型。
     6.本文将探针和光谱的数据处理技术进行了比对,分析了结果的一致性与系统误差,为今后类似的工作提供了借鉴。
     7.针对高温等离子体的软X射线辐射,本文设计了一套诊断系统,可以获得软X射线的时空分布,以及相应的磁流体动力学(MHD)不稳定性。该工作包括系统的设计安装,电路实现,图像重建和MHD不稳定性的分析等过程。
     本论文的主要创新之处在于:
     1.本文设计的便携式探针集成诊断平台,合作设计的十路探针诊断系统等两套一体化探针数据获取装置,已经成功应用于喷流等离子体、助推剂燃烧和粉末激波管环境的探针实验,解决了实验室原有的分立元件诊断系统存在的集成度低、抗干扰能力差、携带不便、对多样化的复杂实验场地条件适应能力较差等问题。
     2.在探针数据处理方法上,本文系统总结了Smy和Kiel等人的基于高气压强碰撞假设的探针电流收集理论,并应用于各种特殊等离子体环境的探针数据处理中,获得了电子密度和电子温度等参数及其时空分布,解决了喷流等离子体、助推剂燃烧和粉末激波管环境的探针数据处理无合适的理论依据的问题。
     3.本文系统总结了Fermi-Dirac模型、基于非平衡态日冕模型、两种电子激发碰撞截面模型等多种基于热力学非平衡态的光谱计算模型,解决了飞行等离子体环境的电子激发温度的计算问题。
     4.本文是国内首次在粉末激波管等离子体试验中使用三探针诊断和高速数据采集技术,从实验上获取了该等离子体电子密度和电子温度的时间分布,并导出碰撞频率,解决了国内高温高压高马赫数粉末激波管研究一直依赖数值模拟,缺乏合理可信的实验数据的问题。
     5.在加拿大STOR-M托卡马克上本文首次实现了紧凑型软X射线诊断系统的安装与测试,并进行了初步实验,解决了原有的软X射线系统体积大、对光强敏感度低的缺点,为后续的MHD不稳定性研究提供了完善的硬件平台。
With the development of the industry and electronics, the concept for the conventional plasma extends from the gas discharge to every aspect in society accordingly. In aerospace area, with the launch of spacecraft Shenzhou-7 and the startup of large passenger jets, people find many engineering problems to be figured out like the communication interruption during the spacecraft's reentry, the target identification and the reduction of radar scattering cross section for the moving object and so on. It could be considered as special plasma environment that Shockwave accompanied with the flight in aerosphere of highpersonic aerocraft, the jet from the rocket or jet plane and the surface ablation during the reentry stage of spaceship. The acquisition and processing for the physics information in the above special plasma environment has gained great a lot attention. Some countries like the US and Russia have accumulated plenty of experiences in this area. However this job in our country is still undeveloped because of the lack of necessary experiment skills and instruments. In energy area, high temperature plasma in Tokamak is usded in the controllable fusion research which aims at the solution of clean energy. All the plasma exists in the special circumstances with high temperature, high pressure and high speed flow. The density of the plasma ranges from 10~9 to 10~(13) cm~(-3) while the lasting time is from 1ms to dozens of minutes. So the property of the above plasma varies a lot from the steady plasma.
     In order to investigate the plasma parameters in the special circumstances and the relation between the carrier and plasma itself, the diagnostic platform is designed and installed on the facilities which simulate the space environment, including the hardware and software for the data acquisition, online anaysis and storage according to the features of different types of plasma and project requirments. In experiment, multiple diagnostics have been attempted to acquire the same plasma parameter. So the real physics information has been revealed by independent comparison of the various results in order to get better application in the energy and aerospace area. Additionaly, the further research for the plasma data analysis has been done. The plasma parameters like electron temperature, electron density and collisional frequency are calculated offline based on different physics models with the help of scientific calculation software.
     The main contents in the paper are as following.
     1. The plasma parameters diagnostic platform is constructed based on the project requirements and testing circumstances. The platform is composed of single/triple electric probes diagnostic system, ten-channel single electric probe array system and grating spectroscopy. The calibration and testing have been made on each system.
     2. For the certification of the feasibility and reliability for the data acquisition and processing, the electron density and temperature in the positive colum region have been obtained by electric probe and emission spectrum in the dc glow discharging facility before the real experiments. The two methods have been compared and they also have been improved and extended in the following data acquisition and analysis for the special plasma environment.
