用户名: 密码: 验证码:
基于多特征集成的SAR图像分割算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着合成孔径雷达(SAR)系统的迅速发展,获得的SAR图像数据也越来越多,而对SAR图像理解与解译能力则相对滞后。SAR图像分割是SAR图像解译的关键部题之一,也是SAR图像自动理解与解译的基础和前提,受到各国研究者的广泛关注,成为近年来的研究热点。相比于其它种类图像(如光学或红外图像),SAR图像所固有的特点(如相干斑噪声明显,同类目标差异较大,异类目标非常接近,多尺度目标的同时存在,数据规模庞大等)给分割工作带来了严峻的挑战。因此,开展SAR图像分割问题的研究对于促进SAR技术的发展具有重要意义。
     本论文针对SAR图像的特点,从特征提取到算法设计,完整的对SAR图像分割问题进行研究,提出了多种基于多特征集成的SAR图像分割算法。本论文主要创新点概括如下:
     1.提出了一种基于上下文分析的非均衡合并SAR图像分割算法。该算法采用了自底向上(Bottom-up)和自上而下(Top-down)相结合的策略。在自底向上方面,本算法集成了多种SAR图像特征,这些特征从不同的角度出发来刻画和表示SAR图像中的目标;在自上而下方面,本算法根据格式塔理论,提出了三条规则来对超像素的上下文进行分析,对不同的特征进行组织和集成。这三条规则体现了借鉴于认知心理学的先验知识,实现了一种新颖的、有效的方法来对超像素的上下文进行建模,是对超像素合并的一种自上而下的全局性约束。根据所提出的上下文和多种图像特征,本算法设计了两阶段的合并策略,包括:1)粗合并阶段(Coarse Merging Stage,CMS);2)细合并阶段(Fine Merging Stage,FMS)。这种策略能够在算法的效率和准确性之间做到很好的平衡。实验表明CMS算法能够快速的合并大量具有歧义的超像素,而FMS能够获得更加准确的分割结果。
     2.提出了一种基于特征子空间迭代优化的SAR图像分割算法,该算法具有以下特点:1)集成了多种SAR图像特征,以准确的表示SAR图像中的不同目标;2)提出了一种分阶段集成的相似度计算方法,该方法分别在特征水平(Feature Level)和相似度水平(Similarity Level)计算基于独立特征的相似度和基于多特征集成的相似度,从而有效的避免不同特征、不同维数之间的相互影响,提高超像素之间相似度计算的准确性;3)提出了基于偏好的自适应空间约束项,该空间约束项能够根据图像中上下文的内容自适应的计算超像素与其上下文邻域的空间关系,使超像素更接近于上下文中的同类目标,可以避免传统平均策略对图像细节的损失,从而使分割结果更加准确、更具鲁棒性。4)根据构造的目标函数,提出了基于特征子空间的迭代优化算法,该算法能够对不同特征子空间进行迭代优化,从而保持不同属性的特征在其对应子空间中的分布结构,避免相互的干扰,在保持算法分割效率的同时,提高算法迭代优化的准确度。
     3.对基于特征域的优化技术进行更深入的研究,提出了两种新的免疫克隆优化算法,分别是:免疫调节克隆选择算法和基于正交试验设计的克隆选择优化算法。然后,根据迭代最小化算法和免疫克隆选择优化算法各自的优势,本文将其进行了有机结合,提出了一种基于特征域的混合优化方法,并将其应用于SAR图像的分割问题中。这种方法既能够在各个特征子空间中沿着梯度最速下降的方向进行迭代搜索,也能够在整个高维空间中进行基于克隆选择优化的全局启发式搜索,从而同时兼有了迭代最小化算法的高效性,以及免疫克隆选择算法的鲁棒性。对比实验表明,这种混合的优化算法能够有效的提高算法的搜索精度,避免算法陷入局部极值,明显的提高了分割算法的性能。
     4.提出了一种基于空间域与特征域的无监督分层迭代算法,其主要出发点是结合基于特征域分割算法与基于空间域分割算法各自的优势,取长补短,以达到对SAR图像最佳分割的目的。在合并超像素时,该算法采用了分层迭代的策略:设计了一种改进的模糊c均值聚类算法,对超像素的外观特征进行迭代优化,当得到聚类结果后,对同类超像素的空间上下文进行分析,使用区域增长算法在全局范围内对相似的超像素进行合并,直到不存在满足合并条件的超像素为止,再重新进行聚类。这两个迭代子算法分层交替进行,既可以挖掘特征的分布结构信息,避免欠分割或过分割,又可以有效利用SAR图像的多种信息,提高算法对歧义目标的鲁棒性,从而实现了一种直接的、有效的方式来组织和集成SAR图像多种特征。
     5.提出了一种无监督两阶段SAR图像分割方法,对基于空间域的分割算法与基于特征域的分割算法进行结合。该算法包含两个阶段,分别为:1)粗合并阶段;2)细分类阶段。在第一阶段中,本文提出了一种新的基于上下文分析的区域迭代合并(Context-based Region Iterative Merging,CRIM)算法,以利用尽量多种的特征,来对超像素进行合并。该子算法的一个优势是能够快速的、对大量位于真实分割区域内部的超像素进行合并,从而提高特征表示的准确度,减轻细分类算法的计算负担。与传统的区域合并算法相比,CRIM算法能够集成更多的信息,并且采用了一种新颖的全局停止指标来决定CRIM算法的输出。这种指标能够从全局的角度出发,计算SAR图像分割区域的均匀一致性。在细分类阶段,本章采用了之前提出的基于混合优化策略的模糊聚类算法来对图像空间中剩余的超像素进行分类,以达到最终分割的目的。
With the rapid development of synthetic aperture radar (SAR) system, a great number of SAR image data is acquired. On the other side, the research on theory and technique of SAR image understanding and interpretation has fallen behind. SAR image segmentation is one of the key techniques for SAR image automatic interpretation, and is a current research hotspot attracting lots of scholars'attention. Comparing with other kinds of images (e.g., optical images, thermal infrared images, and so on), SAR images own their unique properties, which bring great challenge to the problem of SAR image segmentation. For example, SAR images are in some degree contaminated by speckle noise; SAR images usually consist of multi-scale objects even in the same scene; the exhibition of the same terrain target in SAR images is often nonstationary and has complex variation. Therefore, the research on SAR image segmentation is of great significance for the development of SAR system.
     Considering the characteristics of SAR images, this dissertation investigates SAR image segmentation from the feature extraction to the algorithm design, and proposes a few SAR images segmentation algorithms based on multi-feature ensemble, which can be summarized as follows:
     1. A context based hierarchical unequally merging for SAR image segmentation is proposed, which combines the top-down fashion and bottom-up fashion. Based on the Gestalt laws, three rules are proposed to represent superpixel context that realize a new and natural way to manage different kinds of features extracted from SAR images. The rules are prior knowledge from cognitive science and serve as top-down constraints to globally guide the superpixel merging. The features, including brightness, texture, edges, and spatial information, locally describe the superpixels of SAR images and are bottom-up forces. While merging superpixels, a hierarchical unequally merging algorithm is designed, which includes two stages:a) coarse merging stage; and b) fine merging stage. The merging algorithm unequally allocates computation resources so as to spend less running time in the superpixels without ambiguity and more running time in the superpixels with ambiguity. Experiments on synthetic and real SAR images indicate that this algorithm can make a balance between computation speed and segmentation accuracy.
     2. A fuzzy clustering based on subspace iterative optimization is proposed, which is characterized by following aspects:1) multiple features have been extracted to accurately describe the objects in SAR images.2) A novel similarity measure using hierarchical ensemble is presented, which integrate these features of different properties respectively in the feature level and the similarity level to avoid the mutual influences between features and maximize discrimination ability of the similarity measure between objects.3) A novel spatial neighbourhood term with preferences has been introduced to the objective function, which can compute the contextual relationship between superpixels more accurately and reasonable than the traditional average methods.4) According to the objective function, a subspace iterative optimization algorithm is designed,which can optimize the objective function iteratively in each feature subspace to avoid the mutual influences between different kinds of features and preserve the distribution structures of the data points in every subspace.
     3. Immune clonal selection optimization is carefully studied, and we propose two novel immune clonal selection optimization algorithms, which are:immunologic regulation clonal selection algorithm and clonal selection optimization based on orthogonal experiment design. Then, considering the advantages of the alternating minimization and the clonal selection optimization, we combine the two kinds of methods into a framework. The former one can iteratively search along the direction of the gradient steepest descent so as to accelerate the convergence speed of the algorithm; while the latter one can avoid premature convergence and find the global optimal solution with high probability so as to improve the robustness and accuracy of the algorithm.Experiments indicate that the proposed hybrid optimization method can achieve the best performance and is stable and effectiveness for various kinds of SAR images.
