模拟热态钢渣直接熔制微晶玻璃晶化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热态钢渣是炼钢过程中产生的含有大量热能的液态或半液态副产物。传统的热态钢渣处理工艺存在能量浪费大、物质消耗多、环境污染重、后续利用难、产品附加值低等诸多问题。利用热态钢渣直接制备微晶玻璃的技术不仅可以实现热态钢渣物质和能量的双重利用,减少能源和环境问题,而且制备的微晶玻璃产品附加值高,经济效益好,是钢铁行业实现节能减排的重要研究课题之一。
     通过建立并求解多元方程组的方法计算制备给定组分基础玻璃所需的钢渣及各辅料组分的用量;采用液-液混熔的方法进行热态钢渣与适当辅料的混合与均化从而制备玻璃熔体;利用差热分析,粉晶X-射线衍射以及扫描电镜等分析方法探讨了不同辅料含量、不同热处理制度对钢渣微晶玻璃晶化、显微结构和性能的影响;运用非等温动力学理论分析了不同铁含量微晶玻璃晶体生长特性及机理。
     (1)研究了不同混合辅料制备透辉石体系钢渣微晶玻璃。在700℃核化2h,900℃晶化2h的相同热处理条件下,不同辅料含量的微晶玻璃中晶相的类型和形貌存在差别。辅料用量较多的微晶玻璃样品,其耐酸性、显微硬度、吸水率、密度等值较低,抗折强度随辅料含量的减少而增大。相同组分的基础玻璃样品,随着晶化温度的增加,微晶玻璃样品的显微硬度逐渐增加,密度呈现先增加后减小的趋势。
     (2)研究了以废玻璃为辅料的钢渣微晶玻璃。在惰性气氛下,采用液-液混熔方法制备的钢渣掺量为50%的基础玻璃,经700℃核化2h、900℃晶化2h热处理后微晶玻璃的主晶相为透辉石。当晶化温度高于900℃时,在微晶玻璃热处理过程中Fe~(2+)和Fe~(3+)发生易位和有序度变化,形成磁铁矿(Fe3O4)晶相,使微晶玻璃具有磁性。由基础玻璃在不同加热速率下DTA曲线分析来研究析晶动力学。基础玻璃样品的结晶活化能为450KJ/mol,晶体生长指数n的平均值为1.7。晶体生长的机制是表面控制下的三维析晶。随着晶化温度的升高,微晶玻璃样品中晶体的微观形貌由针状转变为片状,最后变成球状。晶形转变主要控制因素由界面能转变为应变能。
     (3)研究了不同铁含量的钢渣微晶玻璃。随着铁含量的增加(5%-15%),基础玻璃的结晶活化能呈增大趋势,由494KJ/mol(铁含量为5.79%的基础玻璃样品Fe-1)升高到517KJ/mol(铁含量为15.38%的基础玻璃样品Fe-3)。晶体生长指数为1.69,晶体生长是整体成核、扩散控制下的三维析晶过程。在相同热处理条件下,不同铁含量的微晶玻璃样品析出的晶体种类不同。其中透辉石[Diopside(72-1379)]为共有的主晶相。微晶玻璃所析出的晶体的稳定性随着铁含量的增加而增强,耐酸性能随着铁含量的增加而减弱。
     本文开展的配方优化设计、热态混熔工艺研究、热处理过程中相转变规律及晶体生长机理对热态钢渣资源化的应用具有参考价值。
Molten steel slag with the state of liquid or semi-liquid, which is generated in thesteel-making process, contains much thermal energy. There are many problems in thetraditional hot slag treatment process, such as large energy consumption, much materialwaste, serious environmental pollution, difficulty of reutilization, and low value-addedproducts. The novel process and technique of glass-ceramics preparation directly from hotsteel slag can not only use both hot slag material and energy, thus reducing energy andenvironmental issues, but also prepare high value-added products, thus promoting goodeconomic benefits. It is one of the important research topics for iron and steel industry toachieve energy-saving and emission-reduction.
