用户名: 密码: 验证码:
异步轧制制备超细晶纯铁及其组织和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁是主要的结构材料之一,在未来的很长时间里仍然是重要的结构材料。近年来,通过晶粒细化提高钢铁材料的性能成为材料学界和钢铁研究者的关注热点。本文以纯铁为研究对象,通过优化改进的异步轧制设备制备超细晶纯铁,研究了异步轧制纯铁产生的剪切应变的大小和分布,系统地研究了剪切应变对纯铁的组织、织构和性能的影响,试图为钢铁材料的超细晶化研究探索一种新的技术方法。
     本文通过有限元法模拟纯铁在异步轧制中的变形过程,研究了轧下量、摩擦系数和轧制方式对纯铁塑性流变的影响。有限元模拟结果表明,纯铁在同步轧制时产生单一的压应变,而在异步轧制时还产生额外的强烈剪切应变。随着轧下量的增加,异步轧制轧材的剪切应变逐步增加。在相同轧下量的时候,增大轧辊与轧材间的摩擦系数,能提高异步轧制轧材的剪切应变。
     使用在纯铁中植入异质金属铜片的方法对纯铁异步轧制后的变形行为进行直接观测。本文根据弹塑性基本理论推导了分析计算剪切应变和等效应变的计算公式。根据直接观测的数据计算了纯铁经过不同轧下量异步轧制后的等效应变,随着轧下量的增加,轧材的等效应变逐渐增大。纯铁经过异步轧制后产生了强烈的剪切应变,剪切应变沿厚度的分布不均匀,在上轧面具有最大值约为13.17,随着厚度的增加,在中心部位具有最小值为1.3左右。
     本文使用异步轧制方法成功制备了平均晶粒尺寸为0.9μm、大角度晶界达60%的等轴状超细晶纯铁,其CSL晶界达到35%左右,旋转轴都为[111]晶带轴。
     异步轧制超细晶纯铁的组织在轧制厚度方向上呈现一定的不均匀性,但是这种不均匀性不显著。这是由异步轧制过程中纯铁产生的剪切应变、等效应变分布不均匀导致的。异步轧制超细晶纯铁在400℃退火1小时后晶粒基本没有明显长大,没有再结晶现象发生。再结晶开始温度在400℃和500℃之间,再结晶过程在600℃时全部完成。
     在体心立方结构的异步轧制纯铁中发现了{100}面织构,该织构很难通过冷轧方式直接获得,该织构的形成是异步轧制过程中纯铁产生的剪切应变和压应变共同作用的结果。该织构高度依赖于轧制方式,纯铁经过同步轧制可以得到高斯取向G{110}<001>,但是通过异步轧制可以获得{100}面织构。异步轧制在纯铁中制备的{100}面织构在轧材厚度方向上分布均匀,没有明显的分层现象。异步轧制纯铁的{100}面织构在继续进行70%同步轧制后仍然是{100}面织构,但是在400℃退火后其{100}面织构就完全消失而形成其它织构。
     随着异步轧制轧下量的增加,纯铁的显微硬度和屈服强度逐渐增大,它们与轧下量基本呈线性关系。这种强度的提高既是晶粒细化的效果,也是加工硬化强化的结果。经过计算,当轧下量为90%时,纯铁的位错密度达到1.75×1015 m-2。异步轧制超细晶纯铁的断裂状态为韧性断裂,由大量等轴韧窝组成,随着轧下量的增加,韧窝的尺寸逐渐减小。
     异步轧制超细晶纯铁经过不同温度退火后获得不同晶粒尺寸的纯铁,它们的屈服强度服从Hall-Petch关系,Hall-Petch系数为0.583MN/m2/3。随着晶粒尺寸减小,纯铁的应变速率敏感因子逐渐减小。异步轧制超细晶纯铁虽然有很高的强度,但是延伸率很小,缺乏足够的加工硬化能力,具有严重的塑性不稳定性,这严重妨碍了其在工业上的实际应用。异步轧制超细晶纯铁极小的应变速率敏感因子使材料具有很小的空间保持稳定的塑性变形,从而使材料很快进入塑性不稳定阶段直至断裂。
Improving the properties of steel through grain refinement has attracted much attention of the material researchers since steel plays an important role as a structural material. In this paper, pure iron is studied as a model material to produce ultrafine-grained (UFG) iron by asymmetrical rolling (ASR). The shear strain and its distribution in ASR processed iron have been studied. The effects of shear strain on microstructure, texture and mechanical property have been studied systemically. This research is the pioneer and the base for the grain refinement in steel.
     The deformation behavior of pure iron during ASR has been simulated through finite element module (FEM). Roles of reduction, friction coefficient and rolling processing on the deformation behavior of iron have been studied. The result of the FEM simulation shows that only the plane compressive strain exists in the rolled iron processed by symmetrical rolling. However, there is additional severe shear strain in ASR processed iron. The shear strain in the ASR processed iron is increasing with the increase of the rolling reduction. The shear strain also increases when the friction coefficient increases.
     The deformation in pure iron after ASR has been directly observed through the enbedded Cu plate. The equation to calculate the shear strain and equivalent strain has been proposed based on the elasticity-plasticity theory. The equivalent strain in iron with different rolling reductions has been estimated according to the data from the direct observation. With increasing rolling reduction, the equivalent strain of the rolled materials increases. Severe shear strain is induced in the ASR processed iron. Its distribution along the thickness is inhomogeneous. There are a maximum of 13.17 at upper surface and a minimum of 1.3 at the center.
     The equiaxed UFG pure iron with the average grain size of 0.9μm and 60% high angle boundary has been obtained through ASR. In the UFG pure iron by ASR, the fraction of the coincidence site lattice (CSL) grain boundary rotating about才axis is approximately 35%.
     The microstructure of the UFG pure iron from ASR is not uniform along the whole thickness. It is resulted from the distribution of the shear strain and equivalent strain. After annealing at 400℃for 1 h, the grain size of the UFG pure iron from ASR almost does not increase without recrystallization. The recrystallization occurs from 400℃to 500℃, and finishes at 600℃.
     The {100} texture has been realized in body-centered cubic pure iron by ASR without any post annealing. The rolling reduction is not the main reason for its formation. Its formation is strongly affected by the rolling process. Gauss orientation G {110} <001> has been obtained in the same iron processed by SR instead of the {100} texture by ASR. It is attributed to the different strain mode during different rolling process. The {100} texture in pure iron is uniform along the whole thickness. The {100} texture in iron subjected to ASR still remains after post SR with the reduction of 70% and disintegrates completely after annealing at 400℃.