     4. A context based unsupervised hierarchical iterative algorithm for SAR segmentation is proposed, which combines the advantages of the cluster based segmentation algorithms and region growing based segmentation algorithms.While merging superpixels,this algorithm chooses a hierarchical iterative strategy:a modified fuzzy c-means algorithm is first designed to analyze the appearance-based features of superpixels, and then region iterative growing is used to merge the similar superpixels based on contextual analysis in space domain.After that, a new loop of the clustering algorithm and the region growing begins. These two iterative sub-algorithms perform hierarchically and realize a natural and effective way to use different kinds of information to segment SAR images. Experiments on synthetic and real SAR images indicate that the proposed algorithm can obtain excellent segmentation and make a good balance between region consistency and preserving image details.
     5. A two-stage algorithm for SAR image segmentation is presented by combing the advantages of the image-space based method and the feature-space based method. The algorithm consists of two stages:1) coarse merging stage, and2) fine classification stage. A context-based region iterative merging (CRIM) algorithm is proposed in the coarse merging stage, which can use many different kinds of information to guide the superpixel merging. The advantage of CRIM is that it can merge most of the superpixels inside the true segments at a very fast speed, so as to improve the accuracy of features and reduce the computation burden for the fine classification stage. Comparing with the traditional region merging algorithms, CRIM can take use of much more information, and a global halt index (HI) is carefully designed to decide the output of CRIM, which has global consistency in homogeneity. In the fine classification stage, the designed fuzzy clustering using hybrid optimization is adopted to produce the final segmentation result, which realizes the combination of the gradient-descent-direction search and the heuristic search. The former one can accelerate the algorithm's convergence speed; while the latter one can avoid premature and find the global optimal solution with high probability.
引文
[1]Wiley C.A. Synthetic aperture radars:A paradigm for technology evolution. IEEE Transactions on Aerospace and Electronic Systems.1985,vol.21,pp. 440-443.
    [2]刘保昌.合成孔径雷达解多普勒模糊与双基合成孔径雷达成像算法研究.博士学位论文.西安电子科技大学.2010.
    [3]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版,2005.
    [4]尹奎英.SAR图像处理及地面目标识别技术研究.博士学位论文.西安电子科技大学.2011.
    [5]吕雁.基于统计模型的SAR图像分割方法研究.博士学位论文.西安电子科技大学.2011.
    [6]田小林.SAR图像降斑与分割研究.博士学位论文.西安电子科技大学.2008.
    [7]焦李成,张向荣,侯彪,等.智能SAR图像处理与解译.北京:科学出版社,2008.
    [8]焦李成,王爽,侯彪.SAR图像理解与解译研究进展.电子学报.2005,vo1.33,pp.2423-2434.
    [9]宋建设,郑永安,袁礼海.合成孔径雷达图像理解与应用.北京:科学出版社,2008.
    [10]魏钟铨.合成孔径雷达卫星.北京:科学出版社,2001.
    [11]Berens P. Introduction to synthetic aperture radar (SAR). In:Proceedings of Advanced Radar Signal and Data Processing, NATO-RTO-EN-SET-086.2006, pp.3.1-3.14.
    [12]Henry J.C. The Lincoln Laboratory 35 GHz airborne SAR imaging radar system. In:Proceedings of National Telesystems Conference.1991,pp.353-358.
    [13]Rosario D.S. New automated terrain and feature extraction approach for the predator UAV TESAR ATR system. In:Proceedings of SPIE.1999, pp.47-55.
    [14]Tsunoda S.I., Pace F., Stence J., et al. Lynx:A high-resolution synthetic aperture radar. In:Proceedings of SPIE.1999, pp.20-27.
    [15]陶勇.知识辅助的SAR图像目标特性分析与识别研究.博士学位论文.国防科学技术大学.2010.
    [16]第二届中国合成孔径雷达会议论文集.南京,2005.
    [17]高贵.SAR图像目标ROI获取技术研究.博士学位论文.国防科技大学.2007.
    [18]贾承丽.SAR图像道路和机场提取方法研究.博士学位论文.国防科学技术大学.2006.
    [19]Zhang P., Li M., Wu Y., et al. Unsupervised multi-class segmentation of SAR images using fuzzy triplet Markov fields model. Pattern Recognition.2012, vol. 45, pp.4018-4033.
    [20]Xue J., Zhang Y., Lin X. Rayleigh-distribution based minimum error thresholding for SAR images. Journal of Electronics (China).1999, vol.16, pp. 336-342.
    [21]Zaart A.E., Ziou D., Wang S.R., et al. SAR images segmentation using mixture of Gamma distribution. In:Proceedings of Vision Interface'99. Trois-Rivieres, Quebec, Canada.1999, pp.125-130.
    [22]Bai Z.Y., Liu Z.F., He P.K. SAR image target segmentation based on entropy maximization and morphology. Journal of Systems Engineering and Electronics. 2004, vol.15, pp.484-487.
    [23]Han C.M., Guo H.D., Shao Y., et al. A method to segment SAR images based on histogram. In:Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Seoul, Korea(South).2005, pp.3694-3696.
    [24]Zhang X.R., Jiao L.C., Liu F., et al. Spectral clustering ensemble applied to SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing. 2008, vol.46, pp.2126-2136.
    [25]Liu H.Q., Zhao F., Jiao L.C. Fuzzy spectral clustering with robust spatial information for image segmentation. Applied Soft Computing.2012, vol.12,pp. 3636-3647.
    [26]Ma M., Liang J.H., Sun L., et al. SAR image segmentation based on SWT and improved AFSA. In:Proceedings of The Third International Symposium on Intelligent Information Technology and Security Informatics. Jinggangshan, China.2010, pp.146-149.
    [27]Karvonen J.A. Baltic sea ice SAR segmentation and classification using modified pulse-coupled neural networks. IEEE Transactions on Geoscience and Remote Sensing.2004, vol.42, pp.1566-1574.
    [28]Liu R.C., Zhang W., Jiao L.C., et al. A multiobjective immune clustering ensemble technique applied to unsupervised SAR image segmentation. In: Proceedings of The 2010 International Conference on Image and Video Retrieval. Xi'an, China.2010, pp.158-165.
    [29]Quan J.J., Wen X.B., Xu X.Q. Multiscale probabilistic neural network method for SAR image segmentation. Applied Mathematics and Computation.2008, vol. 205, pp.578-583.
    [30]Yang D.D., Jiao L.C., Gong M.G., et al. Artificial immune multi-objective SAR image segmentation with fused complementary features. Information Sciences. 2011, vol.181, pp.2797-2812.
    [31]Ma M., Liang J.H., Guo M., et al. SAR image segmentation based on artificial bee colony algorithm. Applied Soft Computing.2011, vol.11, pp.5205-5214.
    [32]Bhanu B., Fonder S. Functional templates-based SAR image segmentation. Pattern Recognition.2004, vol.37, pp.61-77.
    [33]Liu Z., Fan X.W., Lv F.Y. SAR image segmentation using contourlet and support vector machine. In:Proceedings of The Fifth International Conference on Natural Computation. Tianjin, China.2009, pp.250-254.
    [34]Han P., Zhang R., Su Z.G., et al. An iterative segmentation algorithm of SAR image based on support vector machine. In:Proceedings of The 2nd Asia-Pacific Conference on Synthetic Aperture Radar. Xi'an, Shannxi.2009, pp.676-679.
    [35]Akbarizadeh G A new statistical-based kurtosis wavelet energy feature for texture recognition of SAR images. IEEE Transactions on Geoscience and Remote Sensing.2012, vol.50, pp.4358-4368.
    [36]Ogo B., Haese-Coat V., Ronsin J. SAR image segmentation by mathematical morphology and texture analysis. In:Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Lincoln, USA.1996, pp.717-719.
    [37]Clausi D.A. Comparison and fusion of co-occurrence, Gabor and MRF texture features for classification of SAR sea ice imagery. Atmosphere-Ocean.2001, vol. 39, pp.183-194.
    [38]Kandaswamy U., Adjeroh D.A., Lee M.C. Efficient texture analysis of SAR imagery. IEEE Transactions on Geoscience and Remote Sensing.2005, vol.43, pp.2075-2083.
