用户名: 密码: 验证码:
基于自由基反应的高盐染料废水降解动力学及有机卤代物(AOX)生成机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含盐有机废水排放量大,有毒有害有机物含量高,对环境造成极大的威胁。采用传统的生物和物化处理技术很难实现对其达标排放处理,迫切需要研发更加高效、经济、适用的含盐有机废水的处理技术,以保护水环境,实现我国工业的可持续发展。
     高级氧化技术(AOPs)具有对有机物降解效率高、适用范围广、反应条件温和、易于工业化应用等优点,被认为是未来可能应用于有毒难降解有机污染物治理的新型技术。然而,多数实验室研究忽略了废水中其它组分的存在对AOPs应用的影响。例如,废水中的高浓度无机盐不仅可以影响有机废水高级氧化的处理效率而且卤素离子(Cl-、Br-)淬灭羟基自由基后还可以产生活性氯或活性溴氧化物种,可能导致多种有毒甚至致癌的有机卤代副产物AOX的生成。因此,开展针对高盐度有机废水的AOPs研究是一项非常紧迫且具有重要现实意义的课题。
     本论文以偶氮染料Acid Orange7(AO7)为模型污染物,采用基于羟基自由基(·OH)的均相氧化体系UV/H2O2、基于氧化空穴和羟基自由基的非均相光催化体系UV/TiO2和一种新兴的基于硫酸自由基(SO4·-)的钴/单过氧硫酸氢钾(Co/PMS)均相体系,系统地研究了废水中的卤素离子(Cl-\Br-)对模拟染料废水降解动力学及反应历程的影响,重点探讨了含盐染料降解过程中有机氯代副产物的生成机制。本文所得出的主要结论如下:
     (1)UV/H2O2体系
     H2O2光解产生强氧化物种·OH(2.8V),能够高效降解有机污染物直至实现完全矿化。含盐有机废水中的卤素离子(Cl-、Br-)可与有机污染物竞争羟基自由基,影响反应体系的降解效率。实验结果显示:在UV/H2O2氧化体系中,Cl-和Br-均使AO7的脱色速率和矿化速率明显降低,而且这种抑制作用在酸性条件下最为显著。基于化学动力学模型模拟分析了Cl-参与的AO7降解的自由基链式反应过程。结果表明:①中性条件下,氯自由基(Cl2·-、Cl·和ClOH·-)的产量随反应体系中Cl-浓度的增加而增加,高浓度的Cl-(≥200mM)导致氯自由基的产量高于羟基自由基,实验中Cl-对AO7降解的抑制作用应归因于氯离子对羟基自由基的淬灭作用和氯自由基较低的氧化活性;②酸性条件下,ClOH·易与H+反应生成Cl·和H2O,并进一步转化为Cl2·-,因此Cl-对羟基自由基的淬灭作用较大,对染料降解表现出更强的抑制作用;③碱性条件下,ClOH·较易分解为·OH和Cl-,Cl-对AO7降解的抑制作用较小;④敏感度分析结果显示,羟基自由基浓度的变化对染料降解的影响作用最大。GC-MS产物分析证实氯离子和溴离子参与了染料降解过程,并导致AO7降解过程中生成多种高毒性的有机卤代物,包括2,4-二氯代-1-萘酚、5-氯代苯并呋喃、3-氯代苯丙酮、1-溴代-2-萘酚和1,1-二溴代丙酮等。含盐染料降解过程中产生的AOX随溶液中初始Cl-浓度的增加而增加。基于动力学和中间产物分析,推测了含盐染料降解的主要反应路径和氯代副产物的形成机理。
     (2) UV/TiO2体系
     在紫外光照射下,半导体催化剂TiO2表面电子分离产生电子-空穴对,进一步与O2、H2O和OH-等发生一系列反应最终生成·OH和O2·-等强氧化物种,可对吸附在TiO2表面的有机污染物进行降解。Cl-可与有机物分子竞争TiO2表面的活性位点形成大量内核配位化合物三Ti-Cl,进一步淬灭氧化空穴产生氯自由基Cl·,抑制电子-空穴对的复合,一定程度上促进染料分子的降解。但是高浓度的Cl-可使光催化剂表面失活、光吸收效率下降,导致染料光催化降解效率降低。实验结果表明:AO7在TiO2表面的吸附量随氯离子浓度的增加而急剧减少。氯离子对AO7的光催化降解存在双重作用,即反应溶液中氯离子的浓度低于50mM时AO7的光催化降解速率随氯离子浓度的增加而升高,继续增加氯离子浓度导致这种促进作用降低并逐渐转变为抑制作用。高盐时氯离子对染料的抑制作用随pH的升高而降低,这与非均相体系中不同pH条件下染料在催化剂表面的吸附性能的变化及氯自由基参与的链式光反应机制有关。反应体系中产生的氯自由基与AO7及其中间产物发生单电子转移、抽氢反应或加成反应,导致多种高毒性的有机氯代物的产生,如7-氯代-2-萘酚、4-氯代-1-萘酚、2,4-二氯代-1-萘酚、4-氯代苯甲酸、1,3,5-三氯苯和2,4,6-三氯苯胺等。
     (3) Co/PMS体系
     Co2+通过自由基链式反应催化分解PMS,生成氧化活性很高的SO4·-(2.5~3.1V),可以通过电子转移、氢提取和加成反应降解有机污染物,是一种新兴的高效高级氧化技术。在一定范围内AO7的降解速率与催化剂浓度、氧化剂浓度呈正相关。Cl-不但能淬灭SO4·-产生氯自由基,还可活化PMS产生活性氯Cl2/HClO。对于自由基反应,理论上氯离子消耗1mol的SO4·-会产生等量的但反应活性较低的氯自由基,会抑制SO4·-引发的自由基链反应,从而降低该技术的处理效果。但是,在加入大量的Cl-时,生成的HOCl和Cl2可使染料的脱色速率加快。实验结果表明,在自由基反应和非自由基反应的综合作用下,Cl-对染料降解表现出双重效应。氯离子浓度小于5mM时AO7的脱色速率随Cl-浓度的增加而显著降低,而继续增加Cl-浓度这种抑制作用不断减小。溴离子对AO7降解也表现出这种双重作用。在碱性条件下AO7的降解速率更高。氯离子对AO7的矿化过程具有严重的抑制作用,并导致有机氯代副产物的生成,AOX的产生量随Cl-的初始浓度增加而增加。Co/PMS体系中有机氯代物(包括氯苯类、氯酚类、氯代芳香烃类及小分子有机氯代产物等)的形成途径主要包括基于硫酸自由基/氯自由基的链式反应和基于非自由基的反应。
     需要指出的是,石油、化工、制革等多种工业有机废水的盐度高达1.5~80g/L大量的无机盐不仅可能影响有机物的处理效率,甚至可以导致毒性更大的卤代副产物的产生,如果不能得到有效的处理,可能会对环境造成更加严重的危害。因此,在高级氧化技术应用于实际高盐有机废水处理时,应首先监测废水中卤离子浓度并采取必要的预处理或后处理措施,以减少或避免二次污染的发生。本文关于含盐染料废水中卤素离子与羟基自由基、硫酸自由基及有机物分子相互作用的研究同样适用于其它基于自由基反应的高级氧化处理技术。本研究将对优化AOPs处理实际含盐有机废水的工艺条件,减少或避免有机卤代物的生成,实现有机污染物的高效无害化处理提供理论基础。
Industrial wastewater usually contains large amount of chloride ions with high non-biodegradable organic concentration, which can seriously inhibit the effectiveness of aerobic and anaerobic biological treatment of wastewater. Therefore, it is urgent to develop higher efficiency, low cost and more suitable treatment methods for saline wastewater, in order to protect the water quality safety and achieve the sustainable development of the industry.
