用户名: 密码: 验证码:
内蒙古河套平原原生高砷地下水的分布与形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择浅层地下水砷异常较为严重的内蒙古河套平原作为研究区,在资料分析、野外调研和室内实验测试的基础上,开展了对研究区水文地球化学和高砷地下水形成机理的研究,主要内容如下:
     1.分析了研究区地下水环境演化过程。河套盆地是一个新生代断陷盆地,自更新世早期以来经历了由湿冷-湿冷/暖-全新世干旱的古气候变化,盆地的发展经历了湖泊全盛期-收缩期-消亡期-河流发育期,沉积环境演化为湖积/河积交错沉积。根据14C年龄测试结果,9~23m地层属于上更新统上部地层,而这个时期,气候趋于干旱,湖水退缩,残留湖泡形成。湖泊在消亡过程中,高度浓缩的富含砷的湖水被埋藏、保存到沉积物的空隙中,成为区域地下水的一部分,经长期演化形成了今天的高砷水,也是当地居民的取水层位。
     2.揭示了高砷地下水的水化学特征。平原浅层地下水中砷的浓度范围为0.6~572μg/L。高砷水以高浓度的Fe、Mn、HCO3-和S2-,以及低浓度的NO3-、SO42-为特征。pH值介于7.01~8.43,大部分为弱碱性水,氧化还原电位为-153~98 mV,As(III)是As的主要形态,平均达到As总量的75%,Fe含量较高,最高达5.90 mg/L。
     3.综合研究了3个代表性钻孔资料,得出:高砷地下水通常埋藏于由灰黑色细砂构成的强还原的冲湖积含水层中。沉积物中总As含量为7.3~73.3 mg/k(g平均值为18.9 mg/kg)。与总As和总S含量的弱相关性相比,总As与Fe、Mn的总量表现出稍强的相关性。系列提取试验表明具化学活性的As主要吸附于Fe/Mn氧化物上,达到3500μg/kg。还原条件下As的迁移取决于Fe/Mn氧化物的还原性溶解和As还原性解吸。
     4.首次进行了关于地下水颗粒物对砷行为影响的研究。43个地下水水样的化学分析结果显示未经过滤的水样中大多数元素(Ba、Co、Mn、Mo、Ni、V、Sr、Mg、Ca、Na、K)的浓度与经0.45μm滤膜过滤的水样中的基本一致,两者比率接近1.00。尽管SI方解石、SI白云石大于零,但在地下水中它们也可以小型胶体颗粒形式存在。在经0.45μm膜过滤的水样中Cd、Pb、Fe及Al的浓度明显小于未经过滤水样。尽管少量As、Cu、Zn可被大颗粒无机胶体吸附,但是这些元素主要还是与粒径小于0.45μm的有机配位胶体结合。
     5.对研究区有代表性的36个地下水样的27个化学成分指标进行了R型聚类分析。建立了As与其他化学成分之间的多元线性回归模型,并进行了相关性分析。对As(III)和Eh进行了曲线回归分析。
The Hetao Basin of Inner Mongolia is a typical endemic arseniasis area, where high As groundwater has universally been found since 1990s. This study has investigated hydrogeochemistry and mechanism of As mobilization in the shallow aquifers, based on intensive data analysis, field works and lab experiments. The main achievements having been reached are shown as follows.
     1. The basin is one of the Cenozoic rift basins, which has experienced a series of paleo-climate change since Early Pleistocene, including wet cold, wet-warm, and arid (Holocene). A former lake was believed to develop at the early stage of late Pleistocene (around 120 ka BP), and vanish during the Holocene. With the vanishment of the lake, the early Yellow River occurred. It results in a complex sedimentary environment with fluvial and lacustrine sediments interlacing each other. 14C dating shows that shallow aquifer sediments (9-23 m below land surface) developed during late stage of late Pleistocene, during which climate was arid and the lake shrank. The lake water became a part of pore water in the sediment and is gradually evolved into modern shallow groundwater, which is the main supply water for residents’living.