    [39]Kekre H.B., Gharge S., Sarode T.K. SAR image segmentation using vector quantization technique on entropy images. International Journal of Computer Science and Information Security.2010, vol.7, pp.276-282.
    [40]Du L.J. Texture segmentation of SAR images using localized spatial filtering. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium. University of Maryland, College Park, USA.1990, pp.1983-1986.
    [41]Frery A.C., Muller H.J., Yanasse C.C.F., et al. A model for extremely heterogeneous clutter. IEEE Transactions on Geoscience and Remote Sensing. 1997, vol.35, pp.648-659.
    [42]Mejail M.E., Jacobo-Berlles J.C., Frery A.C., et al. Classification of SAR images using a general and tractable multiplicative model. International Journal of Remote Sensing.2003, vol.24, pp.3565-3582.
    [43]Galland F., Nicolas J.M., Sportouche H., et al. Unsupervised synthetic aperture radar image segmentation using fisher distributions. IEEE Transactions on Geoscience and Remote Sensing.2009, vol.47, pp.2966-2972.
    [44]Carvalho E.A., Ushizima D.M., Medeiros F.N.S.,et al. SAR imagery segmentation by statistical region growing and hierarchical merging.Digital Signal Processing.2010, vol.20, pp.1365-1378.
    [45]Yu H., Zhang X.R., Wang S., et al. Context-based hierarchical unequal merging for SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing.2013, vol.51, pp.995-1009.
    [46]Dell'Acqua F., Gamba P., Odasso L., et al. Segment-based urban block outlining in high-resolution SAR images. In:Proceedings of 2009 Joint Urban Remote Sensing Event. Shanghai, China.2009, pp.1-6.
    [47]Cook R., McConnell I., Oliver C.J., et al. MUM (merge using moments) segmentation for SAR images. In:Proceedings of Conference on SAR Data Processing Remote Sensing. Rome, Italy.1994, pp.92-103.
    [48]Galland F., Bertaux N., Refregier P. Minimum description length synthetic aperture radar image segmentation. IEEE Transactions on Image Processing. 2003, vol.12, pp.995-1006.
    [49]Li W., Benie G.B., He D.C., et al. Watershed-based hierarchical SAR image segmentation. International Journal of Remote Sensing.1999, vol.20, pp. 3377-3390.
    [50]Yu Q., Clausi D.A. Joint image segmentation and interpretation using iterative semantic region growing on SAR sea ice imagery. In:Proceedings of The 18th International Conference on Pattern Recognition.2006, pp.223-226.
    [51]Liu X.G., Li Y.S., Gao W., et al. Oil spill detection analyses based on small patch mergence algorithm of SAR image. In:Proceedings of The 1st International Conference on Information Science and Engineering.2009, pp.1352-1355.
    [52]Tannous I., Arif J.P. SAR images segmentation using region growing approach. Quantitative Remote Sensing:An Economic Tool for The Nineties.1989, pp. 1209-1213.
    [53]Yang X.Z., Clausi D.A. SAR sea ice image segmentation based on edge-preserving watersheds. In:Proceedings of The Fourth Canadian Conference on Computer and Robot Vision.2007, pp.426-431.
    [54]Yu Q., Clausi D.A. SAR sea-ice image analysis based on iterative region growing using semantics. IEEE Transactions on Geoscience and Remote Sensing.2007, vol.45, pp.3919-3931.
    [55]Palenichka R., Hirose T., Lakhssassi A., et al. Sea ice segmentation of SAR imagery using multi-temporal and multi-scale feature extraction. In:Proceedings of The 2nd International Conference on Space Technology.2011, pp.1-4.
    [56]Shuai Y.M., Sun H., Xu G. SAR image segmentation based on level set with stationary global minimum. IEEE Geoscience and Remote Sensing Letters.2008, vol.5, pp.644-648.
    [57]Ayed I.B., Mitiche A., Belhadj Z. Multiregion level-set partitioning of synthetic aperture radar images. IEEE Transactions on Pattern Analysis and Machine Intelligence.2005, vol.27, pp.793-800.
    [58]Ayed I.B., Vazquez C., Mitiche A., et al. SAR image segmentation with active contours and level sets. In:Proceedings of IEEE International Conference on Image Processing.2004, pp.2717-2720.
    [59]Shuai Y.M., Sun H., Xu G A fast segmentation scheme based on level set for SAR images. In:Proceedings of The 1st Asian and Pacific Conference on Synthetic Aperture Radar.2007, pp.503-506.
    [60]Wang X.L., Li C.S. Multiphase segmentation of SAR images with level set evolution. In:Proceedings of WRI Global Congress on Intelligent Systems.2009, pp.447-452.
    [61]Marques R.C.P., Medeiros F.N., Santos Nobre J. SAR image segmentation based on level set approach and {cal G}_A^ O model. IEEE Transactions on Pattern Analysis and Machine Intelligence.2012, vol.34, pp.2046-2057.
    [62]Yang M. Y. Multiregion level-set segmentation of synthetic aperture radar images. In:Proceedings of The 16th IEEE International Conference on Image Processing. 2009, pp.1717-1720.
    [63]Cao Z.J., Pi Y.M., Yang X.B., et al. A variational level set SAR image segmentation approach based on statistical model. In:Proceedings of The 7th European Conference on Synthetic Aperture Radar.2008, pp.1-4.
    [64]Ganta R.R., Zaheeruddin S., Baddiri N., et al. Segmentation of oil spill images with illumination-reflectance based adaptive level set model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.2012, vol.5, pp.1394-1402.
    [65]Feng J.L., Cao Z.J., Pi Y.M. Multiphase SAR image segmentation with G?{0}-statistical-model-based active contours. IEEE Transactions on Geoscience and Remote Sensing.2013, vol.51, pp.4190-4199.
    [66]Li Y, Li C.L., Zhang Y.Z. Novel level set model for the image segmentation based on parzen-window. In:Proceedings of IEEE International Conference on Computer Science and Automation Engineering. Zhangjiajie.2012, pp.217-221.
    [67]Krinidis S., Chatzis V. A robust fuzzy local information c-means clustering algorithm. IEEE Transactions on Image Processing.2010, vol.19, pp. 1328-1337.
    [68]Cai W., Chen S.,Zhang D. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognition. 2007, vol.40, pp.825-838.
    [69]Chen S., Zhang D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics.2004, vol.34, pp. 1907-1916.
    [70]Kayabol K., Zerubia J. Unsupervised amplitude and texture classification of SAR images with multinomial latent model.IEEE Transactions on Image Processing.2013, vol.22, pp.561-572.
    [71]Fj(?)rtoft R., Delignon Y., Pieczynski W., et al. Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields. IEEE Transactions on Geoscience and Remote Sensing.2003, vol.41,pp. 675-686.
    [72]Derrode S., Pieczynski W. SAR image segmentation using generalized pairwise Markov chains. In:Proceedings of SPIEs International Symposium on Remote Sensing. Crete, Greece.2002, pp.22-27.
    [73]Ochilov S., Clausi D.A. Operational SAR sea-ice image classification. IEEE Transactions on Geoscience and Remote Sensing.2012, vol.50, pp.4397-4408.
    [74]Li Y., Li J., Chapman M.A. Segmentation of SAR intensity imagery with a voronoi tessellation, Bayesian inference, and reversible jump MCMC algorithm. IEEE Transactions on Geoscience and Remote Sensing.2010, vol.48, pp. 1872-1881.
    [75]Deng H., Clausi D.A. Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel Markov random field model.IEEE Transactions on Geoscience and Remote Sensing.2005, vol.43, pp.528-538.
    [76]Yu Q., Clausi D.A. IRGS:Image segmentation using edge penalties and region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence.2008, vol.30, pp.2126-2139.
    [77]Cao Y.F., Sun H., Xu X. An unsupervised segmentation method based on MPM for SAR images. IEEE Geoscience and Remote Sensing Letters.2005, vol.2, pp. 55-58.
    [78]Benboudjema D., Tupin F., Pieczynski W., et al. Unsupervised segmentation of SAR images using triplet Markov fields and Fisher noise distributions. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007.2007, pp.3891-3894.
    [79]Xia G.S., He C., Sun H. Integration of synthetic aperture radar image segmentation method using Markov random field on region adjacency graph. IET Radar, Sonar & Navigation.2007, vol.1, pp.348-353.
    [80]Kersten P.R., Lee J., Ainsworth T. Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering. IEEE Transactions on Geoscience and Remote Sensing.2005, vol.43, p.519.