     With increasing rolling reduction, the microhardness and the yield strength of the ASR processed pure iron increase, resulted from not only the grain refinement but also the work hardening. The density of the dislocation is up to 1.75×1015 m-2 in UFG pure iron after ASR with the 90% reduction. The fracture of the UFG pure iron is ductile with number of dimples, of which the size is decreases with increasing the reduction.
     Different grain sizes have been obtained from the UFG pure iron after annealled at different temperatures. The yield strength obeys the Hall-Petch relationship. The Hall-Petch constant is about 0.583 MN/m2/3. With decreasing grain size, the strain rate sensitivity (SRS) decreases. The UFG pure iron with high strength shows a little work hardening capability but severe plastic instability. The negligible SRS allows a small space to keep the deformation behavior stable. The deformation behavior localizes in narrow regions shortly and comes into a plastic instable stage. After that the tensile curve falls down and the sample plunges into fracture.
引文
[1]. Montemarano, T., High Strength Low Alloy Steels in Naval Construction [J]. Journal of Ship Production, 1986, 2 (03),pp 145-152.
    [2]. Hurley, P. J.,Hodgson, P. D.,Muddle, B. C., Analysis and characterisation of ultra-fine ferrite produced during a new steel strip rolling process[J]. Scripta Materialia, 1999, 40 (4),pp 433-438.
    [3].翁宇庆,新一代钢铁材料重大基础研究的成果[J].世界钢铁, 2004, (5),pp 1-7.
    [4].范军锋,陈铭,中国钢铁工业可持续发展之路初探[J].上海金属, 2007, 29 (1),pp 9-14.
    [5].辻伸泰,钢铁材料晶粒的超微细化(日)[J].首钢科技, 2003, (6).
    [6]. Niikura, M.,Fujioka, M.,Adachi, Y., etc., New concepts for ultra refinement of grain size in Super Metal Project[J]. Journal of Materials Processing Technology, 2001, 117 (3),pp 341-346.
    [7].屈朝霞,田志凌,杜则裕,何长红,张晓牧,杨柏,超细晶粒钢HAZ晶粒长大的规律[J].焊接学报, 2000, 21 (4),pp 9-13.
    [8].陈恒庆,张俊宝,实用钢铁材料超细晶强化技术[J].世界钢铁, 2005, (6),pp 26-32.
    [9].翁宇庆,新一代钢铁材料的重大基础研究[J].中国基础科学, 2000, (1),pp 15-18
    [10].干勇,董瀚,先进钢铁材料技术的进展[J].中国冶金, 2004, (8),pp 1-6.
    [11]. Andrievski, R. A.,Glezer, A. M., Size effects in properties of nanomaterials[J]. Scripta Materialia, 2001, 44 (8-9),pp 1621-1624.
    [12]. Terence G. Langdon, M. F., Minoru Nemoto, Zenji Horita, Using equal-channel angular pressing for refining grain size [J]. Journal of the Minerals, 2000, 52 (4),pp 1543-1851.
    [13]. Ren, J.,Shan, A.,Zhang, J., etc., Surface nanocrystallization of Ni3Al by surface mechanical attrition treatment[J]. Materials Letters, 2006, 60 (17-18),pp 2076-2079.
    [14]. Xue, X. H.,Shan, Y. Y.,Zheng, L., etc., Microstructural characteristic of low carbon microalloyed steels produced by thermo-mechanical controlled process[J]. Materials Science and Engineering: A, 2006, 438-440 pp 285-287.
    [15]. Zhorin, V. A.,Shashkin, D. P.,Yenikoponyan, N. S., Microstructural evolution, microhardness and thermal stability of HPT-processed Cu[J]. DAN SSSR, 1984, 278 p 144.
    [16]. Kim, H. S.,Seo, M. H.,Hong, S. I., Plastic deformation analysis of metals during equal channel angular pressing[J]. Journal of Materials Processing Technology, 2001, 113 (1-3),pp 622-626.
    [17]. Valiev, R. Z.,Islamgaliev, R. K.,Alexandrov, I. V., Bulk nanostructured materials from severe plastic deformation [J]. Progress in Materials Science, 2000, 45 (2),pp 103-189.
    [18]. Ruslan Z. Valiev, I. V. A., Development of severe plastic deformation techniques for the fabrication of bulk nanostructured materials[J]. Annales de chimie 2002, 27 (3),pp 3-14.
    [19]. Hafok, M.,Pippan, R., Post-shear deformation of high pressure torsion-deformed nickel under hydrostatic pressure[J]. Scripta Materialia, 2007, 56 (9),pp 757-760.
    [20]. Ungar, T.,Balogh, L.,Zhu, Y. T., etc., Using X-ray microdiffraction to determine grain sizes at selected positions in disks processed by high-pressure torsion[J]. Materials Science and Engineering: A, 2007, 444 (1-2),pp 153-156.
    [21]. Menendez, E.,Sort, J.,Langlais, V., etc., Cold compaction of metal-ceramic (ferromagnetic-antiferromagnetic) composites using high pressure torsion[J]. Journal of Alloys and Compounds, 2007, 434-435 pp 505-508.
    [22]. Schafler, E.,Kerber, M. B., Microstructural investigation of the annealing behaviour ofhigh-pressure torsion (HPT) deformed copper[J]. Materials Science and Engineering: A, 2007, 462 (1-2),pp 139-143.
    [23]. Ivanisenko, Y.,Wunderlich, R. K.,Valiev, R. Z., etc., Annealing behaviour of nanostructured carbon steel produced by severe plastic deformation[J]. Scripta Materialia, 2003, 49 (10),pp 947-952.
    [24]. Vorhauer, A.,Pippan, R., On the homogeneity of deformation by high pressure torsion[J]. Scripta Materialia, 2004, 51 (9),pp 921-925.
    [25]. Segal, V.,Reznikov, V.,Drobyshevkij, A., etc., Metally, 1981, 1 p 115.
    [26]. Valiev, R. Z.,Korznikov, A. V.,Mulyukov, R. R., Structure and properties of ultrafine-grained materials produced by severe plastic deformation[J]. Materials Science and Engineering: A, 1993, 168 (2),pp 141-148.
    [27].张郑,席明哲,王经涛, 7475铝合金的ECAP组织细化研究[J].轻合金加工技术, 2000, 28 (10),pp 37-39.