     3. The electric probe data acquisition and processing methods in the special plasma environment are investigated from experiment. The electric probes used in the paper are single and triple probes. Great attention has been taken in the shielding and isolation design of the data acquisition system because of the high temperature and pressure in the special plasma environment with electromagnetic disturbance. The probe current collection theory which is based on the high-pressure collisional assumption issued by Smy and Kiel is selected as the data processing method because the conventional probe current collection theory which is based on the non-collisional low-pressure assumption is useless. The spacial distribution of the electron density and temperature are calculated by the above methods.
     4. According to the requirements from the projects, electric probes are applied for the electron density, temperature and collisional frequency in the ground experiment facility of flight circumstances, the components of solid rocket propellant testing device and sintered Shockwave tube. The moving probe array is used as the demanding of electron density spacial distribution in the vacuum chamber in the ground experiment facility of flight circumstances, which provides experiment data for the model selectrion and performance improvement of the thruster. The single probe is preferred in the propellant combustion experiment because of its small space. The triple probe which doesn't need scanning voltage is selected in the sintered Shockwave tube because of the short-time coming shockwave. In the meanwhile the high-speed signal acquisition technique is used to get the probe saturation current. The temperal distribution of the electron density and temperature are evaluated from physics models.
     5. The multi-channel grating spectrometry has been used to get the emission spectrum in the argon discharge in the ground experiment facility of flight circumstances. The electron temperature is relatively low so that the collisional ionization is the main reason for the discharge. The type of discharge belongs to the weak non-equibirium discharge and the radiation from the atoms contributes a lot to the emission spectrum. In this paper, the following four models are used to calculate the electron temperature based on the mechenism of the atom radiation because the population of the excited particles deviates from Botzmann distribution. The four models are Fermi-Dirac model, corona model based on non-equilibrium and two kinds of electron excitation collisional cross section models. The hyperbolic function model is the best choice after the comparision of the results from the four models.
     6. The comparison of the data acquisition methods between the electric probe and the spectroscopy provides references for the similar future work.
     7. A soft X-ray diagnostic system is designed for the STOR-M tokamak which is able to acquire the spacial and temperal distribution of the soft X-ray and the MHD instability. The work includes the hardware design, tomography and the analysis of MHD instability.
     The innovation for the paper is as following.
     1. The portable integrated probe diagnostic platform and the ten-channel probe diagnostic system are applied in the plasma jet, the propellant combustion and the sintered Shockwave tube which solved the previous shortages in the lab like low integrated, too sensitive and unportable diagnostic system which are composed of concrete componets.
     2. The probe current collection theory which is based on the high-pressure collisional assumption issued by Smy and Kiel is selected as the data processing method which is used in the probe data processing of various special plasma environment. The spacial distribution of the electron density and temperature are calculated by the above methods which solved the lack of apropriate probe theory in the special circumstances.
     3. The four models which are Fermi-Dirac model, corona model based on non-equilibrium and two kinds of electron excitation collisional cross section models are summerized for the purpose of calculating electron excitation temperature.
