用户名: 密码: 验证码:
机械合金化法制备超细碳化铌颗粒的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了以铌粉和石墨粉为原料,利用机械合金化(高能球磨)法合成制备超细碳化铌粉体材料的可行性。系统地分析了主要的球磨工艺参数对球磨过程及球磨产物的影响规律,提出了利用合金化的方法调整碳化铌粉体材料密度的技术途径,开展了通过向碳化铌粉末中加入碳化钒粉末,利用球磨法降低碳化铌粉体材料密度的试验研究。进行了向碳化铌粉末中加入金属粉末,利用球磨法探索一种包覆金属粉末的方法。
     研究结果表明:利用机械合金化法,以铌粉和石墨为原料,球料比30:1、球磨转速300r/min、球磨20h合成制备出超细碳化铌颗粒。在球磨过程中,工艺参数是决定机械合金化的关键。合成制备碳化铌颗粒的实验中,添加1.5%的过程控制剂石墨,使合成制备碳化铌的时间缩短了10h,同时添加过程控制剂球磨得到的粉末粒度更加均匀。当填充率为0.5时球磨的效果好。X射线衍射分析结果说明球磨过程中NbC的形成是靠C原子向Nb晶体中的扩散固溶形成的,是随着球磨时间的增加逐渐形成的。通过JADE软件分析可知,合成制备碳化铌的中间产物依次为Nb2C、Nb4C3、Nb6C5,最后得到NbC。合成制备碳化铌的机理是扩散机制和固溶机制共同作用的结果。碳化铌粉末和碳化钒粉末混合球磨得到的粉末的密度比纯碳化铌粉末的密度小,因此该方法可用来调整碳化铌的密度。随着加入VC粉末比例的增加,所获得的(Nb,V)C复合碳化物粉末的密度减小。碳化铌粉末和金属粉末球磨的方法不能使金属粉末包覆在碳化铌粉末的表面。
This paper studies the feasibility of preparation superfine carbonization niobium powder materials, using mechanical alloying method (also called high-energy ball milling method) and using niobium-based powder and graphite powder as raw materials. It systematically analyses the influence law of the main ball milling process parameters on the ball milling process and ball milling products. It puts forward the technical ways of adjusting carbonization niobium powder materials density and carries out reducing carbonization niobium powder materials density by adding carbonization vanadium powder, using the high-energy ball milling method. It explores a method of metal powder coated, by adding metal powder to the carbonization niobium powder and also using the above method.
     The research results indicate that mechanical alloying method can be used for synthesizing ultrafine NbC powder. Process parameters: niobium-based powder and graphite powder as raw materials, ball powder ratio 30:1, ball-milling speed 300r/min and milling time 20 hours. Process parameters are key to mechanical alloying method during ball-milling process. If the quality of process control agent—graphite is 1.5% of powder, the time of synthetic preparation carbonization niobium will shorten 10 hours. Process control agent makes particle size distribution more uniform in the experiments of synthetic preparation carbonization niobium particle. The ball milling results are better when filling rate is 0.5. X-ray diffraction analysis results show that carbonization niobium is formed by C atoms to Nb crystals in diffusion-solution during ball-milling process. The formation of NbC is gradual with an increase in milling time. The JADE software analysis shows that the intermediate products of synthesizing ultrafine NbC powder, in order Nb2C, among Nb4C3, Nb6C5, and finally getting NbC. The mechanisms of synthetic preparation NbC are diffusion mechanism and solid solution mechanism. The density of ball milling NbC and VC powder mixture is smaller than of NbC. This method can be used for adjusting density of NbC. With the increase of joining VC powder proportion, the density of (Nb,V)C composite carbide powder decreases. The way of ball milling carbonization niobium and metal powder can not make metal powder coat on the surface of NbC powder.