     2. Chemical characteristics of high As groundwater have been evaluated. Arsenic concentrations in shallow groundwaters from the Hetao Basin of Inner Mongolia range between 0.6 and 572μg/L. They are characterized by high concentrations of dissolved Fe, Mn, HCO3-, and S2?, and low concentrations of NO3- and SO42-. Groundwater pH is near-neutral to weak alkaline (7.01-8.43). Redox potentials range from ?153 to 83 mV. In the reducing groundwaters, inorganic As(III) accounts for around 75% of total dissolved As. Fe concentrations are up to 5.90 mg/L
     3. Systemically investigation has been carried out for three representative boreholes. It indicates that high As groundwaters usually occur in shallow aquifers with dark grey or black fine sand, which deposited in the lacustrine reductive environment. Total As contents in the sediments are observed to be 7.3–73.3 mg/kg (average of 18.9 mg/kg). The total As is mildly-strongly correlated with total Fe and total Mn, while a quite weak correlation exists between total As and total S. It is found in the sequential extraction that chemically active As is mainly bound to Fe-Mn oxides, up to 3500μg/kg. The mobilization of As under reducing conditions is believed to include reductive dissolution of Fe-Mn oxides and reduction of adsorbed As.
     4. Effect of groundwater particles on As behavior has been performed. Chemical analysis of 43 groundwater samples shows concentrations of most elements (Ba, Co, Mn, Mo, Ni, V, Sr, Mg, Ca, Na, K) in unfiltered samples are well correlated with those in <0.45μm fraction, and the ratios between them are close to 1.00. Although saturation indices for calcite and dolomite are greater than 0, they would possibly exist as small size colloids in groundwater. Concentrations of Cd, Pb, Fe, and Al in <0.45μm fraction are mostly less than those in unfiltered fraction. Arsenic, Cu, Zn and Cr are grouped into another species. These elements could mainly be associated with organic-complexing colloids with particle size less than 0.45μm, although As, Zn and Cu would partially be carried by large-size inorganic colloids.
     5. R cluster analysis has been carried out in terms of 27 chemical compositions of 26 representative groundwater samples. Multiple linear regression was established between As and other components. Curve regression analysis shows that As(III) is a negative exponential of Eh.
引文
安永清,何承熙,周明等.青海省高砷水源地区砷中毒流行病学调查分析[J].中国地方病学杂志, 2004,23(1):88.
    安永清,李生梅,姜泓.2001~2005年青海省饮水砷筛查及地方性砷中毒病区分布调查[J].中国地方病学杂志,2006,25(6):657.
    陈志,张丽玲,杨凤山.我国地方性砷中毒及防治研究[J].中国地方病防治杂志,1998,13(6):342~345.
    陈锁忠.长江下游沿岸(南通—上海段)第I承压水砷超标原因分析[J].江苏地质,1998,22(2):101~106.
    陈兴平,邓云华,张裕曾等.湖北南洪村饮水砷含量及砷中毒调查[J].中国地方病防治杂志,2007,22(4):281~282.
    程子峰,徐富春.环境数据统计分析基础[M].北京:化学工业出版社,2006.
    邓斌,杨小静,邓佳云等.四川省金川县饮水型砷中毒流行病学调查[J].预防医学情报杂志,2004,20(4):370~372.
    范中学,李平安,白爱梅.陕西省地方性砷中毒流行概况[J].微量元素与健康研究,2006,23(6):45~47.
    高存荣.河套平原地下水砷污染机理的探讨[J].中国地质灾害与防治学报,1999,10(2):25~32.
    顾俊,镇银.南通市区部分地下水富砷及其成因初探[J].中国公共卫生,1995,11(4):174.
    郭华明,王焰新,李永敏.山阴水砷中毒区地下水砷的富集因素分析[J].环境科学,2003,24(4): 60~67.
    郭小娟.水因性砷暴露的地理流行病学比较[J].内蒙古预防医学,2000,25(1):44~46.
