用户名: 密码: 验证码:
盆栽花卉缺素症及硫高效植物千日红(Gomphrena globosa L.)的营养生理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对常见的盆栽花卉:金盏菊(Calendula officinalis),孔雀草(Tagetes patula),万寿菊(Tagetes erecta),蝴蝶兰(Phalaenopsis aphrodita Rchb. F.),大花蕙兰(Cymbidium hybrid),文心兰(Oncidium),‘名宝剑’(Vriesea'Tiffany'),‘丹尼斯’(Guzmania Dnise'),金边凤梨(Neoregelia carolinae var. variegata),‘粉菠萝’(Aechmea fasciata cv.),长春花(Catharanthus roseus)、鸡冠花(Celosia plumosa)、一串红(Salvia splendens)、一品红(Euphorbia pulcherrima)、火鹤花(Anthurium andraeanum)和千日红(Gomphrena globosa)进行了一系列元素缺乏试验,并在试验过程中发现千日红(Gomphrena globosa L.)在完全缺S的营养液中能够很好的生长并完成整个生命周期,推断其具有较高的从大气中吸收S的能力,对千日红的营养生理做了进一步研究,取得的研究结果如下:
     1.菊科花卉缺素症及植株养分含量变化
     金盏菊、万寿菊缺N,孔雀草缺K时症状最为明显;缺N对金盏菊、孔雀草、万寿菊的植株生物量影响最大;与全素(CK)相比,金盏菊和万寿菊缺K处理植株N浓度增加,3种花卉缺N、缺K处理均增加植株的P含量,但缺P处理降低植株K浓度,缺K处理增加含Ca量,缺Ca处理增加含K量和含Mg量,金盏菊缺Mg处理的含K量增加,3种花卉缺S处理植株S含量降幅不大,孔雀草和万寿菊缺N、P、K、Ca处理均可导致植株S含量增加。
     2.缺素栽培观赏凤梨的生长及植株养分含量变化
     缺S处理的金边凤梨和‘粉菠萝’植株N含量较对照有显著增加,缺N和缺K处理均能极显著刺激P在四种观赏凤梨植株体内的积累。缺Ca、缺Mg和缺S处理对‘名宝剑’、‘丹尼斯’和金边凤梨植株K含量的提高有促进作用。缺K处理利于Ca在植株体内的积累,‘丹尼斯’和‘粉菠萝’缺K处理的植株Ca含量较对照有显著的增加,但‘名宝剑’和金边凤梨缺K处理后植株Ca含量增加不显著。缺P处理利于Mg在‘名宝剑’、‘丹尼斯’和‘粉菠萝’植株体内的累积,缺N和缺K处理也利于P在‘丹尼斯’和‘粉菠萝’植株的积累,缺Ca利于Mg在‘粉菠萝’体内的积累。‘丹尼斯’缺N处理能促进S在其体内的积累。
     3.缺素栽培兰科花卉生长及植株养分含量变化
     蝴蝶兰植株试验前后增重最少的是缺N处理,其次是缺Ca、缺P、缺K处理,大花蕙兰、蝴蝶兰和文心兰缺N、缺K处理的植株均大幅增加了P含量,P浓度高达0.6%-1.2%,为一般植物P过量水平:大花蕙兰和文心兰在P、K、Ca缺失时会显著减少其植株的N含量,影响植株的生长,而蝴蝶兰在其他元素缺失时不会降低植株的N含量;N的不足影响了这三种兰科花卉对K的吸收,严重缺N植株可能存在K素失调的现象;蝴蝶兰和大花蕙兰的缺Ca,缺Mg处理植株K浓度均显著提高,但文心兰缺Mg处理的K含量不变,而蝴蝶兰在缺K和缺Mg处理的Ca浓度降低。
     4.缺素栽培对其他一些常见花卉生长的影响及植株养分含量变化
     对长春花,缺K处理显著抑制其地上部的生长,而缺P处理能显著增加根系生物量。缺素处理不同程度的降低了植株N、Ca, Mg和S含量;缺N和缺K处理能显著促进P在长春花体内的积累。
     对于鸡冠花,缺K株高的值最小,花序也最小;缺N地上部生物量最少,根系最短;缺N和缺K处理能显著促进P在鸡冠花体内的积累,缺K处理还能显著促进Mg在植株体内的积累。缺素处理鸡冠花植株Ca含量均下降。缺Ca处理植株K含量最高;缺P处理鸡冠花S含量最高。
     对于一串红,缺N处理对植株生物量影响最为显著。所有缺素处理均降低了一串红植株N浓度,缺N和缺K处理能显著促进P在一串红体内的积累,缺Mg促进了一串红K的吸收,缺N促进Mg的吸收,缺N和缺P促进S的吸收。
     缺N对一品红植株生物量的影响最为显著,缺P处理的植株根系最长,缺Ca处理的植株根系生物量最高。缺K促进了一品红N的吸收,缺P和缺Ca减少一品红的N浓度。N, K,Ca和S的缺失增加了一品红的含P量。缺N减少植株K浓度,缺Ca,缺Mg和缺S处理提高植株K浓度。缺K增加一品红S浓度。
     缺K处理对火鹤花生物量影响最为显著。缺K和缺Ca处理火鹤花植株N含量下降。缺N时P植株浓度上升。缺N处理植株K含量下降。Ca和Mg缺失促进K的吸收。缺P火鹤花和缺K处理的Ca浓度上升。缺N和缺S处理减少了植株Ca浓度。缺N致使火鹤花的Mg浓度降低,缺Ca促进Mg的吸收。缺S只降低了火鹤花的S浓度,对其他元素没有影响。
     千日红缺P处理的植株生物量最低。缺S处理的植株生物量最高,缺S栽培的千日红在所有处理中长势最佳,分枝和花量明显多于对照,缺S处理千日红植株的S含量也是最高,且千日红各个处理的S浓度普遍高于其它5种花卉。
     5.根系缺S对千日红生长以及各种元素含量的影响