引文
[1] KOC. RASIT, K. K. SUNEEL. Tungsten carbide (WC) synthesis from novel precursors. Joumal of the European Ceramic Society, 2000, 20: 1859-1869
    [2]周永欣. SiC颗粒增强钢基表面复合材料及耐磨性研究.铸造技术, 2007, 28(2): 171-174
    [3] K. DAS. BANDYOPADHYAY. Effect of form of carbon on the microstructure of in situ确synthesized TiC-reinforced iron-based composite. Materials Letters, 2004, 58(12-13): 1877-1880
    [4]席俊杰,王利秋.原位反应热压烧结SiC/MoSi2复合材料的力学性能研究.材料导报, 2009, 23(8): 58-65
    [5] K. Q. FENG. In situ synthesis of TiC/Fe composites by reaction casting. Materials and Design, 2005, 26(1): 37-44
    [6] M. ZHANG, Y. W. YAN, K. CUI, et al. Effect of matrix composition on the microstructure of in situ synthesized TiC particulate reinforced iron-based composites. Materials Letter, 2003, 57(21): 3175-3181
    [7] Y. S. WANG. In situ production of vanadium carbide particulates reinforced iron matrix surface composite by cast-sintering. Materials and Design, 2007, 28(7): 2202-2206
    [8]熊容廷.原位合成VC/Fe复合材料的微观组织及性能.现代铸铁, 2004, (6): 23
    [9] X. R. YAO. Wear resistance and corrosion resistance of VCP particle reinforced stainless steel composites. Transactions of Nonferrous Metals Society of China (English Edition), 2005, 15(5): 1003-1008
    [10] K. KAMBAKAS. Solidification of high-Cr white cast iron-WC particle reinforced composites. Materials Science and Engineering A, 2005, 413-414: 538-544
    [11] Y. P. SONG. Elevated temperature sliding wear behavior of WCP-reinforced ferrous matrix composites. Journal of Materials Science, 2008, 43(22): 7115-7120
    [12]曾绍连,李卫.碳化钨增强钢铁基耐磨复合材料的研究和应用.特种铸造及有色合金, 2007, 27(6): 441-444
    [13] J. A. FERREIRA, M. A. PINA. AMARAL, F. V. ANTUNES. A study on the mechanical behavior of WC/Co hard metals. International Journal of Refractory Metals and Hard Materials, 2009, 27(1): 1-8
    [14]贺春林.碳化硅颗粒增强铝基复合材料的微结构和力学与腐蚀行为研究. [东北大学硕士论文]. 2002: 1-149
    [15] C. SURYANARAYANA. Mechanical alloying and milling. Progress in materials science, 2001, 46: 1-184
    [16]杨在志,傅小明.纳米WC-Co复合粉的制备技术及研究现状. China tungsten Industry, 2010, 25(6): 35-37
    [17]金云学,张二林.自蔓延合成技术及原位自生复合材料.哈尔滨:哈尔滨工业大学出版社, 2002: 33-41
    [18] M. J. MAS-GUINDAL, L. CONTRERAS, X. TURRILLAS, et al. Self-propagating high-temperature synthesis of Tic WC composite materials. Journal of Alloys and Compounds, 2006, 419(1): 227-233
    [19]马秀华.低温液氮球磨制备5083铝合金及性能研究. [武汉理工大学硕士论文]. 2009: 3-5
    [20]文芳,朱敏.互不溶合金体系的机械合金化研究.自然科学进展, 2001, 10(10): 1026
    [21] M. S. EL-ESKANDARANY. Mechanical alloying for fabrication of advanced engineering materials. New York: William Andrew Publishing Norwich, 2001: 11
    [22]许灿辉,易丹青,吴春萍,等.机械球磨Ag-Zn合金粉末显微组织及内氧化性能.稀有金属材料与工程, 2010, 39(1): 85
    [23]张代东,范爱玲. MA过程中W-Cu系纳米粉末的X射线分析.铸造设备研究, 2001, (6): 14-16
    [24] C. SURYANARAYANA, E. IVANOV, V. VBOLDYREV. The science and technology of mechanical alloying. Materials Science and Engineering, 2001, A304-306(1-2): 151-158
    [25] M. UMEMOTO, Z. G. LIU, K. TSUCHIYA. The development of research and application of mechanical alloying. Journal of Japan Society of Powder and Powder Metallurgy, 2001, 48(10): 926-934
    [26] T. LASZLO. Self-sustaining reactions induced by ball milling. Progress in Materials Science, 2002, 47: 355-414
    [27]张先胜,冉广.机械合金化的反应机制研究进展.金属热处理, 2003, 28(6): 28-32
    [28]申坤,汪明朴,郭明星.制备Cu-TiB2合金高能球磨及后续热处理过程的研究.材料热处理学报, 2010, 31(5): 10-11
