用户名: 密码: 验证码:
正常工况下TRT系统高炉顶压动态建模及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高炉炉顶煤气余压透平发电装置(简称TRT)是目前国际、国内钢铁企业公认的有价值的二次能源回收装置。它通过将高炉炉顶煤气导入透平膨胀机做功,使高炉炉顶煤气的压力能及热能转化为机械能再驱动发电机发电。采用TRT装置代替减压阀组,不改变原高炉煤气的品质,也不影响煤气用户的正常使用,却回收了过去在减压阀组上白白损失的能量,经济效益十分显著,同时降低了噪声,是典型的节能环保项目。
     作为能量回收的TRT设备,其投入运行的前提条件是在任何情况下均能保证高炉顶压稳定,从而不影响主流程工艺过程。目前TRT装置大都依靠经验PID控制可调静叶开度来稳定高炉顶压。然而,随着冶金高炉的大型化和现代炼铁技术的发展,对高炉顶压的稳定性要求越来越高,PID控制已难以达到预期的控制要求。因此,需要对高炉顶压的稳定性进行系统性理论研究。
     正常运行工况下高炉顶压稳定性研究是分析TRT装置整个运转过程中顶压稳定性问题的基础。本文以正常运行工况下TRT系统为研究对象,对该工况下高炉炉顶压力对象的数学建模与控制进行了研究。主要研究工作如下:
     (1)介绍了TRT装置的工艺流程、工作原理及其投入运行的前提条件,并简要概述了目前TRT装置高炉顶压控制技术,高炉顶压稳定性理论研究现状和TRT装置中电液位置伺服系统的特点及其非线性控制。
     (2)结合正常工况的特点,对高炉TRT装置进行合理的简化。正常工况下高炉间歇上料是引起炉顶压力不稳定的主要因素。将该主要扰动变量引入TRT系统正常工况下的高炉顶压模型,采用机理分析和基于工业现场实际运行数据的参数辨识相结合的方法建立了该动态模型。结合具体实例分析了高炉顶压控制系统满足闭环可辨识性条件。对所建立的模型进行了仿真验证,仿真结果表明模型反映了正常工况下炉顶压力的实际运行状况。
     (3)设计高性能的电液位置伺服控制系统是提高TRT系统高炉顶压控制精度的关键问题。针对电液位置伺服系统的非线性特性,设计非线性状态反馈将其数学模型精确线性化,再设计最优控制器。分别在系统空载和带负载情况下进行仿真实验,仿真结果表明状态反馈精确线性化最优控制方法是有效的。
     (4)基于已建立的正常工况下TRT系统高炉顶压数学模型,设计高炉顶压二自由度内模控制器。分别在模型精确匹配和模型失配时进行仿真实验,讨论了内模控制器的可调参数对系统性能的影响。仿真结果表明内模控制性能优越,参数调整方便,通过调整参数可以调整系统的鲁棒性,易于工程实现。
     (5)介绍了在实际工业现场应用的高炉TRT装置自动控制系统实现的主要控制功能及硬件配置和软件设计。
     最后对本文的研究工作进行了总结,并指出下一步工作的研究方向。
Blast Furnace Top Gas Pressure Recovery Turbine Unit (TRT) is widely acceptedas an effective secondary energy recycle device by domestic and international ironand steel enterprises. It works by flowing the blast furnace top gas into an actingturboexpander, then converting the pressure and heat energy of the top gas tomechanical energy, and finally driving electrical generators. It recycles considerableenergy, which is wasted in decompression valve group of traditional blast furnaceprocess flow, to use TRT unit instead of decompression valve group, withoutdegrading the quality of top gas or influencing gas consumer's normal use. It is atypical energy-saving and green project as it has significant economical benefits andmeanwhile reduces noise during the process.
     As an energy recycle device, the precondition of applying a TRT unit is thestability of blast furnace's top gas pressure during operation, and thus no disturbancewill be introduced to the main process. At present, the most popular method tostabilize the top gas pressure is the empirical PID control of the adjustable static bladeopening. However, with modern ironmaking technology's development and blastfurnace's expansion, the demand on top pressure stability becomes increasingly high.And the PID control is no longer able to achieve the expected control requirements.Therefore, the stability of top pressure requires researching systematically.
     Study on Top pressure stability is the base of research on stability during thewhole TRT operation. Therefore, this thesis takes the TRT system under normalcondition as its research object, and presents the dynamical modeling and controlmethod of top gas pressure. The main contents of this thesis are as follows:
     (1) The process technology flow, principle and operating precondition of TRTunit are introduced. Then the control techniques of top pressure in TRT unit, the statusof theoretical study on top pressure stability and the characteristics and nonlinearcontrol of electro-hydraulic position servo system in TRT unit are summarized.