    [81]Kersten P.R., Lee J., Ainsworth T., et al. Classification of polarimetric synthetic aperture radar images using fuzzy clustering. In:Proceedings of 2003 IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data. 2003, pp.150-156.
    [82]Bai Z.Y., Liu Z.F., He P.K. SAR image target segmentation based on entropy maximization and morphology. Journal of Systems Engineering and Electronics. 2004, vol.15, pp.484-487.
    [83]Smith D.M. Speckle reduction and segmentation of synthetic aperture radar images. International Journal of Remote Sensing.1996, vol.17, pp.2043-2058.
    [84]Kekre H.B., Gharge S., Sarode T.K. SAR image segmentation using vector quantization technique on entropy images. International Journal of Computer Science and Information Security.2010, vol.7, pp.276-282.
    [85]Clausi D.A. Comparison and fusion of co-occurrence, Gabor and MRF texture features for classification of SAR sea ice imagery. Atmosphere-Ocean.2001,vol. 39, pp.183-194.
    [86]Solberg A.H.S., Jain A.K. A study of the invariance properties of textural features in SAR images. In:Proceedings of 1995 IEEE International Geoscience and Remote Sensing Symposium. Firenze, Italy.1995, pp.670-672.
    [87]Karvonen J., Hallikainen M. Sea ice SAR classification based on edge features. In:Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium. Cape Town, South Africa.2009, pp.129-132.
    [88]Touzi R., Lopes A., Bousquet P. A statistical and geometrical edge detector for SAR images. IEEE Transactions on Geoscience and Remote Sensing.1988, vol. 26, pp.764-773.
    [89]Germain O., Refregier P. Edge location in SAR images:Performance of the likelihood ratio filter and accuracy improvement with an active contour approach. IEEE Transactions on Image Processing.2001, vol.10, pp.72-78.
    [90]Fj(?)rtoft R., Lopes A., Marthon P., et al. An optimum multiedge detector for SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing. 1998, vol.36, pp.793-802.
    [91]Zhang D.M., Fu M.S., Luo B. SAR image segmentation using kernel density estimation on region adjacency graph. In:Proceedings of The 2nd Asia-Pacific Conference on Synthetic Aperture Radar. Xi'an, China.2009, pp.668-671.
    [92]Benz U.C. Supervised fuzzy analysis of single-and multichannel SAR data. IEEE Transactions on Geoscience and Remote Sensing.1999, vol.37, pp. 1023-1037.
    [1]Zhang P., Li M., Wu Y., et al. Unsupervised multi-class segmentation of SAR images using fuzzy triplet Markov fields model. Pattern Recognition.2012, vol. 45, pp.4018-4033.
    [2]Zhang D.M., Fu M. S., Luo B. SAR image segmentation using kernel density estimation on region adjacency graph. In:Proceedings of The 2nd Asia-Pacific Conference on Synthetic Aperture Radar. Xi'an, China.2009, pp.668-671.
    [3]Yu Q., Clausi D.A. IRGS:Image segmentation using edge penalties and region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence.2008, vol.30, pp.2126-2139.
    [4]Xia G.S., He C., Sun H..Integration of synthetic aperture radar image segmentation method using Markov random field on region adjacency graph. IET Radar, Sonar& Navigation.2007, vol.1, pp.348-353.
    [5]Hanbury A. How do superpixels affect image segmentation? Progress in Pattern Recognition, Image Analysis and Applications.2008, vol.5197, pp.178-186.
    [6]He X., Zemel R., Ray D. Learning and incorporating top-down cues in image segmentation. In:Proceedings of Computer Vision'CECCV 2006.2006, vol.1, pp.338-351.
    [7]Hoiem D., Efros A.A., Hebert M. Automatic photo pop-up. ACM Transactions on Graphics.2005, vol.24, p.584.
    [8]Hoiem D., Efros A.A., Hebert M. Geometric context from a single image. In: Proceedings of 10th IEEE International Conference on Computer Vision. Beijing, China 2005, pp.654-661.
    [9]Keuchel J., Heiler M., Schnrr C. Hierarchical image segmentation based on semidefinite programming. Pattern Recognition.2004, vol.3175, pp.120-128.
    [10]Micusik B., Pajdla T. Multi-label image segmentation via max-sum solver. In: Proceedings of 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota, USA.2007, pp.1-6.
    [11]Mori G, Ren X., Efros A.A., et al. Recovering human body configurations: Combining segmentation and recognition. In:Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, D.C., USA.2004.
    [12]Ren X., Malik J. Learning a classification model for segmentation. In: Proceedings of 9th IEEE International Conference on Computer Vision. Nice, France.2003, pp.10-17.
    [13]Stawiaski J., Decencillre E. Region merging via graph-cuts. Image Analysis and Stereology.2008, vol.27, pp.39-45.
    [14]Comaniciu D., Meer P. Mean shift:A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence.2002, vol.24, pp.603-619.
    [15]Shi J.B., Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence.2000, vol.22, pp.888-905.
    [16]Felzenszwalb P.F., Huttenlocher D.P. Efficient graph-based image segmentation. International Journal of Computer Vision.2004, vol.59, pp.167-181.
    [17]Meyer F. An overview of morphological segmentation. International Journal of Pattern Recognition and Artificial Intelligence.2001, vol.15, pp.1089-1118.
    [18]Levinshtein A., Stere A., Kutulakos K.N., et al. TurboPixels:Fast superpixels using geometric flows. IEEE Transactions on Pattern Analysis and Machine Intelligence.2009, vol.31, pp.2290-2297.
    [19]Kersten P.R., Lee J., Ainsworth T. Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering. IEEE Transactions on Geoscience and Remote Sensing.2005, vol.43, p.519.
    [20]Kersten P., Lee J., Ainsworth T, et al. Classification of polarimetric synthetic aperture radar images using fuzzy clustering. In:Proceedings of 2003 IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data. 2003, pp.150-156.
    [21]Bai Z.Y., Liu Z.F., He P.K.. SAR image target segmentation based on entropy maximization and morphology. Journal of Systems Engineering and Electronics. 2004, vol.15, pp.484-487.
    [22]Smith D.M. Speckle reduction and segmentation of synthetic aperture radar images. International Journal of Remote Sensing.1996, vol.17, pp.2043-2058.
    [23]Du L.J. Texture segmentation of SAR images using localized spatial filtering. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium. University of Maryland, College Park, USA.1990, pp.1983-1986.
    [24]Liu Z., Fan X.W., Lv F.Y. SAR image segmentation using contourlet and support vector machine. In:Proceedings of The Fifth International Conference on Natural Computation. Tianjin, China.2009, pp.250-254.
    [25]Kekre H.B., Gharge S., Sarode T. K. SAR image segmentation using vector quantization technique on entropy images. International Journal of Computer Science and Information Security.2010, vol.7, pp.276-282.
    [26]Kandaswamy U., Adjeroh D.A., Lee M.C. Efficient texture analysis of SAR imagery. IEEE Transactions on Geoscience and Remote Sensing.2005, vol.43, pp.2075-2083.
    [27]Clausi D.A. Comparison and fusion of co-occurrence, Gabor and MRF texture features for classification of SAR sea ice imagery. Atmosphere-Ocean.2001, vol. 39, pp.183-194.
    [28]Ma M., Liang J.H., Sun L., et al. SAR image segmentation based on SWT and improved AFSA. In:Proceedings of The Third International Symposium on Intelligent Information Technology and Security Informatics. Jinggangshan, China.2010, pp.146-149.
    [29]Kekre H.B., Gharge S., Sarode T.K. SAR image segmentation using vector quantization technique on entropy images. International Journal of Computer Science and Information Security.2010, vol.7, pp.276-282.
    [30]Ogo B., Haese-Coat V., Ronsin J. SAR image segmentation by mathematical morphology and texture analysis. In:Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Lincoln, USA.1996, pp.717-719.
    [31]Solberg A.H.S., Jain A.K. A study of the invariance properties of textural features in SAR images. In:Proceedings of 1995 IEEE International Geoscience and Remote Sensing Symposium. Firenze, Italy.1995, pp.670-672.
    [32]Karvonen J., Hallikainen M. Sea ice SAR classification based on edge features. In:Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium. Cape Town, South Africa.2009, pp.129-132.
    [33]Dell'Acqua F., Gamba P., Odasso L., et al. Segment-based urban block outlining in high-resolution SAR images. In:Proceedings of 2009 Joint Urban Remote Sensing Event. Shanghai, China.2009, pp.1-6.