     千日红在根系缺S栽培初期表现出缺素症状,而随着栽培时间的增加,缺素症状消失。到了末花期,缺S处理植株花、茎叶和根的干重都高于加S处理,这可能与持续缺S处理扩大了植株的根表面积,促进根吸收力有关。本试验表明千日红可以在正常的大气S浓度以及根系完全缺S的状况下正常生长开花,且缺S处理不会减少千日红的开花率。
     缺素栽培前期,缺S处理千日红体内的S浓度不到加S处理植株的30%,缺S处理植株P、K和Ca的浓度也低于加S处理。缺S处理植株体内的S浓度随着千日红的生长而增大,同时P、K、Ca和Mg的浓度也趋向接近加S处理,在微量元素上也有着类似的变化趋势。开花前可通过测定根系N/S值来诊断千日红是否缺S,而开花后的测定花N/S值来判断更有效。
     千日红能在根系完全无硫的情况下正常生长,并具有有较强吸收利用气态S的能力,可作为固定大气有害硫气体改善环境的园林植物,提高的大气S浓度有利于缺S千日红的生长。
     6.根系缺S对千日红生理特性的影响
     根系缺S栽培对千日红叶绿素a影响较为明显。缺S千日红的光合并没有较大的影响。缺S处理千日红叶片可溶性蛋白比加S植株显著增加128%,表明在这一时期缺S栽培的千日红代谢旺盛,生长迅速。
     根系缺S处理显著降低了千日红叶片的GS、GPT和NR的活性,根系缺S会降低千日红的氮素同化能力。缺S处理增强了千日红叶片的ATPS和OASS的活性。
     两个处理的千日红,无论是茎叶还是花中的半胱氨酸和蛋氨酸均含量稀少,推测千日红为需S量少的植物。缺S千日红茎叶的氨基酸有所增加,但不明显;花中氨基酸含量显著增加。
     缺S处理对千日红根的生长影响较大,根系形态和根系活力都显著劣于加S千日红。缺S栽培降低了于日红的抗逆性。
     7.不同供S方式的千日红生长状况及植株硫浓度变化
     0.2μL-1至0.8μL L-1浓度的SO2可较快的被千日红吸收利用,1.0μL-1浓度的SO2无法被千日红有效利用。千日红对酸雨有较强的适应能力。比较千日红的生长状况,叶色,叶片SPAD值以及干重株高,根系加S在本试验3种供S方式中最为理想,气态S次之。不同供S途径中,千日红的植株S浓度随着处理浓度增加都呈现先提高后降低的趋势。根系添加S对增加千日红体内S含量的效果最为明显,叶面喷施次之。
This study was carried out in two parts. Firstly, some common potted flowers as Calendula officinalis, Tagetes patula, Tagetes erecta, Phalaenopsis aphrodita Rchb. F., Cymbidium hybrid, Oncidium, Catharanthus roseu,s Celosia plumose, Salvia splendens, Euphorbia pulcherrima, Anthurium andraeanum, Gomphrena globosa, were cultured in N, P, K, Ca, Mg and S deficient solution, separately. The nutrient deficiency symptoms, biomass and nutrient concentration of those plants were studied. And during this experiment, Gomphrena globosa was proved to be able to fulfill all of its growth stages without root sulfate or additional atmospheric S supply. The secondly experiment was conducted to investigate Gomphrena globosa growth and its primary nutrition conditions response to no root sulfate supply including growth status, biomass production, some elemental concentrations and its S metabolism physiology. The main results are summarized as follows:
     1. Common symptoms of element deficiency and concentration changes of nutrients in compositae plants