     (2) Considering the characteristics of normal condition, TRT unit is simplified reasonably. Blast Furnace feeding is the dominant factor that influences the top gaspressure in TRT unit under normal condition. This disturbance is considered to get adynamical model of the TRT system under normal condition by mechanism analysisand parameter identification based on data from industrial field. The identifiablecondition of closed-loop control system of top gas pressure is analyzed and thissystem can meet the condition. Validating experiments are carried out on this dynamicmodel, and simulation results show that the model can reflect the normal situation oftop gas pressure correctly.
     (3) It's a key problem to design a high performance electro-hydraulic positionservo control system for improving control precision for top gas pressure in TRTsystem. Aiming at the nonlinear characteristic of electro-hydraulic position servosystem, a nonlinear state feedback method is adopted to linearize its mathematicalmodel exactly, and then optimal controller is proposed. The simulation experimentsare carried out on empty and load system respectively. The results show thatexact-linearization optimal control method is valid.
     (4) Based on the established model of top pressure in TRT system under normalcondition, a two-degree-of-freedom intemal model controller is designed for top gas.The simulation experiments are carried out on matching and mismatching models, andIMC controller adjustable parameters' impact on the system performance is discussed.The results show that IMC method has good performances and the adjustment of itsparameters is easy. In addition, the system robustness can be adjusted by tuningcontrol parameters. And it is fit for engineering application.
     (5) The main control functions, hardware configuration and software design ofTRT automatic control system which is applied in industrial field are introduced.
     Finally, the work of this thesis and the further research directions aresummarized.
引文
[1] 马琴,马玉玲,赵佳等.高炉TRT发电机组自动控制系统研究[J].冶金自动化,2005,(5):88-90.
    [2] 高伟,王琦,王萍.CS3000控制系统在包钢燃气厂1~#TRT的应用[J].包钢科技,2006,32(3):23-25.
    [3] 韦金珍,林锋.8号高炉煤气余压透平发电装置的自动控制[J].柳钢科技,2006,(2):42-45.
    [4] 盛钢,柳黎光.TRT顶压稳定技术研究与实践[J].通用机械,2005,(8):96-99.
    [5] 叶长青.高炉煤气余压透平发电装置(TRT)的发展与创新[J].节能,2000,(8): 13-15.
    [6] 张红庆,刘甄,赵家元等.武钢2~#高炉TRT自动控制系统[J].冶金自动化,2001,(4):42-46.
    [7] 曹烈,孙蓉琳.马钢四铁厂高炉TRT控制系统[J].工业仪表与自动化装置,2002,(5):53-55.
    [8] 中国钢铁工业能耗现状与节能前景[J].中国钢铁业,2004,(8):17-21.
    [9] 郑秀萍.TRT技术及其节能环保作用(上篇)[J].通用机械,2004,(9):11-12.
    [10] 郑秀萍.TRT技术及其节能环保作用(下篇)[J].通用机械,2004,(10):30-31.
    [11] 黄景华.唐钢3~#TRT的过程控制及其实现[J].冶金动力,2001,(5):70-72.
    [12] 黄景华.TRT影响高炉顶压问题的解决[J].冶金动力,2000,(4):60-61.
    [13] Chunjie Yang, Ping Wu. Neural Networks Based Predictive Control for TRT[C]. Neural Networks and Brain, 2005. ICNN&B'05. International Conference on, 2005, 2: 1041-1044.
    [14] 伍沅.化工过程动态[M].北京:化学工业出版社,1998.
    [15] 王春行.液压伺服控制系统[M].北京:机械工业出版社,1981.
    [16] 刘长年.液压伺服系统的分析与设计[M].北京:科学出版社,1985.
    [17] 王占林.近代电气液压伺服控制[M].北京:北京航空航天大学出版社,2005.
    [18] 何玉彬,刘艳秋,徐立勤等.电液伺服系统神经网络在线自学习自适应控制[J].中国电机工程学报,1998,18(6):434-437.
    [19] 刘云峰,缪栋.电液伺服系统的自适应模糊滑模控制研究[J].中国电机工程学报,2006,26(14):140-144.
    [20] Mohamed A G. Variable Structure Control for Electro-hydraulic Position Servo System[C]. The 27th Annual Conference of the IEEE Industrial Electronics Society, Denver, USA, 2001, 2195-2198.
    [21] Miroslav Mihajlov, Vlastimir Nikolic, Dragan Antic. Position Control of an Electro-hydraulic Servo System Using Mode Control Enhanced by Fuzzy PI Controller[J]. Mechanical Engineering, 2002, 1 (9): 1217-1230.
    [22] Knohl T, Unbehauen H. Adaptive Position Control Of EIectrohydraulic Servo Systems Using ANN[J]. Mechatronics, 2000, 10(1): 127, 143.
    [23] Bonchis A, Corke P I, Rye D C, et al. Variable Structure Methods in Hydraulic Servo Systems Control[J]. Automatica, 2001, 37(5): 589-595.
    [24] 何玉彬,李新忠.神经网络控制技术及其应用[M].北京:科学出版社,2000.