    [29]解全东.高能球磨制备碳化物及纳米复合材料的研究. [浙江大学硕士学位论文]. 2003: 22
    [30]林文松.机械合金化过程中的金属相变.粉末冶金技术, 2001, 19(3): 49
    [31]郑磊,徐庭栋. NiCrMoV钢中铬和氮的非平衡晶界共偏聚.钢铁研究学报, 2007, 19(3): 49-52
    [32]余立新,李晨辉,熊惟皓,等.机械合金化过程理论模型研究进展.材料导报, 2008, 16: 8-11
    [33] P. P. CHATTOPADHYAY, I. MANNA, S. TALAPATRA, et al. A mathematical analysis of milling mechanics in a planetary ball mill. Mater Chem. Phys, 2001, 68: 8
    [34] J. SCHILZ. Internal kinematics of tumbler and planetary ball mills: A mathematical model for the parameter setting. Mater Trans JIM, 1998, 39: 1152
    [35]柳林.机械驱动下材料的亚稳相变. [华中理工大学博士论文]. 1999: 26
    [36]王夏冰.磨球直径和添加剂对行星球磨行为的影响.机床与液压, 2002, 6: 276-277
    [37]白富栋,柴宗霞,李廷举.高能球磨制备镍铝合金粉的工艺研究.中国粉体工业, 2008, 5(2):6
    [38]李达人,蔡一湘,王尔德.机械球磨Ti/Al复合粉反应烧结的膨胀与收缩.材料研究与应用, 2010, 4(65): 518
    [39] J. M. TAO, X. K. ZHU, C. J. LI, et al. Au-Sn Alloy Solder Preparation by High Energy Ball Milling. Nonferrous Metals, 2010, 62(1): 36-37
    [40]万红敬,王晓梅,黄红军.机械球磨制备快速铁系吸氧剂.包装工程, 2010, 31(11): 67-69
    [41]马明亮,郑修麟,刘新宽.球料比对高能球磨固态还原燃烧反应的影响.热加工工艺, 2002(2): 18-20
    [42]袁泉,郑勇.机械合金化工艺参数对最终生产产物的影响.三峡大学学报, 2003, 25(4): 344-346
    [43]陈振华,陈鼎.机械合金化与固液反应球磨.北京:化学工业出版社, 2005: 11
    [44]赖金权,王蕾,许伯藩,等.过程控制剂在高能球磨法制备SiC?Al复合粉末中的作用研究.武汉科技大学学报, 2007, 30(1): 20-22
    [45]范景莲,黄伯云,曲选辉,等.高能球磨合成W-Ni-Fe纳米符合粉末特性.稀有金属材料与工程, 2001, 30(3): 208-211
    [46]陈秀娟,李泽敏,李建伟.球磨参数对机械合金化制备Ti-Mg系合金的影响.材料热处理技术, 2008, 6
    [47]李京徽.机械合金化制备Cu-TiB2复合材料的工艺及性能研究. [合肥理工大学硕士论文]. 2009: 10
    [48]万小金.球磨机合理装球的计算方法.金属矿山, 2001, 11: 23-26
    [49] L. LIU, S. CASADIO, M. MAGINI, et al. Solid state reactions of V75Si25 driven by mechanical alloying. Materials Science Forum, 1997, 235-238: 163-168
    [50]庄健,刘勇兵,曹占义,等.磨球直径对机械合金化合成TiC反应过程的影响.吉林大学学报, 2009, 39(1): 61-65
    [51] L. TAKACE, M. PARDAVI-HORVATH. Nanocomposite formation in the Fe3O4-Zn system by reaction milling. Journal of Applied Physics, 1994, 75(10): 5864-5866
    [52]范景莲,黄伯云,汪登龙.过程控制剂对机械合金化过程与粉末特征的影响.粉末冶金工业, 2002, 12(2): 7-12
    [53]闫石. CVD金刚石膜热化学抛光盘的研制. [大连理工大学硕士论文]. 2009: 31
    [54]刘炜.有机插层蛭石的制备及其在天然橡胶和尼龙中的应用研究. [华东理工大学硕士论文]. 2005: 28
    [55]杨道媛,马成良,孙宏魏,等.马尔文激光粒度分析仪检测方法及其优化研究.中国粉体技术, 2002, 8(5): 27-29
    [56] C. SURYANARAYANA. Nanocrystalline materials. International Materials Reviews, 1995, 40(2): 41-64
    [57]王尔德,刘京雷,刘祖岩.机械合金化诱导固溶度扩展机制研究进展.粉末冶金技术, 2002, 20(2): 109-112
    [58]方莹,张少明,刘剑华.搅拌磨制备超细粉体粉磨工艺的研究.中国粉体技术, 2001, 7: 6-14
    [59]朱心昆,赵昆渝,程抱昌.高能球磨制备纳米TiC粉末.中国有色金属学报, 2001, 11(2): 269-272
    [60] H. T. YUAN, Q. D. LI, H. N. SONG. Electrochemical characteristics of Mg2Ni-type alloys prepared by mechanical alloying. Journal of Alloys and Compounds, 2003, 353: 322-326
    [61] S. S. HAN, H. Y. LEE, N. H. GOO. Improvement of electrode performances of Mg2Ni by mechanical alloying. Journal of Alloys and Compounds, 2002, 330-332: 841-845
    [62] M. JURCAYK, L. SMARDZ, K. SMARDZ. Nanocrystalline LaNi5-type electrode materials for Ni-MHx batteries. Journal of Solid State Chemistry, 2003, 171: 30-37
    [63]董仕节,史耀武. Cu-Al-B2O3-TiO2粉末机械合金化.中国有色金属学报, 2002, 12(4): 693-699
    [64] T. TAKAHASHI, Y. HASHIMOTO. Preparation of dispersion strengthen coppers with NbC and TaC by mechanical alloying. Materials Transactions JIM, 1991, 32(4): 389-346
    [65]王孟君,罗云,刘心宇,等.高能球磨制备纳米级WC/Cu复合粉末的研究.金属热处理, 2004, 29(9): 10-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700