     The results showed that N deficiency of Calendula officinalis and Tagetes erecta were most visible, while the deficiency of Tagetes patula cultured under K deprived solution was most visible. Compared to CK, N concentration of Calendula officinalis and Tagetes erecta increased when cultured under K deprived solution. Of all the three plants, P concentration increased when plant grown without N or K, and K concentration decreased when P was deficient. K and Mg concentration increased when Ca was deficient. Ca concentration was increased when K was not supplied. K concentration of Calendula officinalis was enhanced when Mg was not supplied. S concentration of three plans was not decreased gradually without S being supplied, and S concentration of Tagetes patula and Tagetes erecta were enhanced when N, P, K and Ca were deficient.
     2. Effects of different element deficiencies on growth and elements concentration of four ornamental pineapple
     The N concentration of Neoregelia carolinae var. variegata and Aechmea fasciata cv. was significantly enhanced without S supplied. The P of all the four ornamental pineapples increased when lack of N or K. Lack of S increased P content of Neoregelia carolinae var. variegata, as well. K concentration in Vriesea'Tiffany', Guzmania Dnise' and Neoregelia carolinae var. variegata raised on condition of limitation of Ca or Mg. Mg content in Vriesea'Tiffany', Guzmania Dnise', Aechmea fasciata cv. increased without P supplied. P accumulated when S was deprived in Neoregelia carolinae var. variegate.
     3. Effects of different element deficiencies on growth and elements concentration of Phalaenopsis aphrodita Rchb. F., Cymbidium hybrid and Oncidium
     The mineral nutrition requirements of different species of orchids are different. In the actual culture, different orchids should be applied with the appropriate amount of each element and with appropriate extension of fertilization time to promote flower bud and improve the quality of flowers, thus to enhance the ornamental value. Application of proper N fertilizer on orchids might be benefit for flowering. A Flower number would be increased when certain concentration P fertilizer is applied.
     4. Effects of elements deficiency in cultivation on growth and plant nutrient contents of some other common flowers
     Lack of K significantly inhibits the shoot growth of Catharanthus roseus, and lack of P treatment significantly increases root biomass. Shortage of N and K treatment significantly increases P accumulation in Catharanthus roseus.