    [25] 李运华.近代电液伺服系统中某些非线性控制问题的研究[D].西安交通大学博士学位论文,1994.
    [26] 张波.基于反馈线性化的电液伺服系统控制方法的研究[D].哈尔滨工业大学硕士学位论文,2003.
    [27] Schneider, Martin. Nonlinear Motion Control of Hydraulically Driven Large Redundant Manipulators[J]. IFAC Proc. on Motion Control, 1995, 269-278.
    [28] 方崇智,萧德云.过程辨识[M].北京:清华大学出版社,2003.
    [29] 周春晖.化工过程控制原理[M].北京:化学工业出版社,1998.
    [30] 王树青.工业过程控制工程[M].北京:化学工业出版社,2003.
    [31] 潘立登,潘仰东.系统辨识与建模[M].北京:化学工业出版社,2004.
    [32] 杨春节,吴平,宋执环.炼铁高炉TRT系统炉顶压力动态数学模型研究[J]. 浙江大学学报(工学版),2006,40(9):1536-1539.
    [33] 成伯兰.高炉炼铁工艺及计算[M].北京:冶金工业出版社,1991.
    [34] 那树人.炼铁工艺计算[M].北京:冶金工业出版社,1999.
    [35] 付卫东,袁修干,黄本诚等.一种调节阀流量计算的新方法[J].化工机械,1998,25(6):326-328.
    [36] 汪德澍,黄明瑞.非线性控制系统引论[M].成都:成都电信工程科学院出版社,1988.
    [37] 高为炳.非线性控制系统[M].北京:科学出版社,1989.
    [38] 斯洛廷,李卫平.应用非线性控制[M].北京:国防工业出版社,1992.
    [39] 王猛.电液伺服控制技术在TRT自动控制系统中的研究与应用[J].莱钢科技,2006,(2):52-54.
    [40] 魏巍.MATLAB控制工程工具箱技术手册[M].北京:国防工业出版社,2004.
    [41] Garcia C E, Morari M. Intemal Model Control 1, A Unifying Review and Some New Results[J]. Ind. Eng. Chem. Pro: Des. Dev, 1982, 21(2): 308-323.
    [42] 刘蓉,吕震中.基于内模—PID控制的球磨机负荷控制系统的设计[J].电力设备,2005,6(1):30-33.
    [43] 李益国,沈炯,吕震中.火电单元机组负荷模糊内模控制及其仿真研究[J].中国电机工程学报,2002,22(4):90-93.
    [44] 刘红斌,胡德金,王海峰.自整定内模PID控制在非圆销孔加工中的应用[J].上海交通大学学报,2006,40(12):2021-2025.
    [45] 周涌,陈庆伟,胡维礼.内模控制研究的新发展[J].控制理论与应用,2004,21(3):475-482.
    [46] 舒迪前.预测控制系统及其应用[M].北京:机械工业出版社,1996.
    [47] Wen Tan, Horacio J. Marquez, Tongwen Chen. IMC Design for Unstable Processes with Time Delays[J]. Journal of Process Control(S0959-1524), 2003, 13: 203-213.
    [48] Aniruddha Datta, James Och0a. Adaptive Internal Model Control: Design and Stability Analysis[J]. Automatica(S0005-1098), 1996, 32(2): 261-266.
    [49] Ian G H, Jeffer Y R A, Christopher J G. Improve Filter Design in Internal Model Control [J]. Industrial Engineering Chemistry Research, 1996, 35(10): 3437-3441.
    [50] 陈娟,潘立登,曹柳林.时滞系统的滤波器时间常数自调整内模控制[J].系统仿真学报,2006,18(6):1630-1633.
    [51] 赵曜.内模控制发展综述[J].信息与控制,2000,29(6):526-531.
    [52] 陈婷.二自由度内模控制结构中二阶反馈滤波器的研究[D].四川大学硕士学位论文,2005.
    [53] 张井岗,李临生.一种二自由度内模控制方法[J].工业仪表与自动化装置,2002,(4):63-65.
    [54] Howze J W. Robust tracking, error feedback, and two-freedom-of controls[J]. IEEE Trans AC, 1997, 42(7): 980-983.
    [55] Vilanova R. Realization of two degree-of-freedom compensator[J]. IEE Proc. - Control Theory Application AC, 1997, 144(6): 589-595.
    [56] 王贵良,叶理德.宣钢TRT控制系统的设计[J].钢铁,2001,20(2):49-50.
    [57] 王贵良.TRT工程全自动启机和全自动停机控制[J].冶金自动化,2002,(1):22-25.
    [58] 李付民.CENTUM-CS1000集散控制系统在邯钢1#TRT工程中的应用[J].自动化信息,2006,(6):57-59.
    [59] 张洁,周化兵.TRT在马钢2500m~3高炉的成功应用[J].冶金自动化,2003,增刊:19-21.
    [60] 苏昆哲.深入浅出西门子WinCC V6[M].北京:北京航空航天出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700