     4. In the paper, it's the first time inland that the triple probe and high-speed data acquisition technique are used in the sintered Shockwave tube. The temperal distribution of the electron density and temperature are obtained from the experiment. This also leads to the electron collisional frequency which gets rid of the dependence of numerical simulation in the research of inland high-temperature, high-pressure and high-mach sintered shockwave tube.
     5. It's the first time in Canadian STOR-M tokamak that a compact soft X-ray system is installed and tested. The preliminary experiment has been done. The work solved the large volum and low sensitive shortages for the original system. It provides a perfect hardware platform for the research of future MHD instability.
引文
[1]Peratt,A.L.,Astrophysics and Space Science,1996,242:93
    [2]A.Ershov,N.Ardelyan,S,Chuvashev,V.Shibltov,I.Timofeev,9th International Space Planes and Hypersonic Systems and Technologies Conference,1999,AIAA-99-4851
    [3]Kazuhisa Fujita,Atsushi Matsuda,Shunichi Sato,Takashi Abe,AIP Conf.Proc.,2001,585:780
    [4]L Byrne,N.A.Gatsonis,E.Pencil,37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2001,AIAA 2001-3640
    [5]Roger L.Kimmel,J.R.Hayes,J.A.Menart,and J.S.Shang,2005,AFRL-VA-WP-TR-2006-3006
    [6]Masatomi Nishio,Shinji Sezaki,Hiroaki Nakamura,AIAA J.,2004,42:56
    [7]胡文初,乐嘉陵,曹文祥,宇航学报,1993,1:28
    [8]唐锦荣,彭世锣,力学学报,2002,34:874
    [9]程晓丽,董永晖,李廷林 航空学报2007,28:796
    [10]D.A.Batchelor,M.Beck,J.Manickam et al,Phys.Sci.Tech.,2007,9:312
    [11]Y.S.Chou,L.Talbot,D.R.Willis,Phys.Fluids,1966,9(4):2150
    [12]赵红波,FD04风洞等离子体的经典探针测量及其混沌特性的研究,中国科学技术大学硕士学位论文,1996
    [13]P.R.Smy,Advances in Phys.,25(5):517,1976
    [14]Orlando Auciello,Daniel L·Flamn(美)著,郑少白,胡建芳,郭淑静等译.等离子体诊断(第一卷)-放电参量和化学[M].北京:科学出版社,2001
    [15]B.Fritsche,T.Chevolleau,J.Kourtev,etal.Plasma diagnostic of an RF magnetron Ar/N2discharge.Vacuum,2003,69:139 - 145
    [16]S.Huang,Z.Y.Ning,Y.Xin,X.L.Di.Langmuir probe measurements ininductively coupled CF4plasmas.Surface and Coatings Technology,2006,200:3963-3968
    [17]Shu Qin,Allen McTeer.Plasma characteristics in pulse-mode plasmas using time-delayed,time-resolved Langmuir probe diagnoses.Surface and Coatings Technology,2007,201:6508-6515
    [18]Patrik Spanel.An on-line Langmuir probe technique for the study of afterglow plasmas.International Journal of Mass Spectrometry and Ion Processes,1995,149/150:299-310
    [19]J.Mefo,B.J.Sealy,E.J.H.Collart,etal.Langmuir probe analysis of BF3 discharge in a high current ionsource.Nuclear Instruments and Methods in Physics Research B,2005,237:245-249
    [20]刘丽辉,于威,赵启大,傅广生.朗缪尔单探针测量螺旋波等离子体参量[J].南开大学学报 (自然科学版),2004,37(3):28-31
    [21]潘阁生,王成,万树德,等.静电离子探针在气体放电磁化等离子体参数测量中的应用.真空科学与技术学报,2001,21(2):116-119
    [22]曾昭宪,王世金,曾力.基于Langmuir探针技术的空间等离子体探测方法[J].上海航天,2006,5:41-45
    [23]G.L.Ogram,Jen-shih Chang,and R.M.Hobson,J.Appl.Phys.,1979,50:726-730
    [24]项志遴,俞昌旋,高温等离子体诊断技术(上、下册),上海科学技术出版社,1982
    [25]A.Qayyum,Shaista Ieb,M.A.Naveed,et al.Optical emission spectroscopy of Ar-N2 mixture plasma.Journal of Quantitative Spectroscopy & Radiative Transfer,2007,
    [26]St.Kolev,H.Schl(u|¨)ter,A.Schl(u|¨)ter,Kh.Tarnev,Diffusion-controlled regime of cylindrical inductive discharges,Plasma Sources Sci.Technol.2006,15:744-756
    [27]S.Iordanova,I.Koleva.Optical emission spectroscopy diagnostics of inductively-driven plasmas in argon gas at low pressures.Spectrochimica Acta Part B,2007,62:344-356
    [28]I.Langmuir and H.M.Mott-Smith,Gen.Electr.Rev.,1923,26:731
    [29]H.M.Mott-Smith and I.Langmuir,Phys.Rev.,1926,28:727
    [30]I.H.Hutchinson,Principles of Plasma Diagnostics(2nd edition),Cambridge University Press,New York,2002
    [31]梁昊,曹金祥,牛田野等,等离子体阵列扫描探针系统研制报告,国防报告,2006.10
    [32]http://www.tjgd.com/view/product.asp?id=38
    [33]http://www.jobinyvon.cn/SiteResources/Data/Templates/ldivisional.asp?DocID=1308&vlID =&lang=11
    [34]http://www.ird-inc.com
    [35]National Instruments.NI 6132/6133 Specifications,2005
    [36]Chen Z W 1996 Ionized Gas Discharge Dynamics(BeIjing:Science Press)(in Chinese)[陈宗旺1996电离气体发光动力学(北京:科学出版社)]
    [37]Kimura T,Ohe K 2001 J.Appl.Phys.89 4240
    [38]Demindov V I,Ratynskaia S V,Rypdal K,2002 Rev.Sci.Instrum.73 3409
    [39]Yang W D,Wang P N,Liu Z P,Mi L,Li F M 2002 Chin.Phys.11 260
    [40]Yan J H,Tu X,Ma Z Y,Pan X C,Cen K F,Bruno C 2006 Acta Phys.Sin.55 3451(in Chinese)[严建华、屠昕、马增益、潘新潮、岑可法、Cheron Bruno 2006物理学报55 3451]