     Recently, advanced oxidation processes (AOPs) are gaining significant importance in detoxification of many organic contaminants, due to their high treatment efficiency, energy saving, wide application scope and convenience of management. However, most of the previous investigations have ignored the influence of halide ions (Cl-, Br-) on the AOPs treatment of saline wastewaters. For example, hydroxyl radical (·OH,2.8V) can oxidize Cl-to less reactive chlorine species, such as Cl2/2Cl-(1.36V) and HOCl/Cl-(1.48V). Consequently, the involvement of Cl-not only influences the degradation efficiency of the organic pollutants, but also possibly leads to the formation of higher toxic or even carcinogenic halogenated organic compounds. Therefore, it is urgent to study the effect of halide ions on AOPs treatment processes systematically.
     In this study, an azo dye Acid Orange7(AO7) was selected as a model nonbiodegradable substrate. The homogeneous UV/H2O2system based on hydroxyl radicals, the heterogeneous UV/TiO2system and the emerging cobalt/peroxymonosulfate (Co/PMS) advanced oxidation process were chosen to treat the simulated saline dye wastewater. The effect of halide ions (Cl-, Br-) on dye decoloration, mineralization and AOX (halogenated organic compounds adsorbable on activated carbon) formation in aqueous solution were investigated, considering various solution pH. Our attention has also been focused on the dye degradation mechanisms in high saline solutions based on the identification of the transformation products. The results are presented as following:
     (1) UV/H2O2system
     Hydroxyl radicals, generated by the photolysis of H2O2, can degrade the organic contaminants effectively. The degradation kinetics can be affected by the strong competition of halide ions (Cl-, Br-) in the saline wastewater with dye molecules for·OH. The experimental results showed that the decoloration and mineralization rate of AO7was significantly reduced by the addition of Cl-or Br-in UV/H2O2system, especially in acidic conditions. Kinetic modeling based on radical reactions was implemented to examine the impact of both chloride ion concentrations and solution pH on the degradation efficiency of organic contaminant. The simulation results were as follows:①In the neutral conditions, the yield of chlorine radicals (C12·-\Cl· and ClOH·-) increased with the increasing content of Cl-present. When the initial concentration of Cl-exceeded about200mM, Cl2·-instead of·OH became the predominant species during the overall oxidation process. The inhibitory effect of Cl-on AO7degradation observed in the laboratory experiments could be attributed to both scavenging effect of Cl-on OH and the much lower reactivity of chlorine radicals formed.②Under acidic conditions, the C1OH·-can be easily converted to Cl· rapidly through the protonation reaction. Both C1OH·-and Cl'can also react with Cl-generating Cl2·-, which can be the predominant radical species especially in acid medium. Due to the lower reactivity of Cl2·-with AO7, the inhibitory effect of Cl-is more significant under lower pH conditions.③The conversion of ClOH·-to·OH and Cl-was favored in alkaline conditions, leading to less inhibition on AO7degradation.④The reaction of·OH with dye molecule is the rate-governing step and is critical during the dye degradation process. Changing this rate constant by an order of magnitude has the largest effect. The GC-MS results confirmed that the halide iolis were involved in the dye degradation process, leading to the formation of several high toxic organic halogenated byproducts, including2,4-dichloro-l-naphthalenol,5-chlorobenzofuran,3-chloropropiophenone,3-chloropropiophenone,1-bromo-2-naphthalenol and1,1-dibromo-propanone. AOX was found to increase with the increasing content of Cl-. Based on the intermediate products and especially the toxic halogenated byproducts, the possible degradation pathways of saline dyeing wastewater were proposed.