    胡兴中,陈建杰,薛岐山等.前进农场地方性砷中毒流行病学调查报告[J].宁夏医学院学报,1996, 18(1):41~42.
    胡兴中,陈德浪,陈建杰等.宁夏北部地方性砷中毒流行病学调查分析[J].中国地方病学杂志, 1999,18(1):23~25.
    黄燕波.SPSS在气象统计分析中的应用[J].气象研究与应用,2007,28(S1):76~77.
    鞠英杰.SPSS—统计分析研究的有利工具[J].统计与咨询,1995,(6):36.
    金银龙,梁超轲,何公理等.中国地方性砷中毒分布调查(总报告)[J].卫生研究,2003,32(6):519~539.
    李富君,孙贵范,梁刚.我国各型砷中毒临床表现特点及高砷环境成因[J].中国公共卫生,1998, 14(11):651~652.
    李定康,倪尚禄等.四川省泸定县水砷调查结果[J].预防医学情报杂志,2005,21(3):333~334.
    李文生.氟中毒地区水中氟与砷、铬含量的相关性[J].陕西省地方病通讯,1986,1:47~50.
    李卫东,邹铮,赵立胜等.安徽省地方性砷中毒病区调查[J].安徽预防医学杂志,2006,12(4):193~196.
    李生梅,安永清,吴海坤等.青海省砷中毒线索性调查[J].中国地方病学杂志, 2006,25(1):110.
    李国春.SPSS统计软件简介[J].循证医学,2003,(4):249~253.
    李建彪,冉勇康,郭文生.河套盆地托克托台地湖相层研究[J].第四纪研究,2005,25(5):630~639.
    李树范,李浩基.内蒙古河套地区地方性砷中毒区地质环境特征与成因探讨[J].中国地质灾害与防治学报,1994,5(增刊):213~219.
    梁超轲,王汉章,马凤等.饮水砷卫生标准研究进展(研究进展)[J].中国地方病学杂志,2003,22(3):273~275.
    梁超轲.地方性砷中毒研究评述[J].医学研究杂志,2006,35(12):3~5.
    林年丰.医学环境地球化学[M].第一版.长春:吉林科学技术出版社,1991,186~200.
    刘忠杰,卢振明,张丽虹等.吉林省地方性砷中毒病区的环境地理特征及成因[J].中国地方病防治杂志,2002, 17(5):282~284.
    刘炯,李贵民,刘万洋等.辽宁省地方性砷中毒分布调查分析[J].中国地方病学杂志,2003,22(6):528~529.
    卢振明,佟建冬,张秀丽等.吉林省地方性砷中毒病区分布[J].中国地方病防治杂志,2004,19(6):357~358.
    卢振明,佟建冬,张海涛.吉林省2005年地方性砷中毒全国重点监测结果分析[J].中国地方病防治杂志,2007,22(2):119~120.
    吕胜敏,马景,梁索理等.河北省居民饮水砷及地方性砷中毒抽样调查[J].中国地方病学杂志,2004,23(1):46~47.
    罗艳丽,蒋平安,余艳华等.土壤及地下水砷污染现状调查与评价-以新疆奎屯123团为例[J].干旱区地理,2006,29(5):705~709.
    马恒之,武克功,夏亚娟等.内蒙古地方性砷中毒流行病学特征[J].中国地方病学杂志,1995,14(1):34~36.
    孟庆玉,宋秋娟,宁伟等.郑州市农村高砷水源普查结果报告[J].中国地方病学杂志,2006,25(5):564.
    庞星火,时颖,郝兰英等.北京市地方性砷中毒分布调查[J].中国公共卫生,2003,19(8):976~977.
    申玉军,滕建玉.盱眙县3560口井水砷含量调查[J].中国公共卫生管理,2006,22(5):439~440.
    沈雁峰,孙殿军,赵新华等.中国饮水型地方性砷中毒病区和高砷区水砷筛查报告[J].中国地方病学杂志,2005,24(2):172~175.