    [41]Huang S,Xin Y,Ning Z Y 2005 Chin.Phys.14 1608
    [42]van den MULLEN J A M 1990 Excitation Equilibria in Plasmas;a Classification(Netherlands:North-Holland)
    [43]Walker A L,Curry D L,Fannin H B 1994 Appl.Spectrosc.48 333
    [44]Zhang R,Zhan R J,Wen X H,Wang L 2003 Plasma Sources Sci.Technol.12 590
    [45]Godyak VA,Piejak R B,Alexandrovich B M 1992 J.Appl.Phys.73 3657
    [46]FemhndezPalop J I,Ballesteros J,Colomer V,Hernhndez M A 1995 Rev.Sci.Instrum.66 4625
    [47]Chi L F,Lin K X,Yao R H,Lin X Y,Yu C Y,Yu Y P 2001 Acta Phys.Sin.50 1313(in Chinese)[池凌飞、林揆训、姚若河、林璇英、余楚迎、余云鹏2001物理学报50 1313]
    [48]F.F.Chen 1965 Plasma Diagnostic Techniques,(New York:Academic)
    [49]Sheridan T E 2000 Phys.Plasmas 7 3084
    [50]Francis F.Chen and Donald Arnush 2001 Phy.Plasmas 8,5051
    [51]Wiese W L 1991 Spec.Acta 46 831
    [52]Forster S,Mohr C,Viol W 2005 Surface & Coatings Tech.200 827
    [53]Xin R X 2005 Analysis of Plasma Emission Spectroscopy(Beijing:Chemistry Industrial Press)(in Chinese)[辛仁轩 2005等离子体发射光谱分析(北京:化学工业出版社)]
    [54]Song F L 2005 Ph.D Thesis(Hefei:Universify of Science and Technology of China)(in Chinese)[宋法伦2005博士学位论文合肥:中国科学技术大学]
    [55]Wang Y,Cao J X,Wang G,Wang L,Zhu Y,Niu T Y 2006 Phys.Plasmas 13 073301
    [55]牛田野,曹金祥,刘磊,刘金英,王艳,王亮,吕铀,王舸,朱颖,2007,物理学报,56(4):2330
    [56]Niu Tianye,Cao Jin-xiang,Liu Lei,Liu Jin-ying,Wang Yah,Wang Liang and Lv You,2007,Chinese Physics,16(9):2757
    [57]Griem H R 1997 Principles of Plasma Spectroscopy(Cambridge:Cambridge University Press)
    [58]F J Gordillo-Vazquez,M Camero and C Gomez-Aleixandre 2006 Plasma Sources Sci.Technol 15 42
    [59]Fujimoto T 1979 J.Phys.Soe.Japan 47 273
    [60]Yi-ming Ling 2006 J.Phys.D:Appl.Phys.39 3305-3309
    [61]A.Yanguas-Gil,J.Cotrino,and A.R.González-Elipe,2006,J.Appl.Phys,99,033104-1
    [62]林毅君,静电探针阵列测量系统的研制及其在高温流场实验中的应用,硕士论文,中国科学技术大学,1996
    [63]M.Sicha,M.Cada,Z.Hubicka,J.Ferdinand,Determination of the plasma parameters at the atmospheric pressure plasma-chemical reactor by langmuir probe,PPT
    [64]Sigismund Pfau,Milan Tichy,Low Temperature Plasma Physics:Fundamental Aspects and Applications,2000 Page:149(Wiley-VCH:Germany)
    [65]R.H.Kirchhoff,E.W.Peterson,L.Talbot 1971 AIAA J.9(9),1686
    [66]T.M.Yoik 1980 AIAA 80-0093
    [67]D.Lyddon Thomas,Phys.Fluids,1969,12:356
    [68]C.H.Su and S.H.Lam,Phys.Fluids,1963,6:1479
    [69]C.H.Su and R.E.Kiel,J.Appl.Phys.,1966,37:4907
    [70]R.E.Kiel,J.Appl.Phys.,1969,40:3668
    [71]F.Fendell,Comb.Sci.Tech.,1970,1:331
    [72]J.Chang and J.G.Laframboise,Phys.Fluids,1976,19:25
    [73]R.M.Clements and P.R.Smy,J.Phys.D:Appl.Phys.,1973,6:184
    [74]R.M.Clements and P.R.Smy,J.Appl.Phys.,1973,44:3550
    [75]R.M.Clements and P.R.Smy,J.Appl.Phys.,1969,40:4553
    [76]R.M.Clements,Syed.A.H.Rizvi and P.R.Smy,IEEE Trans.Plasma Sci.,1994,22:435
    [77]D Bradley Said MA Ibrahim J.Phys.D:Appl.Phys.,1974 7:1377
    [78]V.I.Demidov et al.,Rev.Sci.Instrum.,2002,73:3409 Page17
    [79]F.F.Chen,Introduction to Plasma Physics,Plenum,New York,1976
    [80]Jen-Shih Chang,G L Ogram,R M Hobson and S Teii,J.Phys.D:Appl.Phys.,1980,13:1083-1092
    [81]W.E.Scharfman and A.G.Hammitt,AIAA J.,1972,10(4):434-439
    [82]朱颖,不同条件下静电探针的理论与实验技术研究,硕士学位论文,中国科学技术大学,2006
    [83]M.Laux,Contrib.Plasma Phys.,2004,44:695
    [84]S.Chen and T.Sckiguchi,J.Appl.Phys.,1965,36:2363
    [85]M.Laux,Contrib.Plasma Phys.,2001,44:510
    [86]J.Rubinstein and J.G.Laframboise,Phys.Fluids,1983,26:3624
    [87]P.M.Chung,L.Talbot and K.J.Touryan,Electric Probes in Stationary and Flowing Plasmas,1975,Springer,New York
    [88]P.C.Stangcby,J.Phys.D,1982,15:1007
    [89]Adam K.Martin and Syri J.Koelfgen,Rev.Sci.Ins.,2007,78:103508-1 - 103608-6
    [90]S.Henderson,J.Menart and J.Shang,42~(nd) AIAA Aerospace Sciences Meeting and Exhibit,Jan.,2004,AIAA 2004-360
    [91]J.Menart and J.Shang,41~(st) AIAA Aerospace Sciences Meeting and Exhibit,Jan.,2003,AIAA 2003-136
    [92]Gatsonis N A,Eckman R,Xue M Y.,AIAA.Journal of Spacecraft and Rockets,2001,138(3):456
    [93]Nikolaos A.Gatsonis,L.T.Byrne,J.C.Zwahlen,E.J.Pencil and H.Kamhawi,IEEE Tran.On Plasma Sci,2004,32(5):2118-2129
    [94]牛田野等,襄樊火药燃烧实验报告,国防报告,2007
    [95] P Bailie, Jen-Shih Chang, A Claude, R M Hobson, G L Ogram and A W Yau, J. Phys. B: At.Mol.Phys., 1981,14:1485-1495
    