     (2) UV/TiO2system
     Conduction band electrons (e-) and valence band holes (h+) can be produced when aqueous TiO2suspension is irradiated with UV light. The photogenerated holes can react with OH-, H2O or O2, leading to the formation of·OH and O2·-. Such highly oxidants species have been reported to be responsible for the heterogeneous TiO2photodecomposition of organic substrates as dyes. In this UV/TiO2system, the effects of chloride salt on dye degradation may affect the degradation of organic substrates based on the following hypothesis:a) Cl-may competitively reduce the adsorption of dye on the catalyst surface; b) Cl-may be directly oxidized by the valence band holes; and c) a large amount of Cl-adsorbed on the catalyst surface may form considerable inner-sphere=Ti-Cl surface complexes. Accordingly, the accumulation of Cl-on the TiO2surface promoted the photodegradation of AO7with Cl'radical-initiated reactions. The average extent of AO7(anionic dye) adsorbed on the catalyst was observed to decrease dramatically with the increasing Cl-content. The chloride ion was found to have a dual effect on both the dye decoloration and mineralization in UV/TiO2system due to different mechanisms involved. Cl-ion (0-50mM) showed an obvious enhancement for both decolorization and mineralization of AO7. The observed decreasing acceleration activity or even inhibitory effect with much higher chloride content may be caused by the deactivation of the photocatalyst and reduction in photon receiving efficiency. In the presence of chloride, the chlorine radicals may react with dye and its intermediates by one-electron oxidation, H-abstraction or addition to unsaturated C-C bonds. Several toxic chlorinated byproducts, such as7-chloro-2-naphthalenol,4-chloro-l-naphthalenol,2,4-dichloro-l-naphthalenol,1,3,5-trichlorobenzene and2,4,6-trichloroaniline, were identified during the dye degradation in UV/TiO2process using GC-MS method.
     (3) Co/PMS system
     Co2+can efficiently activate peroxymonosulfate (PMS) to produce sulfate radicals (SO4·-,2.5~3.1V), which can destroy the pollutants present in wastewater by one-electron oxidation, H-abstraction or addition reactions. This emerging AOP has attracted great scientific and technological interest in environmental application. The degradation efficiency of AO7was found to be positively correlated with the concentration of cobalt ion and PMS. Consumption of SO4·-radicals by Cl-and formation of less reactive chlorine radicals should be responsible for the adverse effect of chloride on Co/PMS performance. However, the formation of HOCl and Cl2via the reaction between Cl-and PMS would make the dye bleaching rate higher with the addition of large amount of chloride ions. A dual effect of chloride or bromide (i.e. inhibitory and accelerating effect) on AO7degradation in Co/PMS system was observed. High concentrations of chloride (>5mM) can significantly enhance the dye decoloration independent of the presence of the Co2+catalyst, but did greatly inhibit the dye mineralization to an extent which was closely dependent upon the chloride content. Such dual effect also appeared when Br-was added. The degradation rate of AO7was enhanced with the increasing pH. Both UV-Vis absorbance spectra and AOX determination indicated the formation of some refractory degradation intermediates. Several chlorinated compounds, including chlorobenzene, chlorophenols, chlorination aromatic hydrocarbon and low molecule chlorinated products, were indentified by GC-MS measurement. The formation of such byproducts can be attributed to two possible branched reaction pathways (SO4·-radical-based and non-radical).
     It should be point out that many industries such as meat canning, olive oil mills, petroleum, petrochemical, agro-food, seafood processing, vegetable canning, pickling and cheese processing also generate effluents with high salt content, ranging from1.5to80g/L. The present studies suggested that the appreciable level of salts in practical wastewater possibly reduces the level of pollutants treatment efficiency and even leads to the formation of more toxic halogenated compounds during AOPs treatment. Therefore, it is very necessary to monitor the concentration of halide ions and develop effective strategies before the large scale application of the advanced processes. In this work insights into the reaction mechanisms based on the chain radical reactions involving halide ions, hydroxyl radicals, sulfate radicals and organic molecules may have significant technical implications for the application of more complex systems of relevance to oxidation of organic contaminants in the high salinity wastewater.
引文
[1]Lefebvre O., Quentin S., Torrijos M., Godon J.J., Delgenes J.P., Moletta. R. Impact of increasing NaCl concentrations on the performance and community composition of two anaerobic reactors[J]. Applied Microbiology and Biotechnology,2007,75(1):61-69.
    [2]余峰,马香娟,吴祖成.电化学法处理含盐有机废水研究进展[J].水处理技术,2010,36(12):6-10.
    [3]Panswad T., Anan C. Impact of high chloride wastewater on anaerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds[J]. Water Research,1999,33(5): 1165-1172.
    [4]薛建良,赵东风,李石,安慧,欧阳振宇.炼化企业含盐废水处理的研究进展[J].工业水处理,2011,31(7):22-26.
    [5]王素芳,林蓓,吴涛,魏文宇,刘学敏,陈军,滕厚开.高含盐采油污水特性研究[J].工业水处理,2011,31(8):45-47.
    [6]Dapena-Mora A., Vazquez-Padin J.R., Campos J.L., Mosquera-Corral A., Jetten M.S.M., Mendez R. Monitoring the stability of an Anammox reactor under high salinity conditions[J]. Biochemical Engineering Journal,2010,51:167-171.
    [7]Konstantinou I.K., Albanis T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations A review[J]. Applied Catalysis B: Environmental,2004,49:1-14.
    [8]陈季华,奚旦立,杨波.纺织染整废水处理技术及工程实例[M].北京:化学工业出版社,2008.
    [9]Malik P.K., Saha S.K. Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst[J]. Separation and Purification Technology,2003,31(3):241-250.
    [10]柳广飞,周集体,王竞,曲媛媛,宋智勇.细菌对偶氮染料的降解及偶氮还原酶的研究进展[J].环境科学与技术,2006,29(4):112-114.
    [11]Allegre C., Moulin P., Maisseu M., Charbit F. Savings and re-use of salts and water present in dye house effluents[J]. Desalination,2004,162(10):13-22.
    [12]Arslan I., Balcioglu I.A., Bahnemann D.W. Heterogeneous photocatalytic treatment of simulated dyehouse effluents using novel TiO2-photocatalysts[J]. Applied Catalysis B: Environmental,2000,26:193-206.
    [13]Muthukumar M., Selvakumar N. Studies on the effect of inorganic salts on decolouration of acid dye effluents by Ozonation[J]. Dyes and Pigments,2004,62:221-228.
    [14]Dong Y., Chen J., Li C., Zhu H. Decoloration of three azo dyes in water by photocatalysis of Fe(III)-oxalate complexes/H2O2 in the presence of inorganic salts[J]. Dyes and Pigments,2007,73: 261-268.