     The amount of steel slag and additives used for the preparation ofspecific-component glass-ceramics was calculated by establishing and solving themulti-equations. Mixing and homogenization of molten steel slag and additives wereproposed for preparation of glass melts by using liquid-liquid mixing method. Theinfluence of the additive content, different heat treatment conditions on the crystallization,microstructure and properties of glass-ceramics was investigated by using differentialthermal analysis, X-ray powder diffraction and scanning electron microscopy. Crystalgrowth characteristics and mechanism of glass-ceramics with different iron content werestudied using non-isothermal kinetic theory.
     (1) Preparation of steel-slag based pyroxene system Glass-ceramics from variousadditive mixtures was investigated. In the same heat treatment conditions (nucleationtemperature700oC,2h; crystallization temperature900oC,2h), glass-ceramics whichcontain different amount of additives have different types of crystalline phase and crystalmorphology. The more contents of additives contain in glass-ceramics samples, the loweracid resistance, hardness, and water absorption. Flexural strength decreases with theincreasing contents of additives. With the increase in crystallization temperature, thehardness of basic glass-ceramic samples with the same components increases gradually,density increases at first and then decreases.
     (2) Waste glass used as an adiitive to prepare steel-slag-based glass-ceramics wasstudied. After the parent glass sample, which contains50%steel slag, is heat-treated at thenucleation temperature of700oC and crystallization temperature of900oC for2hours respectively in an inert atmosphere, the main phase of the glass-ceramics is diopside. Fe~(2+)and Fe~(3+)in the parent glass sample, which is prepared using liquid-liquid mixing methodin the appropriate atmosphere, occurs translocation and degree of order change when thecrystallization temperature is higher than900oC during heat treatment. Theglass-ceramics sample crystallizes magnetite (Fe3O4) phase with the characteristics ofstrong magnetic. Crystallization activation energy of the glass-ceramics sample is450KJ/mol. Crystallization kinetics of parent glass was studied by analysis the DTA curveswhich obtained at different heating rates.The average crystal growth exponent of n is1.7.Crystal growth is three-dimensional crystallization under the control of surfacecrystallization.Crystal morphology is changed from flaky crystals and needle-like crystalinto spherical crystal with the increase of temperature. The main controlling factor forcrystal growth is changed from interfacial energy into strain energy with the increase oftemperature.
     (3) Glass-ceramics with different iron content is investigated. The crystallizationactivation energy of glass-ceramics is increased from494KJ/mol (5.79%iron content inglass-ceramics samples, Fe-1) to517KJ/mol (15.38%iron content in glass-ceramicssamples, Fe-3) with the increasing contents of iron. The average crystal growth exponentof n is1.69. Crystal growth is an overall nucleation and three-dimensionaldiffusion-controlled crystallization process. In the same heat treatment conditions, theglass-ceramics samples with different iron content exhibit different types of crystallinephases. The main phase is Diopside (72-1379). The stability of the crystal increases withthe increase of iron content. Acid resistance increases with the decrease of iron content.
     Studies on formulation optimization and mixing process in thermal state and theexperimental results of phase transition and crystal growth mechanism in this thesis have apositive effect on promoting hot steel slag recycling progress.
引文
[1] Liu C, Shi P, Zhang D, et al. Development of glass ceramics made from ferroustailings and slag in China [J]. Journal of Iron and Steel Research, International,2007,14(2):73~78.
    [2]梁健,唐奇,岑明炎.利用钢渣及陶瓷废渣制备新型建材[J].陶瓷学报,2010,(01):115~117.
    [3]王少宁,龙跃,张玉柱等.钢渣处理方法的比较分析及综合利用[J].炼钢,2010,(2):75~78.
    [4]雯哲.高炉渣和钢渣利用的新途径[J].技术与市场,2010,(01):58.
    [5]林少敏.利用工业废弃物制备微晶玻璃的研究进展[J].科技信息(学术研究),2008,(18):436~438.
    [6]李天祥,朱静,刘飞.我国利用尾矿和工业废渣生产微晶玻璃研究进展[J].贵州化工,2007,(05):634~639.
    [7]陈福,赵恩录,张文玲等.装饰用CaO-Al2O3-SiO2系统微晶玻璃板材的研究进展及应用[J].陶瓷,2007,(12):20~24.
    [8]张伟,卢红霞,杨会智等.冶金炉渣制备微晶玻璃的研究与进展[J].材料导报,2007,(S3).