    沈美清,施坤祥,钱华.桐乡市地方性砷中毒调查报告[J].中国地方病学杂志,2004,23(5):505.
    宋继金,相有章,刘源.山东省地方性砷中毒流行病学调查[J].地方病通报,1997,12(5):25~26.
    汤洁,林年丰,卞建民等.内蒙河套平原砷中毒病区砷的环境地球化学研究[J].水文地质工程地质,1996,(1):49~54.
    谭卫星,马天波,陈建杰等.宁夏地方性砷中毒流行分布[J].宁夏医学杂志,2006,28(12):898~900.
    唐小惠,郭华明,刘菲.富砷水环境中微生物及其环境效应的研究现状[J].水文地质工程地质,2008
    王大纯,张人权,史毅虹.1980.水文地质学基础[M].北京:地质出版社.
    王敬华,赵伦山,吴悦斌.山西山阴、应县一带砷中毒区砷的环境地球化学研究[J].现代地质.
    王静,沈玉萍,赵洪满等.吉林省西部地方性氟、砷中毒现状及治理[J].吉林地质,2006,25(1):62~65.
    王连方,郑宝山,王生玲等.新疆水砷及其对开发建设的影响(综合报告)[J].地方病通报,2002,17(1):21~24.
    王连方,刘鸿德,徐训风等.新疆奎屯垦区慢性砷中毒调查报告[J].中国地方病学杂志,1983,2(2):封3.
    王连方,孙幸之,爱海提等.新疆准葛尔西南部地方性砷中毒调查研究[J].内蒙古地方病防治研究.1994:19(增刊):37.
    王雷,张美云,罗振东.呼和浩特盆地富砷地下水的分布、特征及防治对策[J].内蒙古民族大学学报,2003a,18(5):402~404.
    王晓昌.从砷的水质标准修订看美国饮用水立法[J].给水排水,2001,9:25~27.
    王昕,孔庆刚.云南省耿马县孟定镇水砷含量初步调查[J].环境与健康杂志,2006,23(6):492.
    王焰新,郭华明,阎世龙等.浅层孔隙地下水系统环境演化及污染敏感性研究[M].北京:科学出版社,2004.
    王治伦.乌脚病防治研究概况[J].中国地方病防治杂志,1994,9(6):365~367.
    王正辉,程晓天,李军等.山阴县饮水砷含量及砷中毒病情调查[J].中国地方病防治杂志,2003b, 18(5):293~295.
    汪爱华,赵淑军.湖北省仙桃市地方性砷中毒病区水砷调查与分析[J].中国热带医学,2007,7(8):1486~1487.
    魏建军,杨建国,赵明等.郑州市饮水型地方性砷中毒调查[J].中国地方病防治杂志,2005,20(2):99~101.
    魏蓉,沈其萍,万玉萍.云南省耿马县孟定镇罕宏村饮用水砷含量调查[J].职业与健康,2007,23(11):940~941.
    吴锦权,陈泽池,温兴章等.广东省农村饮水砷含量调查结果分析[J].卫生研究,2004,33(4):402~403.
    许松华,程建华,张尕藏等.甘肃省合作市水源水含砷情况调查及对人群的影响[J].职业与健康,2007,23(11).
    薛薇.基于SPSS的数据分析[M].北京:中国人民大学出版社,2006.
    熊传龙,蔡生花,张秀丽等.2002年青海省贵德县饮水型砷中毒临床检查报告[J].地方病通报, 2004,19(2):13.
    杨素珍,郭华明,唐小惠等.内蒙古河套平原地下水砷异常分布规律研究[J].地学前缘,2008,14(1):225~234.
    杨友运.内蒙河套盆地第四系生物气藏形成地质条件分析[J].西安科技大学学报,2004,24(3):320~323.
    杨友运.鄂尔多斯盆地白垩系沉积建造[J].石油与天然气地质,2006,27(2):167~172.论文专辑[C].1999,10.
    余波,银恭举,张莉等.河南省地方性砷中毒线索调查[J].河南预防医学杂志,2003,14(3):140.