    [15]Woolard C.R., Irvine R.L. Treatment of hypersaline wastewater in the sequence batch reactor[J]. Water Research,1995,29(4):1159-1168.
    [16]Rene E.R., Kim S.J., Park H.S. Effect of COD/N ratio and salinity on the performance of sequencing batch reactors[J]. Bioresource Technology,2008,99(4):839-846.
    [17]Mcmeekint A., Nichols P.D., Nichols D.S., Juhasz A., Franzmann P.D. Biology and biotechnological potential of halotolerant bacteria from Antarctic saline lakes[J]. Cellular and Molecular Life Science,1993,49(12):1042-1046.
    [18]Lawton G.W., Eggert C.V. Effect of high sodium chloride concentration on tricking filter slimes[J]. Sewage and Industrial Wastes,1957,29(1):1228-1236.
    [19]Oren A., Gurevich P., Azachi Malkit, Henis Y. Microbial degradation of pollutants at high salt concentrations[J]. Biodegradation,1992,3(2-3):387-398.
    [20]Kincannon D.F., Gaudy A.F. Response of biological waste treatment systems to changes in salt concentrations[J]. Bioengineering,1968,10(4):483-496.
    [21]Xiao Y., Roberts D.J. A review of anaerobic treatment of saline wastewater[J]. Environmental Technology,2010,31(8-9):1025-1043.
    [22]Rinzema A., Lier J.V., Lettinga G Sodium inhibition of acetoclastic methanogens in granular sludge from a UASB reactor[J]. Enzyme and Microbial Teclmulogy,1988,10(1):24-32.
    [23]Ingrain M. The influence of sodium chloride and temperature on the endogenous respiration of B. Cereus[]]. The Journal of General Physiololy,1940,23(6):773-780.
    [24]裘巧俊,尹炜,吕谋,张延青,宋志文.SBR法处理高盐度海产品加工废水[J].环境工程,2006,24(2):79-83.
    [25]Woolard C.R., Irvine R.L. Biological treatment of hypersaline wastewater by a biofilm of halophilic bacteria[J]. Water Environment Research,1994,66(3):230-235.
    [26]张禄艳,王竞,吕红,金若菲,周集体.高盐条件下染料酸性橙7的生物降解特性[J].中国环境科学,2009,29(6):640-645.
    [27]Kushner D.J. Life in high salt and solute concentrations[M]. London: Academic Press,1978.
    [28]王志霞,王志岩,武周虎.高盐度废水生物处理现状与前景展望[J].工业水处理,2002,22(11):14.
    [29]郭建博.高盐染料废水的生物降解及介体强化作用研究[D].中国博士学位论文,大连大连理工大学,2006.
    [30]Ludzack F., Noran D.K. Tolerance of high salinities by conventional wastewater treatment process[J]. Journal of Water Pollutioin Control Federation,1965,37(10):1404-1406.
    [31]Kargi F., Uygur A. Biological treatment of saline wastewater in an aerated percolator unit utilizing halophilic bacteria[J]. Environmental Technology,1996,17(3):325-330.
    [32]Dincer A.R., Kargi F. Performance of rotating biological disc system treating saline wastewater[J]. Process Biochemistry,2001,36(8):901-906.
    [33]Hamoda M.F., Al-Attar I.M.S. Effects of high sodium chloride concentrations on activated sludge treatment[J]. Water Science and Technology,1995,31(9):61-72.
    [34]王基成,张秀霞,王建娜,潘咸峰.驯化污泥及生物滤池法处理高含盐石化废水[J].石油学报(石油加工),2011,27(6):977-983.
    [35]Yang L., Lai C.T. Biological treatment of mineral oil in a salty environment[J]. Water Science and Technology,2000,42(7-8):369-375.
    [36]高欢.高含盐染料废水高温厌氧生物处理的试验研究[D].中国硕士学位论文,北京:北京化工大学,2007.
    [37]方静,曾抗美.含盐废水处理研究动态[J].工业水处理,2005,25(2):1-4.
    [38]陈垚,周健,甘春娟,李晓品.超高盐厌氧生物处理系统快速启动及其除污特性[J].水处理技术,2011,37(6):90-94.
    [39]Lefebvre O., Moletta R. Treatment of organic pollution in industrial saline wastewater: a literature review[J]. Water Research,2006,40(20):3671-3682.
    [40]金可勇,周勇,金水玉,王琪,刘立芬.高盐度废水的新型膜法处理研究[J].水处理技术,2009,35(2):50-53.
    [41]McGhee T.J. Treatment of brackish and saline waters. Water Supply and Sewerage,6th edition[M]. New York: McGraw-Hill Inc,1991.
    [42]高廷耀,顾国维,周琪.水污染控制工程(下册)(第三版)[M].北京:高等教育出版社,2007.
    [43]Afonso M.D., Borquez R. Review of the treatment of seafood processing wastewaters and recovery of proteins therein by membrane separation processes-prospects of the ultrafiltration of wastewaters from the fish meal industry[J]. Desalination,2002,142(1):29-45.
    [44]Turano E., Curcio S., De Paola M.G., Calabro V., Iorio G. An integrated centrifugation-ultrafiltration system in the treatment of olive mill wastewater[J]. Journal of Membrane Science,2002,209(2):519-531.
    [45]Metcalf E. Wastewater Engineering:Treatment and Reuse,4th edition[M]. New York: McGraw-Hill Inc.,2003.
    [46]Sridhar S., Kale A., Khan A.A. Reverse osmosis of edible vegetable oil industry effluent[J]. Journal of Membrane Science,2002,205(1-2):83-90.
    [47]Vitolo S., Petarca L., Bresci B. Treatment of olive oil industry wastes[J]. Bioresource Technology,1999,67(2):129-137.
    [48]赵贤广,李武,张志炳,徐炎华.高含盐废水降膜蒸发过程中液膜破裂的抑制[J].环境工程学报,2011,5(4):726-730.