    [28].郑立静,邓江宁,张焱等,采用ECAP制备亚微晶铝合金及其力学性能[J].东北大学学报,, 2002, 23 (7),pp 694-696.
    [29].郑立静,张焱,曾梅光等, ECAP制备的亚微米7050铝合金的力学性能和微观结构[J].中国有色金属学报, 2002, 12 (5),pp 1012-1015.
    [30].赵润娴,张建,王志奇等,等通道转角挤压纯铝的组织结构[J].有色金属, 2002, 54 (2),pp 8-11.
    [31].李强,赖祖涵,高纯铝等通道转角挤压引起的微观组织变化[J].兵器材料科学与工程, 2001, 24 (6),pp 33-36.
    [32].吴伟,张禄廷,陈立佳,等通道角度挤压对两种镁合金拉伸性能的影响[J].沈阳工业大学学报, 2003, 25 (1),pp 18-22.
    [33].张玉敏,丁桦,孝云祯等,等径弯曲通道变形(ECAP)的研究现状和发展趋势[J].材料与冶金学报, 2002, 1 (4),pp 258-262.
    [34]. Chang, J. Y.,Shan, A., Microstructure and mechanical properties of AlMgSi alloys after equal channel angular pressing at room temperature[J]. Materials Science and Engineering A, 2003, 347 (1-2),pp 165-170.
    [35]. Horita, Z.,Fujinami, T.,Nemoto, M., etc., Improvement of mechanical properties for Al alloys using equal-channel angular pressing[J]. Journal of Materials Processing Technology, 2001, 117 (3),pp 288-292.
    [36]. Zhu, Y. T.,Lowe, T. C., Observations and issues on mechanisms of grain refinement during ECAP process[J]. Materials Science and Engineering A, 2000, 291 (1-2),pp 46-53.
    [37]. Son, Y. I.,Lee, Y. K.,Park, K. T., etc., Ultrafine grained ferrite-martensite dual phase steels fabricated via equal channel angular pressing: Microstructure and tensile properties[J]. Acta Materialia 2005, 53 (11),pp 3125-3134.
    [38]. Sabirov, I.,Kolednik, O.,Valiev, R. Z., etc., Equal channel angular pressing of metal matrix composites: Effect on particle distribution and fracture toughness[J]. Acta Materialia, 2005, 53 (18),pp 4919-4930.
    [39]. Messemaeker, J. D.,Verlinden, B.,Humbeeck, J. V., Texture of IF steel after equal channel angular pressing (ECAP)[J]. Acta Materialia, 2005, 53 (15),pp 4245-4257.
    [40]. Young Il Son , Y. K. L., Kyung-Tae Park, Chong Soo Lee, Dong Hyuk Shin Ultrafine grained ferrite-martensite dual phase steels fabricated via equal channel angular pressing: Microstructure and tensile properties[J]. Acta Materialia 2005, 53 (11),pp 3125-3134.
    [41]. Jing Tao Wang, C. X., Zhong Ze Du, Guo Zhong Qu, Terence G. Langdon Microstructure and properties of a low-carbon steel processed by equal-channel angular pressing[J]. Materials Scienceand Engineering A, 2005, 410-411 pp 312-315.
    [42]. Valiahmetov, O. R.,Galeyev, R. M.,.Salishchev, G. A., Fiz. Metall. Metalloved, 1990, 70 (10),p 204.
    [43]. Salishchev, G. A.,R.Zripova,Galeev, R., etc., Nanocrystalline structure formation during severe plastic deformation in metals and their deformation behaviour[J]. Nanostructured Materials, 1995, 6 (5-8),pp 913-916.
    [44]. J.C., T.,M.J., T., Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet[J]. Materials Science and Engineering A, 2003, 339 pp 124-132.
    [45]. A, G.,R, K.,G, G., Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60[J]. Acta Metarials, 2001, 49 (7),pp 1199-1207.
    [46]. Niikura, M.,M. Fujioka,Y..Adachi, etc., New concepts for ultra refinement of grain size in Super Metal Project [J]. Journal of Materials Processing Technology, 2001, 117 (3),pp 341-346.
    [47]. Saito, Y.,Tsuji, N.,Utsunomiya, H., etc., Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process[J]. Scripta Materialia, 1998, 39 (9),pp 1221-1227.
    [48].方建敏,张杏耀,单爱党等,累积叠轧焊不锈钢的组织和性能[J].机械工程材料, 2006, 30 (8),pp 16-18.
    [49]. Tsuji, N.,Saito, Y.,Utsunomiya, H., etc., Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process[J]. Scripta Materialia, 1999, 40 (7),pp 795-800.
    [50]. Saito, Y.,Utsunomiya, H.,Tsuji, N., etc., Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process[J]. Acta Materialia, 1999, 47 (2),pp 579-583.
    [51]. Tsuji, N.,Ueji, R.,Minamino, Y., Nanoscale crystallographic analysis of ultrafine grained IF steel fabricated by ARB process[J]. Scripta Materialia, 2002, 47 (2),pp 69-76.
    [52]. Lu, K.,LU, J., Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approqch [J]. Journal of Materials Science and Technology, 1999, 15 (3),pp 193-197.
    [53]. Liu, G.,S.C.Wang,X.F.Lou, etc., Low carbon steel with nanostructured surface layer induced by high-energy shot peening[J]. Scripta Materialia, 2001, 44 (8),pp 1791-1795.
    [54]. Tao, N. R.,Wang, Z. B.,Tong, W. P., etc., An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment[J]. Acta Materialia, 2002, 50 (18),pp 4603-4616.
    [55]. Liu, G.,Lu, J.,Lu, K., Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening[J]. Materials Science and Engineering A, 2000, 286 (1),pp 91-95.
    [56]. Wu, X.,Tao, N.,Hong, Y., etc., Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of AL-alloy subjected to USSP[J]. Acta Materialia, 2002, 50 (8),pp 2075-2084.
    [57]. Umemoto, M.,Todaka, K.,Tsuchiya, K., Formation of nanocrystalline structure in carbon steels by ball drop and particle impact techniques[J]. Materials Science and Engineering A, 2004, 375-377 pp 899-904
    [58]. Kwon, Y. J.,Shigematsu, I.,Saito, N., Mechanical properties of fine-grained aluminum alloy produced by friction stir process[J]. Scripta Materialia, 2003, 49 (8),pp 785-789.