    余孝颖,吕锋洲,郑保山等.内蒙古砷中毒和台湾乌脚病病区井水中腐植酸性质的比较[J].中国地方病学杂志,2002,21(1):37~40.
    张辉.地带性人群砷中毒的环境背景因素及其研究现状[J].地质论评,2000,46(4):443~448.
    张美云,张玉敏,张阁有等.呼和浩特慢性地方性砷中毒地区地下水水质分析[J].环境与健康杂志,2002,19(3):220~222.
    张美云,张玉敏,王春雨.呼和浩特盆地富砷地下水的分布及砷的迁移与释放[J].中国地方病学杂志,2000,19(6):442~444.
    张先,贺为民,沈京秀等.内蒙古河套断陷带及其邻区地壳磁性构造特征[J].西北地震学报,1995,17(1):31~35.
    赵长荣,J.Hus,阎玉忠等.渤海湾西岸湾顶晚更新世--全新世年代地层序列与地磁极漂移[J].地质调查与研究,2003,26(3):183~192.
    赵红平.基于不同计量经济学软件的逐步回归方法[J].统计教育,2007,(9):8~9.
    赵伦山,武胜,周继华等.大同盆地砷、氟中毒地方病生态地球化学研究[J].地学前缘,2007,14(2):225~234.
    郑保山,余孝颖,吕锋洲等.腐殖酸和自由基与地方病[J].内蒙古地方病防治研究.1995,20(1):40~42.
    朱盛兰,朱延福,许田凤等.淮南市饮水型地方性砷中毒调查[J].安徽预防医学杂志,2007, 13(2):137~138.
    周金水,朱文明,黄学敏.浙江省地方性砷中毒调查[J].浙江预防医学2004,16(7):1~2.
    Azcue JM,Nriagu JO.Impact of abandoned mine tailings on the arsenic concentrations in Moira Lake,Ontario.J Geochem Explor 1995,52:81~89.
    Agusa T,Kunito T,Fujihara J,et al.Contamination by arsenic and other trace elements in tube-well water and its risk assessment to humans in Hanoi,Vietnam [J].Environmental Pollution,2006,139:95~106.
    Agusa T.,Kunito T.,Fujihara J.,et al.Contamination by arsenic and other trace elements in tube-well water and its risk assessment to humans in Hanoi,Vietnam [J].Environmental Pollution,2006,139:95~106.
    Ahmed K.M.,Bhattacharya P.,Hasan M.A.,et al.Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh:an overview [J].Applied Geochemistry,2004,19:181~200.
    Ahmed KM,Bhattacharya P,Hasan MA,et al. Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview [J].Appl. Geochem.,2004,19:181~200.
    Bauer M,Blodau C.Mobilization of arsenic by dissolved organic matter from iron oxides,soils and sediments.Sci Total Environ,2006,354:179~190.
    Berg M,Stengel C,Trang PTK,et al. Magnitude of arsenic pollution in the Mekong and Red River Deltas-Cambodia and Vietnam.Sci Total Environ 2007,372:413~425.
    Berg M,Tran HC,Nguyen TC,et al.Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat [J].Environ. Sci. Technol,2001,35:2621~2626.
    Beard BL,Johnson CM,Cox L,et al.Iron isotope biosignatures [J].Science,1999, 285:1889~1892.
    Berg M.,Tran H.C.,Nguyen T.C.,et al.Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat [J].Environ. Sci. Technol,2001,35,2621~2626.
    Bhattacharya P,Claesso M.,Bundschuh J.,et al. Distribution and mobility of arsenic in the Río Dulce alluvial aquifers in Santiago del Estero Province, Argentina [J].Science of the Total Environment,2006,358:97~120.
    Bissen M,Frimmel FH,Arsenic a review.Part I:Occurrence, toxicity, speciation, mobility [J].Acta Hydrochimica et Hydrobiologica,2003,31(1):9~18.
    Bissen M.,Frimmel F.H.Arsenic– a review. Part II:Oxidation of arsenic and its removal in water treatment.Acta hydrochim. hydrobiol.,2003,31:97~107.