    [9]杨家宽,肖波,王秀萍等.利用工业废渣制备微晶玻璃进展[J].玻璃与搪瓷,2002,(06):39~42.
    [10]李灿华.我国钢渣资源化利用趋势分析[J].武钢技术,2010,(4):51~54.
    [11] Shi C. Steel slag-its production, processing, characteristics, and cementitiousproperties [J]. Journal of Materials in Civil Engineering,2004,16:230.
    [12] Lee A R. Blastfurnace and steel slag: production, properties, and uses [M].Wiley,1974.
    [13] Wang Q, Yan P, Feng J. A discussion on improving hydration activity of steelslag by altering its mineral compositions [J]. Journal of Hazardous Materials,2011,186(2–3):1070~1075.
    [14] Li J, Yu Q, Wei J, et al. Structural characteristics and hydration kinetics ofmodified steel slag [J]. Cement and Concrete Research,2011,41(3):324~329.
    [15] Das B, Prakash S, Reddy P S R, et al. An overview of utilization of slag andsludge from steel industries [J]. Resources, Conservation and Recycling,2007,50(1):40~57.
    [16]建材情报资料.国外矿渣微晶玻璃资料汇编[M].第2集.国家建委材料科学研究院技术情报所,1973.
    [17]叶平,陈广言,刘玉兰等.钢渣综合利用途径及处理工艺的选择[J].安徽冶金,2006,(3):42~46.
    [18]黄敏,赵俊学,赵小燕等.钢渣回用潜能评价指标研究[J].甘肃冶金,2009,(1):1~4.
    [19]吴元刚,王小明,张维军. LF热态钢渣循环再利用实践[J].河北冶金,2007,(4):43~45.
    [20]闫加旺,李志强,周宗辉.少熟料钢渣/矿渣复合硫铝酸盐水泥的制备研究[J].混凝土,2011,(8):88~90.
    [21]王申进,刘加根,张守治.矿渣-钢渣复合水泥的性能研究[J].水泥,2011,(9):14~16.
    [22]邢宏伟,李高良,张玉柱等.气淬钢渣制备钢渣水泥的研究[J].水泥,2011,(5):39~42.
    [23]韩长菊,杨晓杰,周惠群等.钢渣及其在水泥行业的应用[J].材料导报,2010:440~443.
    [24]赵旭光,赵三银,李宁等.高钢渣掺量和高强度钢渣水泥的研制[J].武汉理工大学学报,2004,(1):6~9.
    [25]王宏.钢渣混凝土多孔砖的研制[J].科协论坛(下半月),2007,(1):30.
    [26]蔡雪军,袁晓露,陈晶.利用钢渣矿渣研制标准砖[J].新型建筑材料,2006,(8):9~10.
    [27]李美利,王旭济.利用钢渣和矿渣研制免蒸免烧多孔及空心砖[J].建材工业信息,2004,(11):21~22.
    [28]朱宏,吴学权.钢渣粉煤灰免烧砖的研制[J].砖瓦,1996,(1):37~40.
    [29]马保贵,李勇,谢华玲.攀钢钢渣粉煤灰免烧砖的研制[J].硅酸盐建筑制品,1995,(3):31~35.
    [30]蒋元海,邹苏萍.钢渣—粉煤灰免蒸免烧制砖工艺研究和生产[J].江苏冶金,1993,(6):21~22.
    [31]王秀娟,娄春荣,刘慧颖等.含锌钢铁渣肥对番茄产量和品质的影响[J].中国土壤与肥料,2008,(1):63~65.
    [32]张中星,程滨,李荣田.钢渣肥对玉米增产效果的研究[J].土壤通报,1997,(2):35~37.
    [33]王昌汾.转炉钢渣肥及其农用价值[J].钢铁,1987,(2):66~72.
    [34]吴旻.二灰钢渣土用于公路基层的试验研究[D].南京:南京林业大学,2009.
    [35]彭波.工业废钢渣在公路基层建设中的应用[J].中南公路工程,2005,(2):165~167.
    [36]孙明霞,姚永成.试论粉煤灰钢渣高炉渣在修复渔业水域生态环境中的研究进展[J].中国水产,2011,(6):47~48.