    [59]. Sato, Y.,Nelson, T.,Sterling, C., Recrystallization in type 304L stainless steel during friction stirring[J]. Acta Materialia, 2005, 53 (3),pp 637-645.
    [60]. Tao, N.,Sui, M.,Lu, J., etc., Surface nanocrystallization of iron induced by ultrasonic shot peening[J]. Nanostructured Materials, 1999, 11 (4),pp 433-440
    [61]. Ni, Z.,Wang, X.,Wang, J., etc., Characterization of the phase transformation in a nanostructuredsurface layer of 304 stainless steel induced by high-energy shot peening [J]. Physica B: Condensed Matter, 2003, 334 (1-2),pp 221-228.
    [62]. Tao, N. R.,Wang, Z. B.,Tong, W. P., etc., An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment[J]. Acta Materialia, 2002, 50 (18),pp 4603-4616.
    [63].卢柯,吕坚,中国发明专利[J]. 99122670.4, 1999.
    [64]. Tao, N. R.,Tong, W. P.,Wang, Z. B., etc., Mechanical and wear properties of nanostructured surface layer in iron induced by surface mechanical attrition treatment[J]. Journal of materials science & technology, 2003, 19 (6),pp 563-566.
    [65]. Wang, M.,Wang, K.,Pan, D., etc., Microsample tensile testing of nanocrystalline copper[J]. Scripta Materialia, 2003, 48 ( 12),pp 1581-158.
    [66]. K.Y.Zhu,A.Vassel,F.Brisset, etc., Nanostructure formation mechanism of alpha-titanium using SMAT[J]. Acta Materialia, 2004, 52 (14),pp 4101-4110.
    [67].张淑兰,陈怀宁,林泉洪等,工业纯钛的表面纳米化及其机制[J].有色金属, 2003, 55 (4),pp 5-8.
    [68].温爱玲,陈春焕,郑德有等,高能喷丸表面纳米化对工业纯钛组织性能的影响[J].表面技术, 2003, 32 (3),pp 16-18.
    [69]. Sun, C. Y.,Xie, J. J.,Wu, X. L., etc., In situ synthesis of nanocrystalline intermetallic compound layer during surface mechanical attrition treatment of Zirconium[J]. Transactions of Materials and Heat Treatment, 2004, 25 (5),pp 1242-124.
    [70].宋洪伟,刘志文,张俊宝等,表面纳米化40Cr钢的组织特征[J].机械工程材料, 2004, 28 (1),pp 35-37.
    [71].雍兴平,刘刚,吕坚等,低碳钢表面纳米化处理及结构特征[J].金属学报, 2002, 38 (2),pp 157-160.
    [72].冯淦,石连捷,吕坚等,低碳钢超声喷丸表面纳米化的研究[J].金属学报, 2000, 36 (3),pp 300-303.
    [73].赵新奇,徐政,张俊宝等, 40Cr钢表面纳米层的微观结构[J].材料科学与工程学报, 2003, 21 (5),pp 706-710.
    [74].张洪旺,刘刚,黑祖昆等,表面机械研磨诱导AISI304不锈钢表层纳米化1:组织与性能[J].金属学报, 2003, 39 (4),pp 342-346.
    [75].张洪旺,刘刚,黑祖昆等,表面机械研磨诱导AISI304不锈钢表层纳米化2:晶粒细化机理[J].金属学报, 2003, 39 (4),pp 347-350.
    [76]. Mabuchi, H.,Hasegawa, T.,Ishikawa, T., Metallurgical Features of Steel Plates with Ultra Fine Grains in Surface Layers and their Formation Mechanism[J]. ISIJ International 1999, 39 (5),pp 477-485.
    [77]. Hodgson, P. D.,Hickson, M. R.,Gibbs, R. K., The production and mechanical properties of ultrafine ferrite mater[J]. Materials Science Forum, 1998, 284-286 pp 63-72.
    [78]. Hodgson, P. D.,Hickson, M. R.,Gibbs, R. K., Ultrafine ferrite in low carbon steel[J]. Scripta Materialia, 1999, 40 (10),pp 1179-1184.
    [79]. Hasegawa, T.,Ishikawa, T.,Y. Nomiyama 2000.
    [80]. Huang, Y. D.,Yang, W. Y.,Sun, Z. Q., Formation of ultrafine grained ferrite in low carbon steel by heavy deformation in ferrite or dual phase region[J]. Journal of Materials Processing Technology, 2003, 134 (1),pp 19-25.
    [81]. Jiang, J.,Ding, Y.,Zuo, F., etc., Mechanical properties and microstructures of ultrafine-grainedpure aluminum by asymmetric rolling[J]. Scripta Materialia, 2009, 60 (10),pp 905-908.
    [82]. Cui, Q.,Ohori, K., Grain refinement of high purity aluminium by asymmetric rolling[J]. Materials Science and Technology, 2000, 16 pp 1095-1101.
    [83].郑巍黎.大变形异步ARB制备超细晶铜工艺及其组织演变研究[D].昆明:昆明理工大学2005.
    [84].陈爱平,异步轧制技术在窄带轧机改造中的应用前景[M].南昌:江西冶金出版社: 1987.
    [85].陶洪畴,苏敏文,不对称轧制原理[M].北京:北京科技大学出版社: 1991.
    [86].王延薄,齐克敏,金属塑性加工学-轧制理论与工艺[M].北京:冶金工业出版社: 2001.
    [87].王向红,胡宝明,不对称异步三辊轧机热连轧薄带的新技术[J].东北大学学报, 1995, 16 (1).
    [88].朱泉,轧钢理论文集[M].北京:冶金工业出版社: 1982.
    [89]. Hoffman, O.,Sachs, G., Introduction to the theory of plasticity for engineer[M]. New York: McGraw-Hill: 1953.
    [90].朱泉,异步轧制实验研究[J].钢铁, 1980, 15 (6),pp 1-6.
    [91].于九明,于大克,大延伸异步连轧实验研究[J].钢铁, 1999, 34 (2),pp 29-30.
    [92].吕爱强,蒋齐武,异步轧制对高纯铝箔冷轧织构的影响[J].金属学报, 2002, 38 (9),pp 974-978.
    [93]. Kim, W. J.,Lee, J. B.,Kim, W. Y., etc., Microstructure and mechanical properties of Mg-Al-Zn alloy sheets severely deformed by asymmetrical rolling[J]. Scripta Materialia, 2007, 56 pp 309-312.