    Boyle EA,Collier R,Dengler AT,et al,.On the chemical mass balance in estuaries.Geochim Cosmochim Acta,1974,38(11):1719~1728.
    Chakravarty S,Dureja V,Bhattacharyya G,et al.Removal of arsenic from groundwater using low cost ferruginous manganese ore.Water Res.,2002,36:625~632.
    Cummings DE,Caccavo F,Fendorf S,et al.Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY [J].Environ. Sci. Technol.,1999,33:723~729.
    Del Razo,L.M.,Arellano M.A.,Cebrián M.E.The oxidation states of arsenic in well-water from a chronic arsenicism area of northern Mexico [J].Environ. Pollut.,1990,64:143~153.
    Dzombak DA,Morel FMM.Surface complexation modeling:Hydrous ferric oxide. New York:Wiley & Sons,1990.
    Farooqui A,Bajpai U.Biogenic arsenopyrite in holocene peat sediment, India [J].Ecotoxicology and Environmental Safety,2003,55:157~161.
    Ferguson JF,Gavis J,A review of the arsenic cycle in natural water [J].Water Res,1972,6:1259~1274.
    Fontaine J.A.Chapter 28. Regulating arsenic in Nevada drinking water supplies: past problems, future challenges [A].In:Chappell, W.R.,Abernathy, C.O.,Cothern, C.R. (Eds.),Arsenic Exposure and Health [C].Science and Technology Letters, Northwood,1994.pp. 285~288.
    Florence TM.The Speciation of Trace Elements in Waters.Anal Chem,1980,9:219.
    Fujii R.,SwainW.C.Areal Distribution of Selected Trace Elements, Salinity,and Major Ions in Shallow Ground Water,Tulare Basin,Southern San Joaquin Valley,California.US Geol. Surv. Water-Resour. Investig. Rep. 95~4048,1995.
    Gault AG,Polya DA,Lythgoe PR,et al.Arsenic speciation in surface waters and sediments in a contaminated waterway:an IC-ICP-MS and XAS based study [J].Appl. Geochem.,2003,18:1387~1397.
    Geckeis H,Ngo Manh Th,Bouby M,et al.Aquatic colloids relevant to radionuclide migration:characterization by size fractionation and ICP-mass spectrometric detection. Colloids Surf A:Physicochem Engin Aspects,2003,217:101~108.
    Guo HM,Stüben D,Berner Z.Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent.J Colloid Interface Sci,2007,315(1):47~53.
    Guo HM,Wang YX,Shpeizer GM,et al.Natural occurrence of arsenic in shallowgroundwater, Shanyin, Datong Basin.China. J Environ Sci Health,2003,A38(11):2565~2580.
    Guo HM,Yang SZ,Tang XH,et al.Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia.Sci Total Environ,2008,393:131~144.
    Guo H.M,Stüben D.,Berner Z.Arsenic removal from water using natural iron mineral-quartz sand columns.Sci. Total Environ.,2007,377:142~151.
    Guo HM,Wang YX,Shpeizer GM,et al.Natural occurrence of arsenic in shallow groundwater, Shanyin, Datong Basin.China. J Environ Sci Health,2003,A38(11):2565~2580.
    Gurzau E.S.,Gurzau A.E.Arsenic in drinking water from groundwater in Transylvania,Romania[A].In:Chapell,W.R,Abernathy,C.O.,Calderon, R.L. (Eds.),Arsenic Exposure and Health Effects IV [C].Elsevier, Amsterdam,2001,pp. 181~184.
    Ipolyi I,Brunori C,Cremisini C,et al.Evaluation of performance of time-saving extraction devices in the BCR three-step sequential extraction procedure [J].J. Environ. Monit.,2002,4:541~548.
    Islam FS,Gault AG, Boothman C,et al.Role of metal-reducing bacteria in arsenic release from Bengal delta sediments [J].Nature,2004,430:68~71.