    [34]Touzi R., Lopes A., Bousquet P. A statistical and geometrical edge detector for SAR images. IEEE Transactions on Geoscience and Remote Sensing.1988, vol. 26, pp.764-773.
    [35]Germain O., Refregier P. Edge location in SAR images:Performance of the likelihood ratio filter and accuracy improvement with an active contour approach. IEEE Transactions on Image Processing.2001, vol.10, pp.72-78.
    [36]Fj(?)rtoft R., Lopes A., Marthon P., et al. An optimum multiedge detector for SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing. 1998, vol.36, pp.793-802.
    [37]Pavia I. Segment-based urban block outlining in high-resolution SAR images. In: Proceedings of Urban Remote Sensing Event,2009 Joint. Shanghai.2009.
    [38]Deng H., Clausi D.A. Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel Markov random field model. IEEE Transactions on Geoscience and Remote Sensing.2005, vol.43, pp.528-538.
    [39]Zhang X.R., Jiao L.C., Liu F., et al. Spectral clustering ensemble applied to SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing. 2008, vol.46, pp.2126-2136.
    [40]Tuceryan M., Jain A.K. Texture analysis. In:The Handbook of pattern recognition and computer vision.1998, pp.207-248
    [41]Clausi D.A., H. Deng. Design-based texture feature fusion using Gabor filters and co-occurrence probabilities. IEEE Transactions on Image Processing.2005, vol.14, pp.925-936.
    [42]Randen T., Husoy J.H. Filtering for texture classification:A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence.1999, vol.21, pp.291-310.
    [43]Clausi D.A. Comparison and fusion of co-occurrence, Gabor and MRF texture features for classification of SAR sea ice imagery. Atmosphere-Ocean.2001, vol. 39, pp.183-194.
    [44]Yu H., Zhang X.R., Wang S., et al. Context-based hierarchical unequal merging for SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing.2013, vol.51, pp.995-1009.
    [45]Jain A.K., Farrokhnia F. Unsupervised texture segmentation using Gabor filters. Pattern Recognition.1991, vol.24, pp.1167-1186.
    [46]Clausi D.A., Jernigan M. Designing Gabor filters for optimal texture separability. Pattern Recognition.2000, vol.33, pp.1835-1849.
    [47]Kayabol K., Zerubia J. Unsupervised amplitude and texture classification of SAR images with multinomial latent model. IEEE Transactions on Image Processing.2013, vol.22, pp.561-572.
    [48]Gonzalez R.C., Woods R.E. Digital Image Processing.2nd ed. London:Prentice Hall,2002.
    [1]Carvalho E.A., Ushizima D.M., Medeiros F.N.S., et al. SAR imagery segmentation by statistical region growing and hierarchical merging. Digital Signal Processing.2010, vol.20, pp.1365-1378.
    [2]Yu H., Zhang X.R., Wang S., et al. Context-based hierarchical unequal merging for SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing.2013, vol.51, pp.995-1009.
    [3]Dell'Acqua F., Gamba P., Odasso L., et al. Segment-based urban block outlining in high-resolution SAR images. In:Proceedings of 2009 Joint Urban Remote Sensing Event. Shanghai, China.2009, pp.1-6.
    [4]Cook R., McConnell I., Oliver C.J., et al. MUM (merge using moments) segmentation for SAR images. In:Proceedings of Conference on SAR Data Processing Remote Sensing. Rome, Italy.1994, pp.92-103.
    [5]Galland F., Bertaux N., Refregier P. Minimum description length synthetic aperture radar image segmentation. IEEE Transactions on Image Processing. 2003, vol.12, pp.995-1006.
    [6]Li W., Benie GB., He D.C., et al. Watershed-based hierarchical SAR image segmentation. International Journal of Remote Sensing.1999, vol.20, pp. 3377-3390.
    [7]Yu Q., Clausi D.A. Joint image segmentation and interpretation using iterative semantic region growing on SAR sea ice imagery. In:Proceedings of The 18th International Conference on Pattern Recognition.2006, pp.223-226.
    [8]Liu X.G., Li Y.S., Gao W., et al. Oil spill detection analyses based on small patch mergence algorithm of SAR image. In:Proceedings of The 1st International Conference on Information Science and Engineering.2009, pp.1352-1355.
    [9]Ogo B., Haese-Coat V., Ronsin J. SAR image segmentation by mathematical morphology and texture analysis. In:Proceedings of IEEE International Geoscience and Remote Sensing Symposium.1996, pp.717-719.
    [10]Tannous I., Arif J.P. SAR images segmentation using region growing approach. Quantitative Remote Sensing:An Economic Tool for The Nineties.1989, pp. 1209-1213.
    [11]Yang X.Z., Clausi D.A. SAR sea ice image segmentation based on edge-preserving watersheds. In:Proceedings of The Fourth Canadian Conference on Computer and Robot Vision.2007, pp.426-431.
    [12]Yu Q., Clausi D.A. SAR sea-ice image analysis based on iterative region growing using semantics. IEEE Transactions on Geoscience and Remote Sensing.2007, vol.45, pp.3919-3931.
    [13]Palenichka R., Hirose T.,Lakhssassi A., et al. Sea ice segmentation of SAR imagery using multi-temporal and multi-scale feature extraction. In:Proceedings of The 2nd International Conference on Space Technology.2011, pp.1-4.
    [14]Yu Q., Clausi D.A. IRGS:Image segmentation using edge penalties and region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence.2008, vol.30, pp.2126-2139.
    [15]Oliva A., Torralba A. The role of context in object recognition. Trends in Cognitive Sciences.2007, vol.11, pp.520-527.
    [16]Xia G.S., He C, Sun H. Integration of synthetic aperture radar image segmentation method using Markov random field on region adjacency graph. IET Radar, Sonar & Navigation.2007, vol.1, pp.348-353.
    [17]Derrode S., Pieczynski W. SAR image segmentation using generalized pairwise Markov chains. In:Proceedings of SPIEs International Symposium on Remote Sensing.2002, pp.22-27.
    [18]Deng H., Clausi D.A. Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel Markov random field model. IEEE Transactions on Geoscience and Remote Sensing.2005, vol.43, pp.528-538.
    [19]Fjortoft R., Delignon Y., Pieczynski W., et al. Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields. IEEE Transactions on Geoscience and Remote Sensing.2003, vol.41, pp. 675-686.
    [20]Desolneux A., Moisan L., Morel J.M. From gestalt theory to image analysis:A probabilistic approach.1 ed. New Your, USA:Springer Verlag,2007.
    [21]Galleguillos C., Belongie S. Context based object categorization:A critical survey. Computer Vision and Image Understanding.
    [22]Wolf L., Bileschi S. A critical view of context. International Journal of Computer Vision.2006, vol.69, pp.251-261.
    [23]Divvala S.K., Hoiem D., Hays J.H., et al. An empirical study of context in object detection. In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2009, pp.1271-1278.
    [24]Palmer S. The effects of contextual scenes on the identification of objects. Memory and Cognition.1975, vol.3, pp.519-526.
    [25]Jin Y, Geman S. Context and hierarchy in a probabilistic image model. In: Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, NY, USA.2006, pp.2145-2152.
    [26]Galleguillos C, Rabinovich A., Belongie S. Object categorization using co-occurrence, location and appearance. In:Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK.2008, pp.1-8.
    [27]Carbonetto P., Freitas N., Barnard K. A statistical model for general contextual object recognition. In:Proceedings of The 8th European Conference on Compuater Vision. Prague, Czech Republic.2004.
    [28]Torralba A. Contextual priming for object detection. International Journal of Computer Vision.2003, vol.53, pp.169-191.
    [29]Singhal A., Luo J.B., Zhu W.Y. Probabilistic spatial context models for scene content understanding. In:Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2003, pp.235-241.
    [30]Murphy K., Torralba A., Freeman W.T. Using the forest to see the trees:A graphical model relating features, objects and scenes. In:Proceedings of 17th Annual Conference on Neural Information Processing Systems.2003.
    [31]Shotton J., Winn J., Rother C., et al. Textonboost:Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: Proceedings of The 9th European Conference on Compuater Vision.2006, vol. 3951, pp.1-15.
    [32]Kumar S., Hebert M. A hierarchical field framework for unified context-based classification. In:Proceedings of The 10th IEEE International Conference on Computer Vision. Beijing, China.2005, pp.1284-1291.