    [94]. Huang, X.,Suzuki, K.,Watazu, A., etc., Microstructure and texture of Mg–Al–Zn alloy processed by differential speed rolling [J]. Journal of Alloys and Compounds, 2008, 457 (12),pp 408-412.
    [95]. Xia, W.,Chen, Z.,Chen, D., etc., Microstructure and mechanical properties of AZ31 magnesium alloy sheets produced by differential speed rolling [J]. Journal of Materials Processing Technology, 2009, 209 (1),pp 26-31.
    [96]. Sidor, J.,Mirou, A.,Petrov, R., etc., Microstructural and crystallographic aspects of conventional and asymmetric rolling processes[J]. Acta Materialia, 2008, 56 pp 2495-2507.
    [97]. Zuo, F. Q.,Jiang, J. H.,Shan, A. D., etc., Shear deformation and grain refinement in pure Al by asymmetric rolling[J]. Transactions of Nonferrous Metals Society of China, 2008, 18 (4),pp 774-777.
    [98].张文玉,刘先兰,陈振华等,非对称/对称轧制AZ31镁合金微观组织研究[J].材料工程, 2008, pp 25-28.
    [99].朱素琴,严红革,夏伟军等.,异步轧制AZ31镁合金板材的组织性能研究[J].湖南大学学报(自然科学版), 2008, 35 (8),pp 51-54.
    [100].刘兴,陈振华,夏伟军等,异步轧制对AZ31镁合金板材组织和性能的影响[J].热加工工艺, 2006, 35 (20),pp 22-25.
    [101]. X. Huang, K. S., A. Watazu, I. Shigematsu, N. Saito, Improvement of formability of Mg-Al-Zn alloy sheet at low temperatures using differential speed rolling[J]. Journal of Alloys and Compounds, 2009, 470 (1),pp 263-268.
    [102]. Jin, H.,Lloyd, D. J., Effect of a duplex grain size on the tensile ductility os an ultra-fine grained Al-Mg alloy, AA5754, produced by asymmetric rolling and annealing[J]. Scripta Materialia, 2004, 50 pp 1319-1323.
    [103]. Beausir, B.,Biswas, S.,Kim, D. I., etc., Analysis of microstructure and texture evolution in pure magnesium during symmetric and asymmetric rolling[J]. Acta Materialia, 2009, 57 pp 5061-5077.
    [104]. Kim, W. J.,Yoo, S. J.,Chen, Z. H., etc., Grain size and texture control of Mg–3Al–1Zn alloy sheet using a combination of equal-channel angular rolling and high-speed-ratio differential speed-rolling processes[J]. Scripta Materialia, 2009, 60 pp 897-900.
    [105].张锦刚,刘沿东,蒋奇武等,异步冷轧工艺对IF钢织构的影响[J].材料与冶金学报, 2006,5 (2),pp 129-132.
    [106].贺彤,刘沿东,蒋奇武等,异步轧制对IF钢冷轧及再结晶织构的影响[J].东北大学学报(自然科学版), 2008, 29 (4),pp 512-516.
    [107].邱常明,王彦凤,张贵杰,异步轧制对高锰钢组织与性能的影响[J].机械工程材料, 2008, 32 (2),pp 34-37.
    [108].吕爱强,张洋,李瑛等,异步轧制对表面纳米化316L不锈钢组织和性能的影响[J].金属学报, 2005, 41 (3),pp 271-276.
    [109].王廷溥,齐克敏,金属属性加工学——轧制理论与工艺[M].北京:冶金工业出版社: 2008.
    [110]. Sakai, T.,Saito, Y.,Hirano, K., etc., Deformation and recrystallization behavior of low carbon steel in high speed hot rolling[J]. Transactions ISIJ, 1988, 28 pp 1028-1035.
    [111].方建敏.纯铝及镁合金异步轧制[D].上海:上海交通大学材料科学与工程学院2006.
    [112]. Kim, K. H.,Lee, D. N., Analysis of deformation textures of asymmetrically rolled aluminum sheets[J]. Acta Materialia, 2001, 49 pp 2583-2595.
    [113]. Lee, J. K.,Lee, D. N., Texture control and grain refinement of AA1050 Al alloy sheets by asymmetric rolling[J]. International Journal of Mechanical Sciences, 2008, 50 pp 869-887.
    [114]. Lee, S. H.,Lee, D. N., Analysis of deformation textures of asymmetrically rolled steel sheets[J]. International Journal of Mechanical Sciences, 2001, 43 pp 1997-2015.
    [115]. Wauthier, A.,Regle, H.,Formigoni, J., etc., The effects of asymmetrical cold rolling on kinetics, grain size and texture in IF steels[J]. Materials Characterization, 2009, 60 (2),pp 90-95.
    [116]. Jin, H.,Lloyd, D. J., Evolution of texture in AA6111 aluminum alloy after asymmetric rolling with various velocity ratios between top and bottom rolls[J]. Materials Science and Engineering A, 2007, 465 pp 267-273.
    [117]. Sha, Y. H.,Zhang, F.,Zhou, S. C., etc., Improvement of recrystallization texture and magnetic property in non-oriented silicon steel by asymmetric rolling[J]. Journal of Magnetism and Magnetic Materials, 2008, 320 pp 393-396.
    [118].刘刚,王福,齐克敏等,异步轧制取向硅钢中织构沿板厚的分布与发展[J].金属学报, 1997, 33 (4),pp 364-369.
    [119].张正贵,祝晓波,刘沿东等,形变对无取向硅钢冷轧织构的影响[J].钢铁研究学报, 2008, 20 (5),pp 41-44.
    [120]. Delo, D. P.,Semiatin, S. L., Finite-element modeling of nonisothermal equal-channel angular extrusion[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Sciences, 1999, 30 (5),pp 1391-1402.
    [121]. Srinivasan, R., Computer simulation of the equichannel angular extrusion (ECAE) process[J]. Scripta Materialia, 2001, 44 (1),pp 91-96.
    [122]. T.Suo,Li, Y.,Gui, Y., etc., The simulation of deformation distribution during ECAP using 3D finite element method[J]. Materials science and engineering. A, 2006, 432 (1-2),pp 269-274.
    [123]. Figueiredoa, R. B.,Pinheirob, I. P.,Aguilarc, M. T. P., etc., The finite element analysis of equal channel angular pressing (ECAP) considering the strain path dependence of the work hardening of metals [J]. Journal of materials processing Technology, 2006, 180 (1-3),pp 30-36.