    Jekel MR.Removal of Arsenic in Drinking Water Treatment [A].In:Nriagu JO ed. Arsenic in the Environment, Part I:Cycling and Characterization [C].New York:Wiley,1994:119~132.
    Kartinen EO Jr,Martin CJ.An overview of arsenic removal processes [J].Desalination,1995,103:78~88.
    Krishna M.,Chandrasekaran K.,Karunasagar D.,et al.A combined treatment approach using Fenton’s reagent and zero valent iron for the removal of arsenic from drinking water [J].J. Hazard. Mater.,2001,B84:229~240.
    Lablanc M,Achard B,Othman DB,et al.Accumulation of arsenic from acidic mine waters by ferruginous bacterial accretions (stromatolites) [J].Appl. Geochem.,1996,11:541~554.
    Ladeira ACQ,Ciminelli VST.Adsorption and desorption of arsenic on an oxisol and its constituents.Water Res.,2004,38:2087~2094.
    Langner HW, Inskeep WP. Microbial reduction of arsenate in the presence of ferrihydrite [J]. Environ. Sci. Technol., 2000, 34:3131~3136.
    Manning B . Arsenic speciation in As(III)- and As(V)-treated soil using XANES spectroscopy [J].Microchim Acta,2005,151:181~188.
    McArthur JM,Banerjee DM,Hudson-Edwards KA,et al.Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water:the example of West Bengal and its worldwide implications.Appl Geochem,2004,19:1255~1293.
    Meng X,Korfiatis G,Band S,et al.Combined effects of anions on arsenic removal by iron hydroxides.Toxicol Lett,2002,133:103~111.
    Meng XG,,Wang W.Speciation of arsenic by disposable cartridges. Book of posters of the third international conference on arsenic exposure and health effects;Society of Environmental Geochemistry and Health. Denver:University of Colorado at Denver,1998.
    Nicolli H.B.,Suriano J.M.,Peral M.A.G.,et al.Groundwater contamination with arsenic and other trace-elements in an area of the Pampa, province of Córdoba, Argentina [J].Environ. Geol. Water Sci.,1989,14:3~16.
    Olivié-Lauquet G,Allard Th,Bertaux J,et al.Crystal chemistry of suspended matter in a tropical hydrosystem,Nyong basin (Cameroon, Africa).Chem Geol,2000,170:113~131.
    Parkhurst D,Appelo C.User's guide to PHREEQC (Version 2)—a computer program for speciation,batch reaction,one-dimensional transport,and inverse geochemical calculations.US Geol Surv Water Resour Invest Rep,1999:99~4259.
    Park JM,Lee JS,Lee JU,et al.Microbial effects on geochemical behavior of arsenic in As-contaminated sediments [J].J. Geochem. Explor.,2006,88:134~138.
    Pandey PK, Yadav S, Nair S, et al. Arsenic contamination of the environment: A new perspective from central-east India [J].Environment International,2002,28:235~245.
    Pedersen HD,Postma D,Jakobsen R.Release of arsenic associated with the reduction and transformation of iron oxides [J].Geochimica et Cosmochimica Acta,2006,70:4116~4129.
    Petrick JS,Ayala-Fierro F,Cullen WR,et al. Monomethylarsonous acid (MMAIII) is more toxic than arsenite in changing human hepatocytes [J].Toxicology and Applied Pharmacology,2000,163:203~207.
    Pokrovsky OS,Schott J.Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia).Chem Geol,2002,190:141~179.
    Pourret O,Dia A,Davranche M,et al.Organo-colloidal control on major- and trace-element partitioning in shallow groundwaters:Confronting ultrafiltration and modeling. Appl Geochem,2007,22:1568~1582.
    Radu T,Subacz JL,Phillippi JM,et al.Effects of dissolved carbonate on arsenic adsorption and mobility.Environ Sci Technol,2005,39:7875~7882.
    Redman A D,Macalady D L,Ahman D.A preliminary study of various factors influencing arsenic mobility in porous media [R].USGS Workshop on Arsenic in the Environment,Feb,21~22,2001,Denver.