    [49]Morin O.J. Design and operation comparison of MSF and MED systems[J]. Desalination, 1993,93:69-109.
    [50]Wade N.M. Technical and economic evaluation of distillation and reverse osmosis desalination processes[J]. Desalination,1993,93(1-3):343-363.
    [51]Gupta V.K., Suhas. Application of low-cost adsorbents for dye removal-A review[J]. Journal of Environmental Management,2009,90(8):2313-2342.
    [52]齐普荣,王光辉,于荣.Ti02光催化氧化处理偶氮染料废水的研究进展[J].化工环保,2007,27(1):32-36.
    [53]李星,徐夫元,陈英文,沈树宝.废水处理中高级氧化非均相催化剂的研究进展[J].环境科学与技术,2010,33(2):90-94.
    [54]J. Hoigne, Bader H. The role of hydroxyl radical reaction in ozonation processes in aqueous solutions[J]. Water Research,1976,10(5):377-386.
    [55]Glaze W.H. Drinking-water treatment with ozone[J]. Environment Science & Technology, 1987,21(3):224-230.
    [56]Pera-Titus M., Garcia-Molina V., Banos M.A., Gimenez J., Esplugas S. Degradation of chlorophenols by means of advanced oxidation processes:a general review[J]. Applied Catalysis B:Environmental,2004,47:219-256.
    [57]张璇,王启山.高级氧化技术在废水处理中的应用[J].水处理技术,2009,35(3):18-22.
    [58]陈晓肠.基于硫酸自由基的高级氧化技术降解水中典型有机污染物研究[D].中国博士学位论文,大连:大连理工大学,2007.
    [59]张光明,张盼月,张信芳.水处理高级氧化技术[M].哈尔滨:哈尔滨工业大学出版社,2007.
    [60]Ghodbane H., Hamdaoui O. Decolorization of antraquinonic dye, C.I. Acid Blue 25, in aqueous solution by direct UV irradiation, UV/H2O2 and UV/Fe(II) processes[J]. Chemical Engineering Journal,2010,160:226-231.
    [61]Elmorsi T.M., Riyad Y.M., Mohamed Z.H., Abd El Bary H.M.H. Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment[J]. Journal of Hazardous Materials,2010,174:352-358.
    [62]Mahamuni N.N., Adewuyi Y.G. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment:A review with emphasis on cost estimation[J]. Ultrasonics Sonochemistry,2009,9(5):1-14.
    [63]Sokmen M., Ozkan A. Decolourising textile wastewater with modified titania:the effects of inorganic anions on the photocatalysis[J]. Journal of Photochemistry and Photobiology A: Chemistry,2002,147:77-81.
    [64]Aguedach A., Brosillon S., Morvan J., Lhadi el K. Influence of ionic strength in the adsorption and during photocatalysis of reactive black 5 azo dye on TiO2 coated on non woven paper with SiO2 as a binder[J]. Journal of Hazardous Materials,2008,150(2):250-256.
    [65]Riga A., Soutsas K., Ntampegliotis K., Karayannis V., Papapolymerou G. Effect of system parameters and of inorganic salts on the decolorization and degradation of Procion H-exl dyes. Comparison of H2O2/UV, Fenton, UV/Fenton, TiO2/UV and TiO2/UV/H2O2 processes[J]. Desalination,2007,211:72-86.
    [66]王侃.负载型TiO2催化剂可见光降解染料污染物的研究[D].中国博士学位论文,杭州:浙江大学,2004.
    [67]爱可可.TiO2纳米薄膜电极对染料溶液的降解行为[D].中国博士学位论文,上海:上海大学,2007.
    [68]万斌.Ag,N掺杂对TiO2纳米管电极光催化降解有机染料的影响[D].中国博士学位论文,上海:上海大学,2008.
    [69]李宏.Fenton高级氧化技术氧化降解多环芳烃类染料废水的研究[D].中国博士学位论文,重庆:重庆大学,2008.
    [70]Luo J. Photoelectrochemical degradation of naphthol blue black diazo dye on WO3 film electrode[J]. Electrochimica Acta,2001,46(19):2913-2922.
    [71]Guillard C., Lacheheb H., Houas A., Ksibi M., Elaloui E., Herrmann J.M. Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2[J]. Journal of Photochemistry and Photobiology A:Chemistry,2003,158(1):27-36.
    [72]AIHamedi F.H., Rauf M.A., Ashraf S.S. Degradation studies of Rhodamine B in the presence of UV/H2O2[J]. Desalination,2009,239(1-3):159-166.
    [73]M.Muruganandham M., Swaminathan M. Photochemical oxidation of reactive azo dye with UV-H2O2 process[J]. Dyes and Pigments,2004,62(3):269-275.
    [74]Grebel J.E., Pignatello J.J., Mitch W.A. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters[J]. Environmental Science & Technology,2010,44(17):6822-6828.
    [75]Liao C.H., Kang S.F., Wu F.A. Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process[J]. Chemosphere,2001,44(5):1193-1200.
    [76]Fu X., Clark L.A., Zeltner W.A., Anderson M.A. Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene[J]. Journal of Photochemistry and Photobiology A: Chemistry,1996,97(3):181-186.
    [77]Makita M., Harata A. Photocatalytic decolorization of rhodamine B dye as a model of dissolved organic compounds:Influence of dissolved inorganic chloride salts in seawater of the Sea of Japan[J]. Chemical Engineering and Processing,2008,47(5):859-863.
    [78]陈晓旸,陈景文,杨萍,乔显亮.均相Co/PMS系统降解吡虫啉的影响因素及降解途径研究[J].环境科学,2007,28(12):2816-2820.
    [79]Ouyang B., Fang H.J., Zhu C.Z., Dong W.B., Hou H.Q. Reactions between the SO4·- radical and some common anions in atmospheric aqueous droplets[J]. Journal of Environmental & Science,2005,17(5):786-788.
    [80]Yu X.Y., Bao Z.C., Barker J.R. Free radical reactions involving Cl', Cl2-·, and SO4-·in the 248 nm photolysis of aqueous solutions containing S2O82- and Cl-[J]. The Journal of Physical Chemistry. A,2004,108(2):295-308.