    [33]Porway J., Wang Q.C., Zhu S.C. A hierarchical and contextual model for aerial image parsing. International Journal of Computer Vision.2010, vol.88, pp. 254-283.
    [34]Rabinovich A., Vedaldi A., Galleguillos C., et al. Objects in context. In: Proceedings of IEEE 11th International Conference on Computer Vision.2007, pp.1-8.
    [35]Yang M., Wu Y., Hua G. Context-aware visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence.2009, vol.31, pp.1195-1209.
    [36]Hoiem D., Efros A., Hebert M. Putting objects in perspective. International Journal of Computer Vision.2008, vol.80, pp.3-15.
    [37]Heitz G, Koller D. Learning spatial context:Using stuff to find things. In: Proceedings of CECCV 2008.2008, pp.30-43.
    [38]Ochilov S., Clausi D.A. Operational SAR sea-ice image classification. IEEE Transactions on Geoscience and Remote Sensing.2012, vol.50, pp.4397-4408.
    [39]Li Y., Li J., Chapman M.A. Segmentation of SAR intensity imagery with a voronoi tessellation, Bayesian inference, and reversible jump MCMC algorithm. IEEE Transactions on Geoscience and Remote Sensing.2010, vol.48, pp. 1872-1881.
    [40]Cao Y.F., Sun H., Xu X. An unsupervised segmentation method based on MPM for SAR images. IEEE Geoscience and Remote Sensing Letters.2005, vol.2, pp. 55-58.
    [41]Zhang P., Li M.,Wu Y., et al. Unsupervised multi-class segmentation of SAR images using fuzzy triplet Markov fields model. Pattern Recognition.2012, vol. 45, pp.4018-4033.
    [42]Benboudjema D., Tupin F., Pieczynski W, et al. Unsupervised segmentation of SAR images using triplet Markov fields and Fisher noise distributions. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium. 2007, pp.3891-3894.
    [43]Zhang D. M., Fu M. S., Luo B. SAR image segmentation using kernel density estimation on region adjacency graph. In:Proceedings of The 2nd Asia-Pacific Conference on Synthetic Aperture Radar. Xi'an, China.2009, pp.668-671.
    [44]库尔特,考夫卡.格式塔心理学原理.浙江:浙江教育,出版社.1996,
    [45]Duda R., Hart P., Stork D. Pattern classification.2 edition ed.: Wiley-Interscience,2001.
    [46]Levinshtein A., Stere A., Kutulakos K.N., et al. TurboPixels:Fast superpixels using geometric flows. IEEE Transactions on Pattern Analysis and Machine Intelligence.2009, vol.31, pp.2290-2297.
    [1]Zhang X.R., Jiao L.C., Liu F., et al. Spectral clustering ensemble applied to SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing. 2008, vol.46, pp.2126-2136.
    [2]Liu H.Q., Zhao F., Jiao L.C. Fuzzy spectral clustering with robust spatial information for image segmentation. Applied Soft Computing.2012, vol.12, pp. 3636-3647.
    [3]Ma M., Liang J.H., Sun L., et al. SAR image segmentation based on SWT and improved AFSA. In:Proceedings of The Third International Symposium on Intelligent Information Technology and Security Informatics. Jinggangshan, China.2010, pp.146-149.
    [4]Karvonen J.A. Baltic sea ice SAR segmentation and classification using modified pulse-coupled neural networks. IEEE Transactions on Geoscience and Remote Sensing.2004, vol.42, pp.1566-1574.
    [5]Liu R.C., Zhang W., Jiao L.C, et al. A multiobjective immune clustering ensemble technique applied to unsupervised SAR image segmentation. In: Proceedings of The 2010 International Conference on Image and Video Retrieval.2010, pp.158-165.
    [6]Quan J.J., Wen X.B., Xu X.Q. Multiscale probabilistic neural network method for SAR image segmentation. Applied Mathematics and Computation.2008, vol. 205, pp.578-583.
    [7]Yang D.D., Jiao L.C., Gong M.G., et al. Artificial immune multi-objective SAR image segmentation with fused complementary features. Information Sciences. 2011, vol.181, pp.2797-2812.
    [8]Ma M., Liang J.H., Guo M., et al. SAR image segmentation based on artificial bee colony algorithm. Applied Soft Computing.2011, vol.11, pp.5205-5214.
    [9]Bhanu B., Fonder S. Functional template-based SAR image segmentation. Pattern Recognition.2004, vol.37, pp.61-77.
    [10]Liu Z., Fan X.W., Lv F.Y. SAR image segmentation using contourlet and support vector machine. In:Proceedings of The Fifth International Conference on Natural Computation.2009, pp.250-254.
    [11]Ogo B., Haese-Coat V., Ronsin J. SAR image segmentation by mathematical morphology and texture analysis. In:Proceedings of IEEE International Geoscience and Remote Sensing Symposium.1996, pp.717-719.
    [12]Clausi D.A. Comparison and fusion of co-occurrence, Gabor and MRF texture features for classification of SAR sea ice imagery. Atmosphere-Ocean.2001, vol. 39, pp.183-194.
    [13]Kandaswamy U., Adjeroh D.A., Lee M.C. Efficient texture analysis of SAR imagery. IEEE Transactions on Geoscience and Remote Sensing.2005, vol.43, pp.2075-2083.
    [14]Kekre H.B., Gharge S., Sarode T.K. SAR image segmentation using vector quantization technique on entropy images. International Journal of Computer Science and Information Security.2010, vol.7, pp.276-282.
    [15]Du L.J. Texture segmentation of SAR images using localized spatial filtering. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium. 1990, pp.1983-1986.
    [16]Akbarizadeh G. A new statistical-based kurtosis wavelet energy feature for texture recognition of SAR images. IEEE Transactions on Geoscience and Remote Sensing.2012, vol.50, pp.4358-4368.
    [17]Zaart A.E., Ziou D., Wang S.R., et al. SAR images segmentation using mixture of Gamma distribution. In:Proceedings of Vision Interface'99.1999, pp. 125-130.
    [18]Xue J., Zhang Y., Lin X. Rayleigh-distribution based minimum error thresholding for SAR images. Journal of Electronics.1999, vol.16, pp.336-342.
    [19]Frery A.C., Muller H.J., Yanasse C.C.F., et al. A model for extremely heterogeneous clutter. IEEE Transactions on Geoscience and Remote Sensing. 1997, vol.35, pp.648-659.
    [20]Mejail M.E., Jacobo-Berlles J.C., Frery A.C., et al. Classification of SAR images using a general and tractable multiplicative model. International Journal of Remote Sensing.2003, vol.24, pp.3565-3582.
    [21]Galland F., Nicolas J.M., Sportouche H., et al. Unsupervised synthetic aperture radar image segmentation using fisher distributions. IEEE Transactions on Geoscience and Remote Sensing.2009, vol.47, pp.2966-2972.
    [22]Dunn J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics.1973, vol.3, pp.32-57.
    [23]Bezdek J.C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York:Plenum,1981.
    [24]Zhang P., Li M., Wu Y., et al. Unsupervised multi-class segmentation of SAR images using fuzzy triplet Markov fields model. Pattern Recognition.2012, vol. 45, pp.4018-4033.
    [25]王保平.基于模糊技术的图像处理方法研究.博士学位论文.西安电子科技大学.2004.
    [26]裴继红.基于模糊信息处理的图像分割方法研究.博士学位论文.西安电子科技大学.1998.
    [27]Chen S., Zhang D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics.2004, vol.34, pp. 1907-1916.
    [28]Ahmed M.N., Yamany S.M., Mohamed N., et al. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Transactions on Medical Imaging.2002, vol.21, pp.193-199.
    [29]Zhu L., Chung F.L., Wang S.T. Generalized fuzzy c-means clustering algorithm with improved fuzzy partitions. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics.2009, vol.39, pp.578-591.
    [30]Krinidis S., Chatzis V. A robust fuzzy local information c-means clustering algorithm. IEEE Transactions on Image Processing.2010, vol.19, pp. 1328-1337.
    [31]Cai W., Chen S., Zhang D. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognition. 2007, vol.40, pp.825-838.
    [32]Li Y.L., Shen Y. An automatic fuzzy c-means algorithm for image segmentation. Soft Computing.2010, vol.14, pp.123-128.
    [33]Chen L., Chen C.L.P., Lu M.Z. A multiple-kernel fuzzy c-means algorithm for image segmentation. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics.2011, vol.41, pp.1263-1274.