    [37]王帅,谢丽,盛杰等.钢渣在环境治理中的应用及其研究进展[J].工业水处理,2008,(12):14~18.
    [38]蒯振刚.宝钢钢渣处理环境整治工程设计与生产实践[J].上海建设科技,2003,(2):37~38.
    [39]李家科,周健儿,刘欣等.微晶陶瓷的研究现状及发展趋势[J].中国陶瓷工业,2006,(1):26~28.
    [40]刘红娟,任富建,李义曼.矿渣微晶玻璃的研究现状及其发展趋势[J].佛山陶瓷,2006,(7):32~34.
    [41]我国微晶玻璃技术的发展现状及趋势[J].现代家电,2005,(17):62.
    [42]谭金华.微晶玻璃的生产工艺、现状及发展前景[J].石材,2002,(4):35~38.
    [43] Laychock S G, Harada E, Rubin R P. Isoproterenol and nucleotide inducedstimulation of Ca2+uptake by microsomal fractions from kidney and isolatedglomeruli [J]. Biochemical Pharmacology,1979,28(21):3205~3211.
    [44] Goktas A A, Misirli Z, Baykara T. Sintering behaviour of sepiolite [J]. CeramicsInternational,1997,23(4):305~311.
    [45] Francis A A. Crystallization kinetics of magnetic glass-ceramics prepared by theprocessing of waste materials [J]. Materials Research Bulletin,2006,41(6):1146~1154.
    [46] Rezvani M, Eftekhari-Yekta B, Solati-Hashjin M, et al. Effect of Cr2O3, Fe2O3and TiO2nucleants on the crystallization behaviour ofSiO2-Al2O3-CaO-MgO(R2O) glass-ceramics [J]. Ceramics International,2005,31(1):75~80.
    [47] Zaitsev D D, Kazin P E, Trusov L A, et al. Synthesis of magnetic glass-ceramicsin the system SrO-Fe2O3-Al2O3-B2O3[J]. Journal of Magnetism and MagneticMaterials,2006,300(1): e473~e475.
    [48] Ebisawa Y, Miyaji F, Kokubo T, et al. Bioactivity of ferrimagneticglass-ceramics in the system FeO-Fe2O3-CaO-SiO2[J]. Biomaterials,1997,18(19):1277~1284.
    [49] Singh R K, Srinivasan A. Bioactivity of ferrimagneticMgO-CaO-SiO2-P2O5-Fe2O3glass-ceramics [J]. Ceramics International,2010,36(1):283~290.
    [50] Singh R K, Srinivasan A. EPR and magnetic properties ofMgO-CaO-SiO2-P2O5-CaF2-Fe2O3glass-ceramics [J]. Journal of Magnetism andMagnetic Materials,2009,321(18):2749~2752.
    [51] Mirkazemi M, Marghussian V K, Beitollahi A, et al. Effect of ZrO2nucleant oncrystallisation behaviour, microstructure and magnetic properties ofBaO-Fe2O3-B2O3-SiO2glass ceramics [J]. Ceramics International,2007,33(3):463~469.
    [52] Mirkazemi M, Marghussian V K, Beitollahi A. Crystallisation behaviour,microstructure and magnetic properties of BaO-Fe2O3-B2O3-SiO2glass ceramics[J]. Ceramics International,2006,32(1):43~51.
    [53] Alizadeh P, Yekta B E, Gervei A. Effect of Fe2O3addition on the sinterabilityand machinability of glass-ceramics in the system MgO-CaO-SiO2-P2O5[J].Journal of the European Ceramic Society,2004,24(13):3529~3533.
    [54] Kajihara S, Hidaka M, Wijesundera R P, et al. Correlation between theIzumiyama porcelain ceramics and the red-overglaze enamels of theKakiemon-style porcelains [J]. Ceramics International,2008,34(7):1681~1689.
    [55] Atalay S, Adiguzel H I, Atalay F. Infrared absorption study of Fe2O3-CaO-SiO2glass ceramics [J]. Materials Science and Engineering A,2001,304-306:796~799.
    [56] Francis A A. Magnetic characteristics of iron-containing glass originated fromthe mixture of various wastes [J]. Ceramics International,2007,33(2):163~168.