    [81]Anipsitakis G.P., Dionysiou D.D., Gonzalez M.A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions[J]. Environmental Science & Technology,2006,40(3):1000-1007.
    [82]Yang S., Wang P., Yang X., Shan L., Zhang W., Shao X., Niu R. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide[J]. Journal of Hazardous Materials,2010, 179(1-3):552-558.
    [83]Machulek A.J., Vautier-Giongo C., Moraes J.E.,Nascimento C.A., Quina F.H. Laser flash photolysis study of the photocatalytic step of the photo-fenton reaction in saline solution[J]. Photochemistry and Photobiology,2006,82(1):208-212.
    [84]Bacardit J., Stotzner J., Chamarro E., Esplugas S. Effect of salinity on the photo-fenton process[J]. Industrial & Engineering Chemistry Research,2007,46(23):7615-7619.
    [85]Moraes J.E.F., Quina F.H., Nascimento C.A.O., Silva D.N., Chiavone-Filho O. Treatment of saline wastewater contaminated with hydrocarbons by the photo-Fenton process [J]. Environmental Science & Technology,2004,38(4):1183-1187.
    [86]Kiwi J., Lopez A., Nadtochenko V. Mechanism and kinetics of the OH-Radical intervention during Fenton oxidation in the presence of a significant amount of radical scavenger (Cl-)[J]. Environmental Science & Techonology,2000,34(11):2162-2168.
    [87]Silva A.C., Pic J.S., Sant'Anna G.L.J., Dezotti M. Ozonation of azo dyes (Orange II and Acid Red 27) in saline media[J]. Journal of Hazardous Materials,2009,169(1-3):965-971.
    [88]Ramjaun S.N., Yuan R.X., Wang Z.H, Liu J.S. Degradation of reactive dyes by contact glow discharge electrolysis in the presence of Cl- ions: kinetics and AOX formation[J]. Electrochimica Acta,2011,58:367-371.
    [89]陈荣圻.AOX与纺织品[J].印染,2009,(22):48-51.
    [90]瑞恩P.施瓦茨巴赫,菲利普M.施格文,迪特尔M.英博登(著),王连生(译).环境有机化学[M].北京:化学工业出版社,2004.
    [91]Savant D.V., Adbul-Rahman, Ranade D.R. Anaerobic degradation of adsorbable organic halides (AOX) from pulp and paper industry waste water[J]. Bioresource Technology,2006,97(9): 1092-1104.
    [92]Baycan N., Sengul F., Thomanetz E. AOX formation and elimination in the oxidative treatment of synthetic wastewaters in a UV-free surface reactor[J]. Environmental Science and Pollution Research International,2005,12(3):153-158.
    [93]Baycan N., Thomanetz E., Sengul F. Influence of chloride concentration on the formation of AOX in UV oxidative system[J]. Journal of Hazardous Materials,2007,143(1-2):171-176.
    [94]Zeng Q., Fu J., Shi Y., Xia D., Zhu H. Adsorbable organic halogens generation and reduction during degradation of phenol by UV radiation/sodium hypochlorite[J]. Water Environmental Research,2009,81(2):178-183.
    [95]Panizza M, Gerisola G. Electrochemical oxidation of 2-naphthol with in situ electrogenerated active chlorine[J]. Electrochimica Acta,2003,48(11):1515-1519.
    [96]杜琳.电催化及光电催化氧化印染废水的研究[D].中国硕士学位论文,成都:四川大学,2007.
    [97]Shawwa A.R., Smith D.W., Sego D.C. Color and chlorinated organics removal from pulp mills wastewater using activated petroleum coke[J]. Water Research,2001,35(3):745-749.
    [98]Torrades, F., Peral J., Perez M., Domenech X., Hortal J.A.G, Riva M.C. Removal of organic contaminants in bleached kraft effluents using heterogenous photocatalysis and ozone[J]. Tappi Journal,2001,84(6):63-64.
    [99]Moiseev A., Schroeder H., Kotsaridou-Nagel M., Geissen S.U., Vogelpohl A. Photocatalytical polishing of paper-mill effluents[J]. Water Science and Technology,2004,49(4): 325-330.
    [100]Seiss M., Gahr A., Niessner R. Improved AOX degradation in UV oxidative wastewater treatment by dialysis with nano-filtration membrane[J]. Water Research,2001,35(13):3242-3248.
    [101]Ali M., Sreekrishnan T.R. Anaerobic treatment of agricultural residue based pulp and paper mill effluents for AOX and COD reduction[J]. Process Biochemistry,2000,36(1):25-29.
    [102]Stylidi M., Kondarides D.J., Verykios X.E. Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions[J]. Applied Catalysis B:Environmental, 2003,40(4):271-286.
    [103]Zhao H., Sun Y., Xu L., Ni J. Removal of acid orange 7 in simulated wastewater using a three-dimensional electrode reactor: Removal mechanisms and dye degradation pathway [J]. Chemosphere,2010,78(1):46-51.
    [104]Yang X., Zhang H., Liu Y., Wang J., Zhang Y., Dong A., Zhao H., Sun C., Cui J. Multiresidue method for determination of 88 pesticides in berry fruits using solid-phase extraction and gas chromatography-mass spectrometry: Determination of 88 pesticides in berries using SPE and GC-MS[J]. Food Chemistry,2011,127(2):855-865.
    [105]Jozwiak W.K., Magdalena M., Kaluzna-Czaplinska J., Tosik R. Oxidative decomposition of Acid Brown 159 dye in aqueous solution by H2O2/Fe2+ and ozone with GC/MS analysis[J]. Dyes and Pigments,2007,74(1):9-16.
    [106]Niessen W.M.A. Current practice of Gas chromatography-Mass Spectrometry[M]. New York: Marcel Dekker Inc.,2001.