    [34]Huang J.Z., Ng M.K., Rong H.Q., et al. Automated variable weighting in k-means type clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence.2005, vol.27, pp.657-668.
    [35]Kang J., Min L., Luan Q., et al. Novel modified fuzzy c-means algorithm with applications. Digital Signal Processing.2009, vol.19, pp.309-319.
    [36]Szilagyi L., Benyo Z., Szilagyi S.M., et al. MR brain image segmentation using an enhanced fuzzy c-means algorithm. In:Proceedings of The 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.2003, pp.724-726.
    [37]Gong M.G., Liang Y., Shi J., et al. Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Transactions on Image Processing.2013, vol.22, pp.573-584.
    [38]Yu H., Zhang X.R., Wang S., et al. Context-based hierarchical unequal merging for SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing.2013, vol.51, pp.995-1009.
    [49]Bloch I. Information combination operators for data fusion:A comparative review with classification. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans.1996, vol.26, pp.52-67.
    [1]Hall L.O., Ozyurt I.B., Bezdek J.C. Clustering with a genetically optimized approach. IEEE Transactions on Evolutionary Computation.1999, vol.3, pp. 103-112.
    [2]Maulik U., Bandyopadhyay S. Genetic algorithm-based clustering technique. Pattern Recognition.2000, vol.33, pp.1455-1465.
    [3]Pan H., Zhu J., Han D. Genetic algorithms applied to multi-class clustering for gene expression data. Genomics, Proteomics, Bioinformatics.2003, vol.1, pp. 279-287.
    [4]Handl J.,Knowles J. An evolutionary approach to multiobjective clustering. IEEE Transactions on Evolutionary Computation.2007, vol.11, pp.56-76.
    [5]Hruschka E.R., Campello R.J.G.B., Freitas A.A., et al. A survey of evolutionary algorithms for clustering. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews.2009, vol.39, pp.133-155.
    [6]Huang W.L., Jiao L.C. Artificial immune kernel clustering network for unsupervised image segmentation. Progress in Natural Science.2008, vol.18, pp. 455-461.
    [7]Zhong Y.F., Zhang L.P., Gong J.Y., et al. A supervised artificial immune classifier for remote-sensing imagery. IEEE Transactions on Geoscience and Remote Sensing.2007, vol.45, pp.3957-3966.
    [8]Zhang L.P., Zhong Y.F., Huang B., et al. Dimensionality reduction based on clonal selection for hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing.2007, vol.45, pp.4172-4186.
    [9]Zheng H., Zhang J., Nahavandi S. Learning to detect texture objects by artificial immune approaches. Future Generation Computer Systems.2004, vol.20, pp. 1197-1208.
    [10]Zhong Y.F., Zhang L.P. A new fuzzy clustering algorithm based on clonal selection for land cover classification. Mathematical Problems in Engineering. 2011, vol.2011, pp.1-21.
    [11]Yang D.D., Jiao L.C., Gong M.G., et al. Artificial immune multi-objective SAR image segmentation with fused complementary features. Information Sciences. 2011, vol.181, pp.2797-2812.
    [12]Liu R., Jiao L., Zhang X., et al. Gene transposon based clone selection algorithm for automatic clustering. Information Sciences.2012, vol.204, pp.1-22.
    [13]Dasgupta D., Forrest S. Artificial immune systems in industrial applications. In: Proceedings of The Second International Conference on Intelligent Processing and Manufacturing of Materials.1999, pp.257-267.
    [14]Ding Y., Ren L. Artificial immune system:Theory and application. Pattern recognition and artificial intelligence.2000, vol.13, pp.31-35.
    [15]Forrest S., Perelson A.S., Allen L., et al. Self-nonself discrimination in a computer. In:Proceedings of The 1994 IEEE Computer Society Symposium on Research in Security and Privacy.1994, pp.202-212.
    [16]Farmer J.D., Packard N.H., Perelson A.S. The immune system, adaptation, and machine learning. Physica D:Nonlinear Phenomena.1986, vol.22, pp.187-204.
    [17]De Castro L.N., Von Zuben F.J. Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation.2002, vol. 6, pp.239-251.
    [18]De Castro L.N., Von Zuben F.J. aiNet:An artificial immune network for data analysis. Data Mining:A Heuristic Approach.2001, vol.1, pp.231-259.
    [19]De Castro L.N., Von Zuben F.J. Immune and neural network models:Theoretical and empirical comparisons. International Journal of Computational Intelligence and Applications.2001, vol.1, pp.239-257.
    [20]Du H.F., Gong M.G, Jiao L.C., et al. A noval algorithm of artificial immune system for high-dimensional function numerical optimization. Progress in Natural Science.2005, vol.15, pp.463-471.
    [21]Du H.F., Gong M.G, Liu R.C., et al. Adaptive chaos clonal evolutionary programming algorithm. Science in China Series F:Information Sciences.2005, vol.48, pp.579-595.
    [22]Gong M.G., Du H.F., Jiao L.C. Optimal approximation of linear systems by artificial immune response. Science in China Series F.2006, vol.49, pp.63-79.
    [23]Liu R.C., Jiao L.C, Du H.F. Clonal strategy algorithm based on the immune memory. Journal of Computer Science and Technology.2005, vol.20, pp. 728-734.
    [24]Gong M.G., Jiao L.C., Zhang X.R. A population-based artificial immune system for numerical optimization. Neurocomputing.2008, vol.72, pp.149-161.
    [25]Kim J., Bentley P.J. Towards an artificial immune system for network intrusion detection:An investigation of dynamic clonal selection. In:Proceedings of The 2002 IEEE Congress on Evolutionary Computation.2002, pp.1015-1020.
    [26]Kelsey J., Timmis J. Immune inspired somatic contiguous hypermutation for function optimisation. In:Proceedings of 2003 Genetic and Evolutionary Computation.2003, pp.207-218.
    [27]Cutello V., Nicosia G, Pavone M. Exploring the capability of immune algorithms:A characterization of hypermutation operators. In:Artificial Immune Systems, ed:Springer,2004, pp.263-276.
    [28]Garrett S.M. How do we evaluate artificial immune systems? Evolutionary Computation.2005, vol.13, pp.145-177.
    [29]Timmis J. Artificial immune systems—today and tomorrow. Natural Computing. 2007, vol.6, pp.1-18.
    [30]Timmis J., Andrews P., Owens N., et al. An interdisciplinary perspective on artificial immune systems. Evolutionary Intelligence.2008, vol.1, pp.5-26.
    [31]Hybinette M., Fujimoto R. Cloning:A novel method for interactive parallel simulation. In:Proceedings of The 29th Conference on Winter Simulation.1997, pp.444-451.
    [32]De Castro L.N., Von Zuben F.J. The clonal selection algorithm with engineering applications. In:Proceedings of Proceedings of GECCO.2000, pp.36-39.
    [33]Kim J., Bentley P.J. Towards an artificial immune system for network intrusion detection:An investigation of clonal selection with a negative selection operator. In:Proceedings of The 2001 IEEE Congress on Evolutionary Computation. 2001, pp.1244-1252.
    [34]Du H.F., Jiao L.C., Gong M.G., et al. Adaptive dynamic clone selection algorithms. In:Proceedings of Rough Sets and Current Trends in Computing. 2004, pp.768-773.
    [35]Yu S., Wang H., Zhu N., et al. Introduction to immunology. China Higher Education Press:Beijing, Springer-Verlag:Heidelberg German.1999,
    [36]Chen GL., Wang X.F., Zhuang Z.Q., et al. Genetic Algorithm and Its Application. Beijing:People Post and Communication Publisher of China,1996.
    [37]Du H.F., Jiao L.C., Liu R.C. Adaptive polyclonal programming algorithm with applications. In:Proceedings of 2003 Computational Intelligence and Multimedia Applications.2003, pp.350-355.
    [38]Montgomery D.C. Design and analysis of experiments vol.7:Wiley New York, 1984.
    [39]Zhang Q.F., Leung Y.W. An orthogonal genetic algorithm for multimedia multicast routing. IEEE Transactions on Evolutionary Computation.1999, vol.3, pp.53-62.
    [40]Leung Y.W., Wang Y.P. An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Transactions on Evolutionary Computation. 2001, vol.5, pp.41-53.
    [41]Ho S.Y., Chen J.H., Huang M.H. Inheritable genetic algorithm for biobjective 0/1 combinatorial optimization problems and its applications. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics.2004, vol.34, pp. 609-620.