    [57] Mekki A, Ziq K A. Magnetic properties of a SiO2-Na2O-Fe2O3glass and glassceramic [J]. Journal of Magnetism and Magnetic Materials,1998,189(2):207~213.
    [58] Hirose K, Honma T, Doi Y, et al. Mssbauer analysis of Fe ion state in lithiumiron phosphate glasses and their glass-ceramics with olivine-type LiFePO4crystals [J]. Solid State Communications,2008,146(5-6):273~277.
    [59] Eniu D, Cacaina D, Coldea M, et al. Structural and magnetic properties ofCaO-P2O5-SiO2-Fe2O3glass-ceramics for hyperthermia [J]. Journal ofMagnetism and Magnetic Materials,2005,293(1):310~313.
    [60] Furlani E, Tonello G, Maschio S. Recycling of steel slag and glass cullet fromenergy saving lamps by fast firing production of ceramics [J]. WasteManagement,2010,30(8-9):1714~1719.
    [61] Sarkar R, Singh N, Das Kumar S. Utilization of steel melting electric arc furnaceslag for development of vitreous ceramic tiles [J]. Bulletin of Materials Science,2010,33(3):293~298.
    [62]陈一鹏,王玉琴,李秀梅.钢渣微晶玻璃的制造和应用[J].硅酸盐通报,1987,(1):62~66.
    [63]陈一鹏,李秀梅.利用钢渣研制微晶玻璃[J].北方轻工学报,1982,(0):44~52.
    [64]程金树,汤李缨,王全等.钢渣微晶玻璃的研究[J].武汉工业大学学报,1995,(4):1~3.
    [65]张元志.钢渣、粉煤灰微晶玻璃试制探讨[J].安徽化工,1998,(6):32~34.
    [66]肖汉宁,邓春明,彭文琴.工艺条件对钢铁废渣玻璃陶瓷显微结构的影响[J].湖南大学学报(自然科学版),2001,(1):32~36.
    [67]陆雷,姚强,江勤等.核化温度对钢渣玻璃陶瓷性能的影响[J].玻璃与搪瓷,2006,(1):28~31.
    [68]姚强,陆雷,江勤等.钢渣玻璃陶瓷的研制与显微结构[J].玻璃与搪瓷,2005,(5):13~17.
    [69]姚强,陆雷,江勤.钢渣微晶玻璃的试验研究[J].硅酸盐通报,2005,(2):117~119.
    [70]陆雷,姚强,江勤等.晶化温度对钢渣玻璃陶瓷显微结构的影响[J].中国陶瓷工业,2005,(4):15~17.
    [71]陆雷,姚强,江勤等.钢渣微晶玻璃优化配料方案的研究[J].玻璃与搪瓷,2005,(6):28~31.
    [72]姚强,陆雷,江勤等.添加氧化锆对钢渣微晶玻璃显微结构的影响[J].南京工业大学学报(自然科学版),2005,(4):49~52.
    [73]姚强,陆雷,江勤等.核化时间对钢渣微晶玻璃物理性能的影响[J].钢铁研究,2005,(6):30~33.
    [74]姚强,陆雷,江勤等.添加剂对钢渣微晶玻璃抗弯强度及颜色的影响[J].硅酸盐通报,2005,(4):104~106.
    [75]陆雷,姚强,江勤等.晶化时间对钢渣微晶玻璃显微结构的影响[J].新技术新工艺,2005,(12):49~51.
    [76]封鉴秋,谭伟,李素平等.钢渣-粉煤灰微晶玻璃的研制[J].河南建材,2010,(6):40~42.
    [77]杨志杰,苍大强,李宇等.熔融钢渣制备微晶玻璃的试验研究[J].新型建筑材料,2011,(7):52~53.
    [78] Chen Q, Liu H. Comprehensive utilization of solid wastes discharged from ironand steel industry [J]. Mining and Metallurgical Engineering,2007,3.
    [79] Yang J, Xiao B, Tang D, et al. Preparation and microstruture analysis ofglass-ceramics based on steel slag [J]. Materials Science and Engineering,2003:1.
    [80] Jianhong Z, Bo Z. Research progress in slag glass-ceramics [J]. MaterialsReview,2003,9.