    [124]. J.Y.Suh,Kim, H. S.,Park, J. W., etc., Finite element analysis of material flow in equal channel angular pressing[J]. Scripta Materialia, 2001, 44 (4),pp 677-681.
    [125]. Kim, H. S., Finite element analysis of deformation behaviour of metals during equal channel multi-angular pressing[J]. Materials Science and Engineering A, 2002, 328 (1-2),pp 317-323.
    [126].孟卫红,任富寰,景安临等,异步轧制的过程的有限元模拟[J].山西冶金, 2002, 88 (4),pp18-21.
    [127].朱有利,龚永平,康永林,带材异步冷轧时大变形弹塑性有限元模拟和实验[J].钢铁研究学报, 1996, 8 pp 22-25.
    [128]. Ji, Y. H.,Park, J. J., Development of severe plastic deformation by various asymmetric rolling processes[J]. Materials Science and Engineering A, 2009, 499 (1-2),pp 14-17.
    [129]. Hwang, Y. M.,Tzou, G. Y., Analytical and experimental study on asymmetrical sheet rolling [J]. International Journal of Mechanical Sciences, 1997, 39 (3),pp 289-303.
    [130]. Ji, Y. H.,Park, J. J.,Kim, W. J., Finite element analysis of severe deformation in Mg-3Al-1Zn sheets through differential-speed rolling with a high speed ratio[J]. Materials Science and Engineering A, 2007, 454-455 pp 570-574.
    [131].陈文起,异步轧制的钢塑性有限元分析[J].福州大学学报, 1988, (1),pp 64-68.
    [132]. Suryanarayana, C., The structure and properties of nanocrystalline materials: issues and concerns[J]. JOM, 2002, 54 (9),pp 24-27.
    [133]. Tao, N. R.,Sui, M. L.,Lu, J., etc., Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability[J]. NanoStructured Materials, 1999, 11 (4),pp 433-440.
    [134]. Morris, D. G.,Munoz-Morris, M. A., Microstructure of severely deformed Al-3Mg and its evolution during annealing[J]. Acta Materialia, 2002, 50 (16),pp 4047-4060.
    [135]. Ivanisenko, Y.,Wunderlich, R. K.,Valiev, R. Z., etc., Annealing behaviour of nanostructured carbon steel produced by severe plastic deformation[J]. Scripta Materialia, 2003, 49 pp 947-952.
    [136]. Park, K. T.,Shin, D. H., Annealing behavior of submicrometer grained ferrite in a low carbon steel fabricated by severe plastic deformation [J]. Materials Science and Engineering A, 2002, A334 pp 79-86.
    [137]. Tsuji, N.,Ito, Y.,Saito, Y., etc., Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing[J]. Scripta Materialia, 2002, 47 pp 893-899.
    [138]. Roland, T.,Retraint, D.,Lu, K., etc., Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability[J]. Materials Science and Engineering A 2007, 445-446 pp 281-288.
    [139]. Zhang, H. W.,Hei, Z. K.,Liu, G., etc., Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment [J]. Acta Materialia, 2003, 51 pp 1871-1881
    [140]. Ni, Z.,Wang, X.,Wu, E., etc., Martensitic phase transformations in the nanostructured surface layers induced by mechanical attrition treatment[J]. J. Appl. Phys., 2005, 98 p 114319.
    [141]. Valiev, R. Z.,Kozlov, E. V.,Ivanov, Y. F., etc., Deformation behaviour of ultra-fine-grained copper[J]. Acta Metal Mater, 1994, 42 pp 2467-2475.
    [142]. Ma, E., Instabilities and ductility of nanocrystalline and ultrafine-grained metals[J]. Scripta Materialia, 2003, 49 pp 663-668.
    [143].宋洪伟,微米,亚微米与纳米超细晶粒钢的研究进展[J].世界科技研究与发展, 2002, 24 (5),pp 31-35.
    [144].刘明源.超细晶粒钢的组织及力学性能研究[D].上海:上海交通大学2004.
    [145]. Roland, T.,Retraint, D.,Lu, K., etc., Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability[J]. Materials Science and Engineering A, 2007, 445-446 pp 281-288.
    [146]. Wang, Y.,Chen, M.,Zhou, F., etc., High tensile ductility in a nanostructured metal[J]. Nature, 2002, 419 pp 912-913
    [147]. Wang, Y. M.,Ma, E., Three strategies to achieve uniform tensile deformation in a nanostructured metal[J]. Acta Materialia, 2004, 52 pp 1699-1709.
    [148]. Bilde-SΦrensen, J. B.,SchiΦtz, J., Nanocrystalline Get Twins[J]. Science, 2003, 300 p 1244.
    [149]. Koch, C. C., Optimization of strength and ductility in nanocrystalline and ultrafine grained metals[J]. Scripta Materialia, 2003, 49 pp 657-662.
    [150]. Han, B. Q.,Langdon, T. G., Achieving enhanced tensile ductility in an Al-6061 composite processed by severe plastic deformation[J]. Materials Science and Engineering A, 2005, 410-411 pp 430-434.
    [151].张建民,张瑞林,郑伟涛等, Al含量对Fe-Al无序固溶体性能的影响[J].材料科学与工艺, 3 (3),p 20-24.
    [152].毛卫民,张新明,晶体材料织构定量分析[M].北京:冶金工业出版社: 1993.
    [153].电子背散射分析方法通则[S]
    [154].廖乾初,吴自勤,电子背散射花样分析及其应用[J].物理, 1997, (3),pp 167-172.
    [155]. Wright, S. I.,Heidelbach, F., Microtextural Characterization of Annealed and Deformed Copper [J]. Materials Science Forum, 1994, 157-162 p 1313一1318.
    [156]. Hjelen, J.,Prsund, R.,Nes, E., On the Origin of Recrystallization Textures in Aluminum[J]. Acta Met Mat, 1991, 39 (7),pp 1377-1380.
    [157].丁毅,蒋建华,单爱党,异步冷轧纯铁回复与再结晶的EBSD研究[J].南京大学学报, 2009, 45 (2),pp 139-142.
    [158]. Valiev, R. Z.,Islamgaliev, R. K.,Alexandrov, I. V., Bulk nanostructured materials from severe plastic deformation[J]. Progress in Materials Science, 2000, 45 (2),pp 103-189.
    [159]. Prangnell, P. B.,Harris, C.,Roberts, S. M., Finite element modelling of equal channel angular extrusion[J]. Scripta Materialia, 1997, 37 (7),pp 983-989.