    [42]Tsai J.T., Liu T.K., Chou J.H. Hybrid Taguchi-genetic algorithm for global numerical optimization. IEEE Transactions on Evolutionary Computation.2004, vol.8, pp.365-377.
    [43]张正旺.生物多样性教程.北京:化学工业出版社,2005.
    [44]陈慰峰,金伯泉.医用免疫学.第四版.北京:人民卫生出版社,2006.
    [45]Yu H., Gong M., Jiao L., et al. Clonal selection algorithm with immunologic regulation for function optimization. In:Proceedings of Computational Intelligence and Security.2005, pp.858-863.
    [46]Kennedy J. Particle swarm optimization. In:Encyclopedia of Machine Learning, 1 ed:Springer,2010, pp.760-766.
    [47]Liang J., Suganthan P., Deb K. Novel composition test functions for numerical global optimization. In:Proceedings of 2005 IEEE Swarm Intelligence Symposium.2005, pp.68-75.
    [48]Zhang P., Li M., Wu Y., et al. Unsupervised multi-class segmentation of SAR images using fuzzy triplet Markov fields model. Pattern Recognition.2012, vol. 45, pp.4018-4033.
    [49]Bloch I. Information combination operators for data fusion:A comparative review with classification. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans.1996, vol.26, pp.52-67.
    [50]Ahmed M.N., Yamany S.M., Mohamed N., et al. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Transactions on Medical Imaging.2002, vol.21, pp.193-199.
    [51]Chen S., Zhang D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics.2004, vol.34, pp. 1907-1916.
    [52]Krinidis S., Chatzis V. A robust fuzzy local information c-means clustering algorithm. IEEE Transactions on Image Processing.2010, vol.19, pp. 1328-1337.
    [53]Gong M.G., Liang Y, Shi J., et al. Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Transactions on Image Processing.2013, vol.22, pp.573-584.
    [54]Zhang X.R., Jiao L.C., Liu F., et al. Spectral clustering ensemble applied to SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing. 2008, vol.46, pp.2126-2136.
    [1]Krinidis S., Chatzis V. A robust fuzzy local information c-means clustering algorithm. IEEE Transactions on Image Processing.2010, vol.19, pp. 1328-1337.
    [2]Cai W., Chen S., Zhang D. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognition. 2007, vol.40, pp.825-838.
    [3]Chen S., Zhang D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics.2004, vol.34, pp. 1907-1916.
    [4]Dunn J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics.1973, vol.3, pp.32-57.
    [5]Bezdek J.C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York:Plenum,1981.
    [6]Bloch I. Information combination operators for data fusion:A comparative review with classification. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans.1996, vol.26, pp.52-67.
    [7]Desolneux A., Moisan L., Morel J.M. From gestalt theory to image analysis:A probabilistic approach.1 ed. New Your, USA:Springer Verlag,2007.
    [8]Levinshtein A., Stere A., Kutulakos K.N., et al. TurboPixels:Fast superpixels using geometric flows. IEEE Transactions on Pattern Analysis and Machine Intelligence.2009, vol.31, pp.2290-2297.
    [9]Felzenszwalb P.F., Huttenlocher D.P. Efficient graph-based image segmentation. International Journal of Computer Vision.2004, vol.59, pp.167-181.
    [10]Yu Q., Clausi D.A. IRGS:Image segmentation using edge penalties and region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence.2008, vol.30, pp.2126-2139.
    [1]Yu H., Zhang X.R., Wang S., et al. Context-based hierarchical unequal merging for SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing.2013, vol.51, pp.995-1009.
    [2]Ogo B., Haese-Coat V., Ronsin J. SAR image segmentation by mathematical morphology and texture analysis. In:Proceedings of IEEE International Geoscience and Remote Sensing Symposium.1996, pp.717-719.
    [3]Carvalho E.A., Ushizima D.M., Medeiros F.N.S., et al. SAR imagery segmentation by statistical region growing and hierarchical merging. Digital Signal Processing.2010, vol.20, pp.1365-1378.
    [4]Tannous I., Arif J.P. SAR images segmentation using region growing approach. Quantitative Remote Sensing:An Economic Tool for The Nineties.1989, pp. 1209-1213.
    [5]Yang X.Z., Clausi D.A. SAR sea ice image segmentation based on edge-preserving watersheds. In:Proceedings of The Fourth Canadian Conference on Computer and Robot Vision.2007, pp.426-431.
    [6]Galland F., Bertaux N., Refregier P. Minimum description length synthetic aperture radar image segmentation. IEEE Transactions on Image Processing. 2003, vol.12, pp.995-1006.
    [7]Yu Q., Clausi D.A. Joint image segmentation and interpretation using iterative semantic region growing on SAR sea ice imagery. In:Proceedings of The 18th International Conference on Pattern Recognition.2006, pp.223-226.
    [8]Yu Q., Clausi D.A. SAR sea-ice image analysis based on iterative region growing using semantics. IEEE Transactions on Geoscience and Remote Sensing.2007, vol.45, pp.3919-3931.
    [9]Yu Q., Clausi D.A. IRGS:Image segmentation using edge penalties and region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence.2008, vol.30, pp.2126-2139.
    [10]Bloch I. Information combination operators for data fusion:A comparative review with classification. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans.1996, vol.26, pp.52-67.
    [11]Arbelaitz O., Gurrutxaga I., Muguerza J., et al. An extensive comparative study of cluster validity indices. Pattern Recognition.2013, vol.46, pp.243-256.
    [12]Woodhouse I.H. The ratio of the arithmetic to the geometric mean:A cross-entropy interpretation. IEEE Transactions on Geoscience and Remote Sensing.2001, vol.39, pp.188-189.
    [13]Zhang P., Li M., Wu Y., et al. Unsupervised multi-class segmentation of SAR images using fuzzy triplet Markov fields model. Pattern Recognition.2012, vol. 45, pp.4018-4033.
    [14]Chen S., Zhang D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics.2004, vol.34, pp. 1907-1916.
    [15]Chen L., Chen C.L.P., Lu M.Z. A multiple-kernel fuzzy c-means algorithm for image segmentation. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics.2011, vol.41, pp.1263-1274.
    [16]Huang J.Z., Ng M.K., Rong H.Q., et al. Automated variable weighting in k-means type clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence.2005, vol.27, pp.657-668.
    [17]Ahmed M.N., Yamany S.M., Mohamed N., et al. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Transactions on Medical Imaging.2002, vol.21, pp.193-199.
    [18]Kang J., Min L., Luan Q., et al. Novel modified fuzzy c-means algorithm with applications. Digital Signal Processing.2009, vol.19, pp.309-319.
    [19]Szilagyi L., Benyo Z., Szilagyi S.M., et al. MR brain image segmentation using an enhanced fuzzy c-means algorithm. In:Proceedings of The 25th Annual International Conference of The IEEE Engineering in Medicine and Biology Society.2003, pp.724-726.
    [20]Cai W., Chen S., Zhang D. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognition. 2007, vol.40, pp.825-838.
    [21]Krinidis S., Chatzis V. A robust fuzzy local information c-means clustering algorithm. IEEE Transactions on Image Processing.2010, vol.19, pp. 1328-1337.
    [22]Gong M.G., Liang Y, Shi J., et al. Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Transactions on Image Processing.2013, vol.22, pp.573-584.
    [23]Timmis J. Artificial immune systems—today and tomorrow. Natural Computing. 2007, vol.6, pp.1-18.
    [24]Timmis J., Andrews P., Owens N., et al. An interdisciplinary perspective on artificial immune systems. Evolutionary Intelligence.2008, vol.1, pp.5-26.
    [25]Chen GL., Wang X.F., Zhuang Z.Q., et al. Genetic Algorithm and Its Application. Beijing:People Post and Communication Publisher of China,1996.
    [26]Zhang X.R., Jiao L.C., Liu F., et al. Spectral clustering ensemble applied to SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing. 2008, vol.46, pp.2126-2136.
    [27]Levinshtein A., Stere A., Kutulakos K.N., et al. TurboPixels:Fast superpixels using geometric flows. IEEE Transactions on Pattern Analysis and Machine Intelligence.2009, vol.31, pp.2290-2297.
    [28]Felzenszwalb P.F., Huttenlocher D.P. Efficient graph-based image segmentation. International Journal of Computer Vision.2004, vol.59, pp.167-181.
    [29]De Castro L.N., Von Zuben F.J. Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation.2002, vol. 6, pp.239-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700