    [107]Li X., Cubbage J.W., Tetzlaff T.A., Jenks W.S. Photocatalytic degradation of 4-chlorophenol. 1. The hydroquinone pathway[J]. Journal of Organic Chemistry,1999,64(23):8509-8524.
    [108]Hu X., Hu C. Selective photocatalytic degradation of azo dyes in NiO/Ag3VO4 suspension[J]. Journal of Chemical Technology and Biotechnology,2010,85(11):1522-1527.
    [109]王立.色谱分析样品处理(第二版)[M].北京:化学工业出版社,2006.
    [110]Iannis J.C. Kintecus, v4.40 Windows version, http://www.kintecus.com/,2012.
    [111]Duesterberg C.K., Mylon S.E., Waite T.D. pH effects on iron-catalyzed oxidation using Fenton's reagent[J]. Environmental Science & Technology,2008,42(22):8522-8527.
    [112]Aleboyeh A., Moussa Y., Aleboyeh H. The effect of operational parameters on UV/H2O2 decolourisation of Acid Blue 74[J]. Dyes and Pigments,2005,66(2):129-134.
    [113]Crittenden J.C., Hu S., Hand D.W., Green S.A. A kinetic model for H2O2/UV process in a completely mixed batch reactor[J]. Water Research,1999,33(10):2315-2328.
    [114]Rose A.L., Waite T.D. Kinetic model for Fe(Ⅱ) oxidation in seawater in the absence and presence of natural organic matter[J]. Environmental Science & Technology,2002,36(3): 433-444.
    [115]Hirakawa T, Nosaka Y. Properties of O2·- and· OH formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions[J]. Langmuir,2002,18(8): 3247-3254.
    [116]Stylidi M., Kondarides D.I., Verykios X.E. Visible light-induced photocatalytic degradation of acid orange 7 in aqueous TiO2 suspensions[J]. Applied Catalysis B:Environmental,2004,47(3): 189-201.
    [117]Chang M.-W., Chung C.-C., Chern J.-M., Chen T.-S. Dye decomposition kinetics by UV/H2O2:Initial rate analysis by effective kinetic modelling methodology [J]. Chemical Engineering Science,2010,65(1):135-140.
    [118]Sykes P. A guidebook to mechanism in organic chemistry, sixth edition[M]. London: Longman,1996.
    [119]Velegraki T, Poulios I., Charalabaki M., Kalogerakis N., Samaras P., Mantzavinos D. Photocatalytic and sonolytic oxidation of acid orange 7 in aqueous solution[J]. Applied Catalysis B:Environmental,2006,62(1-2):159-168.
    [120]Sohrabi M.R., Ghavami M. Photocatalytic degradation of Direct Red 23 dye using UV/TiO2: Effect of operational parameters[J]. Journal of Hazardous Materials,2008,153(3):1235-1239.
    [121]Muruganandham M., Swaminathan M. TiO2-UV photocatalytic oxidation of Reactive Yellow 14:Effect of operational parameters[J]. Journal of Hazardous Materials,2006,135(1-3): 78-86.
    [122]Peternel I.T, Koprivanac N., Bozic A.M., Kusic H.M. Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution[J]. Journal of Hazardous Materials,2007,148(1-2):1235-1239:
    [123]Khataee A.R., Pons M.N., Zahraa O. Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation:Influence of dye molecular structure[J]. Journal of Hazardous Materials,2009,168(1):451-457.
    [124]Cho I.-H., Zoh K.-D. Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system:Optimization and modeling using a response surface methodology (RSM) based on the central composite design[J]. Dyes and Pigments,2007,75(3):533-543.
    [125]Gao B., Yap P.S., Lim T.M., Lim T.-T. Adsorption-photocatalytic degradation of Acid Red 88 by supported TiO2:Effect of activated carbon support and aqueous anions[J]. Chemical Engineering Journal,2011,171(3):1098-1107.
    [126]Yang S.Y., Chen Y.X., Lou L.P., Wu X.N. Involvement of chloride anion in photocatalytic process[J]. Journal of Environmental Science,2005,17(5):761-765.
    [127]Chen H.Y., Zahraa O., Bouchy M. Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO2 by inorganic ions[J]. Journal of Photochemistry and Photobiology A:Chemistry,1997,108(1):37-44.
    [128]Tang C., Chen V. The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor[J]. Water Research,2004,38(11):2775-2781.
    [129]Kormann C., Bahnemann D.W., Hoffmann M.R. Photolysis of chloroform and other organic molecules in aqueous TiO2 suspensions[J]. Environmental Science & Technology,1991,25(3): 494-500.
    [130]Rauf M.A., Ashraf S.S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution[J]. Chemical Engineering Journal,2009,151(1-3): 10-18.
    [131]Wang Z., Ma W., Chen C., Ji H., Zhao J. Probing paramagnetic species in titania-based heterogeneous photocatalysis by electron spin resonance (ESR) spectroscopy-A mini review[J]. Chemical Engineering Journal,2011,170(2-3):353-362.
    [132]Bandara J., Mielczarski J.A., Kiwi J. Molecular mechanism of surface recognition. Azo dyes degradation on Fe, Ti, and Al oxides through metal sulfonate complexes, Langmuir,1999,15(22): 7670-7679.
    [133]Habibi M.H., Hassanzadeh A. Mahdavi S. The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions[J]. Journal of Photochemistry and Photobiology A:Chemistry,2005,172(1):89-96.
    [134]Wang K.-H., Hsieh Y.-H., Wu C.-H., Chang C.-Y. The pH and anion effects on the heterogeneous photocatalytic degradation of o-methylbenzoic acid in TiO2 aqueous suspension. Chemosphere,1999,40(4):389-394.
    [135]Lair A., Ferronato C., Chovelon J.-M., Herrmann J.-M. Naphthalene degradation in water by heterogeneous photocatalysis:an investigation of the influence of inorganic anions. Journal of Photochemistry and Photobiology A:Chemistry,2008,193(2-3):193-203.
    [136]Li G.T., Q. J.H., Zhang X.W., Liu H.J., Liu H.N. Electrochemically assisted photocatalytic degradation of Orange Ⅱ:Influence of initial pH values[J]. Journal of Molecular Catalysis A: Chemical,2006,259(1-2):238-244.