    Robertson F.N.Arsenic in groundwater under oxidizing conditions, south-west United States [J].Environ. Geochem. Health,1989,11:71~185.
    Shapiro J.Effect of yellow organic acids on iron and other metals in water. Am.Water Works Assoc J 1964,55:1062~1082.
    Sholkovitz ER.The aquatic chemistry of rare earth elements in rivers and estuaries.Aquat Geochem 1995,1:1~34.
    Sigg L,Xue H,Kistler D,et al.Size fractionation (dissolved, colloidal and particulate) of trace metals in Thur River, Switzerland.Aquat Geochem,2000,6:413~434.
    Smedley PL,Zhang M,Zhang G,et al.Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia.Appl Geochem,2003,18:1453~1477.
    Smedley PL,Kinniburgh DG.A review of the source, behavior and distribution of arsenic in natural waters [J].Appl.Geochem.,2002,17:517~568.
    Stumm W,Morgan JJ.Aquatic chemistry.John Wiley and Sons, New York,1996.
    Smedley P.L.,Nicolli H.B.,Barros A.J.,et al.Origin and mobility of arsenic in groundwater from the Pampean Plain, Argentina [A].In:Arehart, G.B.,Hulston, J.R. (Eds.),Water-Rock Interaction. Proc. 9th Internat. Symp. [C].Taupo, New Zealand,1998.Balkema, Rotterdam,1998,pp. 275~278.
    Smedley P.L.,Nicolli H.B.,Macdonald D.M.J.,et al Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina [J].Appl. Geochem,2002,17:259~284.
    Su CM,Puls RW.Arsenate and arsenite removal by zerovalent iron:Effects of phosphate,silicate, carbonate,borate,sulfate,chromate,molybdate,and nitrate,relative to chloride.Environ Sci Technol,2001,35:4562~4568.
    Stumm W.Chemistry of the solid–water interface processes at the mineral–water and particle–water interface in natural systems [M].John Wiley & Sons,New York,1992.
    Stüben D,Berner Z,Chandrasekharam D,et al.Arsenic enrichment in groundwater of West Bengal, India: Geochemical evidence for mobilization of As under reducing conditions [J].Appl. Geochem.,2003,18:1417~1434.
    Tessier A,Campbell PGC,Bisson M.Sequential extraction procedure for the speciation of particulate trace metals [J].Anal. Chem.,1979,51:844~851.
    Thoral S,Rose J,Garnier JM,et al.XAS study of iron and arsenic speciation during Fe(II) oxidation in the presence of As(III) [J].Environ. Sci. Technol.,2005,39:9478~9485.
    Varsányi I.,FodréZ.,Bartha A.Arsenic in drinking water and mortality in the southern Great Plain, Hungary [J].Environ. Geochem. Health,1991,13:14~22.
    Welch A.H.,Lico M.S.Factors controlling As and U in shallow ground water,southern Carson Desert,Nevada [J].Appl. Geochem,1998,13:521~539.
    Wyatt C.J.,Fimbres C.,Romo L.,et al.Incidence of heavy metal contamination in water supplies in Northern Mexico [J].Environ. Res,1998,76:114~119.
    Xue H,Kistler D,Sigg L.Competition of copper and zinc for strong ligands in a eutrophic lake.Limnol Oceanogr,1995,40:1142~1152.
    Zakharyan RA,Ayala-Fierro F,Cullen WR,et al.Enzymatic methylation of arsenic compounds,VII. Monomethylarsonous acid (MMAIII) is the substrate for MMA methyltransferase of rabbit liver and human hepatocytes [J].Toxicology and Applied Pharmacology,1999,158:9~15.
    Zaldivar R.Arsenic contamination of drinking water and foodstuffs causing endemic chronic poisoning [J].Beitr. Zur Pathol.,1974,151:384~400.
    Zobrist J,Dowdle PR,Davis JA,et al.Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate [J].Environ. Sci. Technol.,2000,34:4747~4753.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700