    [81] Park Y J, Heo J. Conversion to glass-ceramics from glasses made by MSWincinerator fly ash for recycling [J]. Ceramics International,2002,28(6):689~694.
    [82] Ghosh S, Das M, Chakrabarti S, et al. Development of ceramic tiles fromcommon clay and blast furnace slag [J]. Ceramics International,2002,28(4):393~400.
    [83] Khater G A. The use of Saudi slag for the production of glass-ceramic materials[J]. Ceramics International,2002,28(1):59~67.
    [84] Yunfang C H D D, Jian L. Studies of the Glass and Glass-Ceramics Made fromSteel Slag [J]. Glass&Enamel,1988,2.
    [85] Qin Y Q L L. Experiments and Study on Preparation of Glass-Ceramics UsingSteel Slag [J]. Bulletin of the Chinese Ceramic Society,2005,2.
    [86] Furlani E, Tonello G, Maschio S. Recycling of steel slag and glass cullet fromenergy saving lamps by fast firing production of ceramics [J]. WasteManagement,2010,30(8-9):1714~1719.
    [87] Liu H, Lu H, Chen D, et al. Preparation and properties of glass-ceramics derivedfrom blast-furnace slag by a ceramic-sintering process [J]. CeramicsInternational,2009,35(8):3181~3184.
    [88] Wang M, Hsu C, Hon M. The reaction between the magnesia-chrome brick andthe molten slag of MgO-Al2O3-SiO2-CaO-FeO and the resulting microstructure[J]. Ceramics International,2009,35(4):1501~1508.
    [89] Elalaily N A, Khalil M M I, Ahmed L S. Effect of γ-irradiation on the electricalconductivity of some soda lime silicate glass containing blast furnace slag [J].Physica B: Condensed Matter,2007,390(1-2):236~244.
    [90] Ozdemir I, Yilmaz S. Processing of unglazed ceramic tiles from blast furnaceslag [J]. Journal of Materials Processing Technology,2007,183(1):13~17.
    [91] Vieira C M F, Andrade P M, Maciel G S, et al. Incorporation of fine steel sludgewaste into red ceramic [J]. Materials Science and Engineering: A,2006,427(1-2):142~147.
    [92] Francis A A. Conversion of blast furnace slag into new glass-ceramic material[J]. Journal of the European Ceramic Society,2004,24(9):2819~2824.
    [93] Fredericci C, Zanotto E D, Ziemath E C. Crystallization mechanism andproperties of a blast furnace slag glass [J]. Journal of Non-Crystalline Solids,2000,273(1-3):64~75.
    [94] Ovecoglu M L. Microstructural characterization and physical properties of aslag-based glass-ceramic crystallized at950and1100oC [J]. Journal of theEuropean Ceramic Society,1998,18(2):161~168.
    [95] Ovecoglu M L, Kuban B, Ozer H. Characterization and crystallization kineticsof a diopside-based glass-ceramic developed from glass industry raw materials[J]. Journal of the European Ceramic Society,1997,17(7):957~962.
    [96] Marghussian V K, Niaki M H D. Effects of composition changes on thecrystallization behaviour and properties of SiO2-Al2O3-CaO-MgO(Fe2O3-Na2O-K2O) glass-ceramics [J]. Journal of the European Ceramic Society,1995,15(4):343~348.
    [97] Zhou J, Shu Z, Hu X H, et al. Direct utilization of liquid slag fromphosphorus-smelting furnace to prepare cast stone as decorative buildingmaterial [J]. Construction and Building Materials,2010,24(5):811~817.
    [98]袁彪,陈全庆.微晶玻璃纤维耐碱腐蚀实验[J].玻璃纤维,1988,(6):3~4.
    [99]饶磊.钢渣熔制微晶玻璃技术研究[D].武汉:华中科技大学环境科学与工程学院,2007.
    [100] Yang J K, Xiao B, Boccaccini A R. Preparation of low melting temperatureglass-ceramics from municipal waste incineration fly ash [J]. FUEL,2009,88(7):1275~1280.
    [101] Romero M, Rawlings R D, Rincon J M. Crystal nucleation and growth in glassesfrom inorganic wastes from urban incineration [J]. Journal0f Non-crystallineSolids,2000,271(1-2):106~118.