    [96] Yukikazu Itikawa, J. Phys. Chem. Ref. Data, 2006,35(1): 31-53
    
    [97] Vidmar R J, IEEE. Trans. Plasma Sci., 1990,18(4): 733
    
    [98] Henry G Booker, Cold Plasma Waves, 1984 (New York: Martinus Nijhoff Publishers)
    
    [99] A. A. Sonin, AIAA. J., 1966, 4(9): 1588
    
    [100] T. M. York, AIAA 1980, 80-0093
    
    [101] S. H. Leong, 1966, AD-439007
    
    [102] J. M. Avidor, AIAA, 1973, 73-0690
    
    [103] P. M. Chung, AIAA. J., 1965,3(5): 817
    
    [104] A. A. Sonin, UTIAS TN58, 1966, AD-626451
    
    [105] M. S. Grewal, 1962,AD-277603
    
    [106] M. F. Dunn and J. A. Lordi, AIAA. J., 1970, 8(6): 1077
    
    [107] A. Hirose, C. Xiao, O. Mitarai, J. Morelli, and H.M. Skarsgrard. STOR-M design and instrumentation. Physics in Canada, 62(9), 2006.
    
    [108] Zhen Xiangjun, Hu Liqun , Wan Baonian, Chen Zhongyong, Shi Yuejiang, Lin Shiyao, Ding Yonghua, Zhou Liwu and HT-7 Team, Plasma Sci. Technol. 2006, 8(2): 147-150
    
    [109] C. Xiao, P. Franz, and B.E. Chaman, Rev. Sci. Ins., 2003,74(3): 2157

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700