    [137]Zhang S.J., Yu H.Q., Li Q.R. Radiolytic degradation of Acid Orange 7:A mechanistic study[J]. Chemosphere,2005,61(7):1003-1011.
    [138]Piscopo A., Robert D., Weber J.V. Influence of pH and chloride anion on the photocatalytic degradation of organic compounds Part Ⅰ. Effect on the benzamide and para-hydroxybenzoic acid in TiO2 aqueous solution[J].Applied Catalysis B:Environmental,2001, 35(2):117-124.
    [139]何叶丽.染色助剂对废水中活性染料高级氧化的影响(二)[J].印染,2004,(13):345-353.
    [140]Hasegawa K., Neta P. Rate constants and mechanisms of reactions of Cl2·- radicals[J]. The Journal of physical chemistry,1978,82(8):854-857.
    [141]Ball D.L., Edwards J.O. The kinetics and mechanism of the decomposition of caro's acid. I[J]. Journal of the American Chemical Society,1956,78(6):1125-1129.
    [142]Kim J., Edwards J.O. A study of cobalt catalysis and copper modification in the coupled decompositions of hydrogen peroxide and peroxomonosulfate ion[J]. Inorganic Chimica Acta, 1995,235(1-2):9-13.
    [143]Anipsitakis G.P., Dionysiou D.D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt[J]. Environmental Science & Technology,2003,37(20):4790-4797.
    [144]Anipsitakis G.P., Tufano T.P., Dionysiou D.D. Chemical and microbial decontamination of pool water using activated potassium peroxymonosulfate [J]. Water Research,2008,42(12): 2899-2910.
    [145]Song S., Fan J.Q., He Z.Q., Zhan L.Y., Liu Z.W., Chen J.M., X. X.H. Electrochemical degradation of azo dye C.I. Reactive Red 195 by anodic oxidation on Ti/SnO2-Sb/PbO2 electrodes[J]. Electrochimica Acta,2010,55(11):3606-3613.
    [146]Yu Z., Kiwi-Minsker Lioubov, Renken A., Kiwi J. Detoxification of diluted azo-dyes at biocompatible pH with the oxone/Co2+ reagent in dark and light processes[J]. Journal of Molecular Catalysis A:Chemical,2006,252(1-2):113-119.
    [147]Chen X.Y., Chen J.W., Qiao X.L., Wang D.G., Cai X.Y. Performance of nano-Co3O4/peroxymonosulfate system: Kinetics and mechanism study using Acid Orange 7 as a model compound[J]. Applied Catalysis B:Environmental,2008,80(1-2):116-121.
    [148]Anipsitakis GP., Stathatos E., Dionysiou D.D. Heterogeneous activation of oxone using Co3O4[J]. The Journal of Physical Chemistry B,2005,109(27):13052-13055.
    [149]Yang Q.J., Choi H., Chen Y.J., Dionysiou D.D. Heterogeneous activation of peroxymonosulfate by supported cobalt catalysts for the degradation of 2,4-dichlorophenol in water:The effects of support, cobalt precursor, and UV radiation. Applied Catalysis B: Environmental,2008,77(3-4):300-307.
    [150]Yang Q.J., Choi Hyeok, Al-Abed S.R., Dionysiou D.D. Iron-cobalt mixed oxide nanocatalysts:Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications[J]. Applied Catalysis B:Environmental,2009,88(3-4): 462-469.
    [151]Shukla P.R., Wang S.B., Ang M.H., Tade M.O. Photocatalytic oxidation of phenolic compounds using zinc oxide and sulphate radicals under artificial solar light[J]. Seperation and Purification Technology,2010,70(3):338-344.
    [152]Yuan R.X., Ramjaun S.N., Wang Z.H., Liu J.S. Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process:Implications for formation of chlorinated aromatic compounds. Journal of Hazardous Materials,2011,196:173-179.
    [153]陈晓肠,薛智勇,吴丹,王卫平,朱凤香,吴传珍.基于硫酸自由基的高级氧化技术及其在水处理中的应用[J].水处理技术,2009,35(5):16-20.
    [154]Grebel J.E., Pignatello J.J., Song W.H., Cooper W.J., Mitch W.A. Impact of halides on the photobleaching of dissolved organic matter[J]. Marine Chemistry,2009,115(1-2):134-144.
    [155]Fernadez J., Maruthamuthu P., Renken A., Kiwi J. Bleaching and photobleaching of Orange II within seconds by the oxone/Co2+ reagent in Fenton-like processes[J]. Applied Catalysis B: Environmental,2004,49(3):207-215.
    [156]Repeta D.J., Hartman N.T., John S., Jones A.D., Goeriche R. Structure elucidation and characterization of polychlorinated biphenyl carboxylic acids as major constituents of chromophoric dissolved organic matter in seawater[J]. Environmental Science & Technology, 2004,38(20):5373-5378.
    [157]Lente G, Kalmar J, Baranyai Z, Kun A, Kek I, Bajusz D, Takacs M, Veres L, Fabian I. One- versus two-electron oxidation with peroxomonosulfate ion:reactions with iron(II), vanadium(IV), halide ions, and photoreaction with cerium(III)[J]. Inorganic Chemistry,2009,48(4):1763-1773.
    [158]Narender N., Srinivasu P., Kulkarni S.J., Raghavan K.V. High efficient, para-selective oxychlorination of aromatic compounds using potassium chloride and oxone, Synthetic Communications,2002,32:279-286.
    [159]Lebedev A.T., Shaydullina G.M., Sinikova N.A., Harchevnikova N.V. GC-MS comparison of the behavior of chlorine and sodium hypochlorite towards organic compounds dissolved in water, Water Research,2004,38:3713-3718.
    [160]Rebenne L.M., Gonzalez A.C., Olson T.M. Aqueous chlorination kinetics and mechanism of substituted dihydroxybenzenes[J]. Environmental Science & Technology,1996,30:2235-2242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700