    [102]陈国华,刘心宇.堇青石基玻璃陶瓷的制备与展望[J].中国陶瓷工业,2002,(4):44~47.
    [103]陈国华,刘心宇.堇青石基玻璃陶瓷研究进展[J].玻璃与搪瓷,2002,(5):53~58.
    [104]芦玉峰.低温烧结BaO-Al2O3-SiO2系微晶玻璃的析晶特性及其应用研究[D].国防科学技术大学材料科学与工程,2007.
    [105]陈惠君,董大奎,陈云芳等.钢渣玻璃及微晶玻璃的研究[J].玻璃与搪瓷,1988,(2):1~7.
    [106]许军锋,坚增运,常芳娥等. Ge_(23)Se_(67)Sb_(10)玻璃非等温结晶动力学研究[J].功能材料,2007,(7):1060~1063.
    [107]马明生,倪文,王亚利.镍渣制备微晶玻璃的结晶动力学及结晶化过程[J].北京科技大学学报,2007,(2):168~172.
    [108]梁开明,程慷果,段仁官等.玻璃非等温析晶动力学的研究[J].清华大学学报(自然科学版),1998,(6):97~101.
    [109]曾震华.锂硅酸盐玻璃的结晶成核动力学[J].硅酸盐学报,1987,(2):122~128.
    [110] Bansal N P, Gamble E A. Crystallization kinetics of a solid oxide fuel cell sealglass by differential thermal analysis [J]. Journal of Power Sources,2005,147(1-2):107~115.
    [111] Kissinger H E. Variation of Peak Temperatures with Heating Rate in DifferentialThermal Analysis [J]. Journal of Research of the National Bureau of Standards,1956,57(4):217~221.
    [112] Matusita K, Sakka S, Matsui Y. Determination of the activation energy forcrystal growth by differential thermal analysis [J]. Journal of Materials Science,1975,10(6):961~966.
    [113] Ozawa T. Kinetic analysis of derivative curves in thermal analysis [J]. Journal ofThermal Analysis and Calorimetry,1970,2(3):301~324.
    [114] Augis J A, Bennett J E. Calculation of the Avrami parameters for heterogeneoussolid state reactions using a modification of the Kissinger method [J]. Journal ofThermal Analysis and Calorimetry,1978,2(13):283~292.
    [115]杨铧.矿棉冲天炉的熔炼原理及过程[M].中国建材工业出版社,1993.
    [116]梁中渝.炼铁学[M].北京:冶金工业出版社,2009.
    [117] Mehta N, Agarwal P, Kumar A. Calorimetric studies on Se0.68Ge0.22M0.10(M=Cd, In, Pb) Chalcogenide Glasses [J]. Turkish Journal of Physics,2005,29:193~200.
    [118] Afify N, Moharram A H, Dongol M, et al. Crystallization kinetics and activationenergies in the Bi-Se-In glassy system [J]. Physica B: Condensed Matter,1992,176(4):301~308.
    [119]刘建安,张梅梅,刘常富等.共沉淀-熔融法制备铁磁性微晶玻璃及其表征[J].山西大学学报(自然科学版),2011,(1):752~756.
    [120]杨志杰,苍大强,李宇等. Fe2+、Fe3+对CASM系微晶玻璃析晶性能的影响[J].陶瓷,2011,(11):386~389.
    [121]郭文波,苍大强,杨志杰等.钢渣熔态提铁后的二次渣制备微晶玻璃的实验研究[J].硅酸盐通报,2011,(5):1189~1192.
    [122] Wang Z, Ni W, Li K, et al. Crystallization characteristics of iron-rich glassceramics prepared from nickel slag and blast furnace slag[Z]. Journal PublishingCenter of University of Science and Technology Beijing, in co-publication withSpringer-Verlag GmbH,2011:18,455~459.
    [123] Rüssel C, Wiedenroth A. The effect of glass composition on the thermodynamicsof the Fe2+/Fe3+equilibrium and the iron diffusivity inNa2O-MgO-CaO-Al2O3-SiO2melts [J]. Chemical Geology,2004,213(1-3):125~135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700