    [160]. Kamikawa, N.,Sakai, T.,Tsuji, N., Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel[J]. Acta Materialia, 2007, 55 pp 5873-5888.
    [161]. Shan, A.,Moon, I.,Ko, H., etc., Direct observation of shear deformation during equal channel angular pressing of pure aluminum[J]. Scripta Materialia, 1999, 41 (4),pp 353-357.
    [162]. Segal, V. M., Severe plastic deformation: simple shear versus pure shear[J]. Materials Science and Engineering A, 2002, 338 (1-2),pp 331-344.
    [163].毕继红,工程弹塑性力学[M].天津:天津大学出版社: 2003.
    [164].杨佳通,弹塑性力学[M].河北:高等教育出版社: 1980.
    [165]. Segal, V. M., Materials processing by simple shear[J]. Materials Science and Engineering A, 1995, 197 pp 157-164.
    [166]. Furukawa, M.,Iwahashi, Y.,Horita, Z., etc., The shearing characteristics associated with equal-channel angular pressing[J]. Materials Science and Engineering A, 1998, 257 pp 328-332.
    [167]. Lee, S. H.,Saito, Y.,Tsuji, N., etc., Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process[J]. Scripta Materialia, 2002, 46 pp 281-285.
    [168]. Kamikawa, N.,Sakai, T.,Tsuji, N., Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel[J]. Acta Materialia, 2007, 55 pp 5873-5888.
    [169]. Segal, V. M., Severe plastic deformation: simple shear versus pure shear[J]. Materials Science and Engineering A, 2002, 338 pp 331-344.
    [170]. Tao, N. R.,Wang, Z. B.,Tong, W. P., etc., An investigation of surface nanocrystallizationmechanism in Fe induced by surface mechanical attrition treatment[J]. Acta Materialia, 2002, 50 (18),pp 4603-4616.
    [171]. Iwahashi, Y.,horita, Z.,Nemoto, M., etc., The process of grain refinement in equal-channel angular pressing[J]. Acta Materialia, 1998, 46 (9),pp 3317-3331.
    [172].宋余九,金属的晶界与强度[M].西安:西安交通大学出版社: 1987.
    [173]. Gholinia, A.,Prangnell, P. B.,Markushev, M. V., The effect of strain path on the development of deformation structures in severely deformed aluminium alloys processed by ECAE[J]. Acta Materialia, 2000, 48 (5),pp 1115-1130.
    [174]. Frank, F. C. Processing symposium on plastic deformation of crystalline solid[D]. Pitsburgh, Washington D.C.: Camegie-Mellon University Department of Commerce 1950.
    [175]. Humphreys, F. J.,Hatherly, M., Recrystallization and Related Annealing Phenomena (Second Edition)[M]. Pergamon 2004.
    [176]. Han, B. Q.,Lavernia, E. J.,Mohamed, F. A., Mechanical properties of iron processed by severe plastic deformation[J]. Metal. Mater. Trans. , 2003, 34A (1),pp 71-83.
    [177]. Barret, C. S.,Massalski, T. B., Structure of Metals[M]. Oxford: Pergamon: 1980.
    [178]. Gibbs, M. A.,Hartwig, K. T.,Cornwell, L. R., etc., Texture formation in bulk iron processed by simple shear[J]. Scripta Materialia, 1998, 39 (12),pp 1699-1704.
    [179]. J.F.Peck,D.A.Thomas, A study of fibrous tungsten and iron[J]. Transactions of the Metallurgical Society of AIME, 1961, 221 pp 1240-1245.
    [180]. Lee, S. H.,Lee, D. N., Analysis of deformation textures of asymmetrically rolled steel sheets[J]. International Journal of Mechanical Sciences, 2001, 43 (9),pp 1997-2015.
    [181]. Lee, D. N.,Jeong, H. T., The evolution of the Goss texture in silicon steel[J]. Scripta Materialia, 1998, 38 (8),pp 1219-1223.
    [182]. Lee, J.-K.,Lee, D. N., Texture control and grain refinement of AA1050 Al alloy sheets by asymmetric rolling[J]. International Journal of Mechanical Sciences, 2008, 50 (5),pp 869-887.
    [183]. Sung, J. K. Method of forming {100} texture on surface of iron or iron-base alloy sheet[P]. 2006.
    [184]. Tomida, T., A new process to develop (100) texture in silicon steel sheets[J]. Journal of Materials Engineering and Performance, 1996, 5 (3),pp 316-322.
    [185].王昭东,郭艳辉,王国栋,高强Ti - IF钢铁素体区热轧和冷轧过程织构演变规律[J].材料科学与工艺, 2009, 17 (1),pp 75-79.
    [186].刘刚,齐克敏,王福等,异步轧制速比对3%硅钢只够转变的影响[J].金属学报, 1998, 34 (4),pp 400-405.
    [187].刘刚,齐克敏,王福等,剪切变形对取向硅钢织构和磁性的影响[J].钢铁, 2000, 35 (4),pp 40-43.
    [188].张芳,周世春,沙玉辉等,异步轧制下无取向硅钢的冷轧织构[J].东北大学学报, 2007, 28 (11),pp 1564-1567.
    [189]. Leber, S., Cylindrical Texture in Tungsten and other Body Centered Cubic Metals[J]. Transactions of the ASM, 1961, 53 pp 697-713.
    [190]. Chen, L.,Shi, Q.,Chen, D., etc., Research of textures of ultrafine grains pure copper produced by accumulative roll-bonding [J]. Materials Science and Engineering: A, 2009, 508 (1-2),pp 37-42.
    [191]. Landgraf, F. J. G.,Yonamine, T.,Takanohashi, R., etc., Magnetic properties of silicon steel with as-cast columnar structure[J]. Journal of Magnetism and Magnetic Materials, 2003, 254-255 pp 364-366.
    [192]. Park, J. Y.,Oh, K. H.,Ra, H. Y., Microstructure and crystallographic texture of strip-cast 4.3wt%Si steel sheet[J]. Scripta Materialia, 1999, 40 (8),pp 881-885.
    [193]. Talowski, c.,Waeckerle, T., The development of {100} texture in Fe 3% Si electrical sheets[J]. IEEE Transactions on magnetics, 1996, 32 (5),pp 4845-4847.
    [194]. Kim, K. H.,Lee, D. N., Anolysis of deformation textures of asymmetrically rolled aluminium sheets[J]. Acta Materialia, 2001, 49 (13),pp 2583-2595.
    [195].李志超,杨平,颜孟奇等,电工钢中{100}织构的演变规律[J].中国体视学与图像分析, 2009, 14 (3),pp 237-244.
    [196]. Park, Y. B.,Lee, D. N.,Gottstein, G., The evolution of recrystallization textures in body centred cubic metals[J]. Acta Materialia, 1998, 46 (10),pp 3371-3379.
    [197]. Lee, D. N., The evolution of recrystallization textures from deformation textures[J]. Scripta Metallurgica et Materialia, 1995, 32 (10),pp 1689-1694.
    [198]. Park, Y. B.,Lee, D. N.,Gottstein, G., A model of the development of recrystallization textures in body centered cubic metals[J]. Materials Science and Engineering A, 1998, 257 pp 178-184.
    [199].杨平,电子背散射衍射技术及其应用[M].北京:冶金工业出版社: 2007.
    [200].毛为民,杨平,陈冷,材料织构分析原理与检测技术[M].北京:冶金工业出版社: 2008.
    [201]. Gleiter, H., Nanocrystalline materials[J]. Progress in Materials Science, 1989, 33 (4),pp 223-315.
    [202]. Ma, E., Eight Routes to Improve the Tensile Ductility of Bulk Nanostructured Metals and Alloys[J]. Journal of Materials 2006, pp 49-53.
    [203]. Li, H. Q.,Ebrahimi, F., Transition of deformation and fracture behaviors in nanostructured face-centered-cubic metals[J]. Appl. Phys. Lett. , 2004, 84 (21),pp 4307-4308.
    [204]. Sus-Ryszkowska, M.,Wejrzanowski, T.,Pakiela, Z., etc., Microstructure of ECAP severely deformed iron and its mechanical properties[J]. Materials Science and Engineering A, 2004, 369 (1-2),pp 151-156.
    [205]. Schafler, E.,Zehetbauer, M.,Borbely, A., etc., Dislocation densities and internal stresses in large strain cold worked pure iron[J]. Mater. Sci. Eng., 1997, A 234-236 pp 445-448.
    [206].钟群鹏,赵子华,断口学[M].北京:高等教育出版社: 2006.
    [207]. Han, B. Q.,Lavernia, E. J.,Mohamed, F. A., Dislocation structure and deformation in iron processed by equal-channel angular pressing[J]. Matallurgical and Materials Transactions A, 2004, 35 pp 1343-1350.
    [208]. Zhao, M.,Li, J. C.,Jiang, Q., Hall-Petch relationship in nanometer size range[J]. Journal of Alloys and Compounds, 2003, 361 (1-2),pp 160-164.
    [209]. Carlton, C. E.,Ferreira, P. J., What is behind the inverse Hall-Petch effect in nanocrystalline materials?[J]. Acta Materialia, 2007, 55 (11),pp 3749-3756.
    [210]. Conrad, H.,Narayan, J., On the grain size softening in nanocrystalline materials[J]. Scripta Materialia, 2000, 42 (11),pp 1025-1030.
    [211]. Giga, A.,Kimoto, Y.,Takigawa, Y., etc., Demonstration of an inverse Hall-Petch relationship in electrodeposited nanocrystalline Ni-W alloys through tensile testing[J]. Scripta Materialia, 2006, 55 (2),pp 143-146.
    [212]. Hansen, N., Polycrystalline strengthening[J]. Metallurgical and Materials Transactions A, 1985, 16 (12),pp 2167-2190.
    [213]. Bergstrom, Y.,Hallen, H., Hall-Petch relationship of iron and steel[J]. Metal Science, 1983, 17 pp 341-347.
    [214]. Ma, E., Instabilities and ductility of nanocrystalline and ultrafine-grained metals[J]. Scripta Materialia, 2003, 49 (7),pp 663-668.
    [215].刘明源.超细晶粒钢的组织及力学性能研究[D].上海:上海交通大学材料科学与工程学院2004.
    [216]. Wei, Q.,Jia, D.,Ramesh, K. T., etc., Evolution and microstructure of shear bands in nanostructured Fe[J]. Applied Physics Letters, 2002, 81 (7),pp 1240-1242.
    [217]. Jia, D.,Ramesh, K. T.,E.Ma, Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron[J]. Acta Materialia, 2003, 51 pp 3495-3509.
    [218]. Wang, Y. M.,Ma, E., Three strategies to achieve uniform tensile deformation in a nanostructured metal[J]. Acta Materialia, 2004, 52 (6),pp 1699-1709.
    [219]. Meyers, M. A.,Mishra, A.,Benson, D. J., Mechanical properties of nanocrystalline materials[J]. Progress in Materials Science, 2006, 51 (4),pp 427-556.
    [220]. Wei, Q., Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses[J]. Journal of Materials Science, 2007, 42 (5),pp 1709-1727.
    [221]. E.W., H., Theory of the tensile test [J]. Acta Metall 1967, 15 pp 351-355.
    [222]. Jia, D.,Wang, Y. M.,Ramesh, K. T., etc., Deformation behavior and plastic instabilities of ultrafine-grained titanium[J]. Appl. Phys. Lett. , 2001, 79 pp 611-613.
    [223]. Wei, Q.,Kecskes, L.,Jiao, T., etc., Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation[J]. Acta Materialia, 2004, 52 pp 1859-1869.
    [224]. Wei, Q.,Jia, D.,Ma, E., etc., Evolution and microstructure of shear bands in nanostructured Fe[J]. Appl. Phys. Lett., 2002, 81 pp 1240-1242.
    [225]. Ma, E., Instabilities and ductility of nanocrystalline and ultrafine-grained metals[J]. Scr. Mater., 2003, 49 pp 663-668.
    [226]. Carreker, R. P. J.,Hibbard, W. R. J., Tensile Deformation of High-purity Copper as a Function of Temperature[J]. Acta Metallurgica, 1953, 1 p 657.
    [227]. Chen, J.,Lu, L.,Lu, K., Hardness and strain rate sensitivity of nanocrystalline Cu [J]. Scripta Materialia, 2006, 54 (11),pp 1913-1918
    [228]. Wei, Q.,Cheng, S.,Ramesh, K. T., etc., Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals [J]. Mater. Sci. Eng., 2004, A 381 pp 71-79.
    [229]. Duesbery, M. S.,Vitek, V., Plastic anisotropy in bcc transition metals[J]. Acta Materialia, 1998, 46 pp 1481-1492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700