     The shortest plant height and the minimum inflorescence of Celosia plumose will be appeared for lack of K. while, the minimum shoot biomass and the shortest root length for lack of N. Similarly to Catharanthus roseus, lack of N and K also significantly increases P content in Celosia plumose. And shortage of K also significantly increases Mg accumulation in Celosia plumose. The highest concentration of K can be obtained for lack of Ca, and the highest S concentration obtained for lack of P in Celosia plumose.
     To Salvia splendens, lack of N has the most significant effect on plant biomass reduction. Similarly to plant Catharanthus roseus and Celosia plumose, lack of N and K significantly increases P accumulation in Salvia splendens. While, shortage of Mg can increase K concentration in plant, and shortage of N increase Mg, and shortage of N and P increase S in plant.
     Lack of N has the most significant effect on plant biomass reduction of Euphorbia pulcherrima. Though has the longest root for lack of P, the highest root biomass of Euphorbia pulcherrima has been obtained for lack of Ca treatment. Lack of K treatment increases N concentration in plant Euphorbia pulcherrima, while, lack N treatment decreases K concentration in plant. P concentration in plant may be improved for shortage of N, K, Ca and S treatment. And K be increased by lack of Ca, Mg and S.
     Lack of K has the most significant effect on plant biomass reduction of Anthurium andraeanum. N concentration in plant will be decreased by lack of K and Ca treatment. Lack of N can let lower concentration of K and Mg, and higher concentration of P in plant Anthurium andraeanum. Shortage of P and K treatment can increase Ca concentration in plant, while Ca concentration decreased by lack of N and S treatment. And Mg concentration in plant can be improved by treatment of lack of Ca. Lack of S treatment will shorten S content in plant, and has no effect on other elements in Anthurium andraeanum.
     To Gomphrena globosa L., lack of P has the most significant effect on plant biomass reduction. However, the highest plant biomass may be obtained by lack of S treatment. The growth conditions of Gomphrena globosa L., as well as the branching and flowering, is the best in the treatment of S shortage compared to the other elements deficiency. Interestingly, the highest S concentration in Gomphrena globosa L. has been obtained with S shortage treatment compared to other elements deficiency treatment. And S concentration of different elements deficiency treatments in Gomphrena globosa L. is higher than in other common flowers.
     5. Effects of minus root sulfate supply on growth and the elements concentration of Globe amaranth under hydroponic condition
     By aquatic experiment we found that Globe amaranth(Gomphrena globosa L.) is one of these plants with especial high capacity to use atmospheric S. S concentration in flower, shoot and root of the plant without root sulfate supplied was increased with plant growth and development, symptoms of S deficiency disappeared and other elements concentrations in plant trended to nearly same with the plus sulfate treatment.
     6. Physiological Characteristics of Globe amaranth without root S supply
     The Chlorophyll a of Globe amaranth was dramatically decreased when root S was deprived in the plant, while botany photosynthesis was not affected. Lack of S significantly increased the soluble protein of plant by 128%, which might indicate that the plant had a higher metabolism during this period. Activity of Gs, GPT and NR was brought down in case of lack of S, while activity of ATPS and OASS was increased.
     Content of Cys and Met is rare in the Globe amaranth. When root S was deprived, content of amino acid in the shoot was increased a little and that in the flower was increased significantly.
     The root was severely affected when lack of S at that moment. Adverse resistance of the plant decreased in the minus S treatment.
     7. Growth and S concentration of Globe amaranth added with different type of S
     Provided with SO2 range from 0.2μL L-1 to 0.8μL L-1, biomass and S concentration of the Globe amaranth increased. SO2 was not benefit to Globe amaranth when the concentration went up to 1.0μL L-1. Globe amaranth was proved to be able to take acid rain as its S source. Root SO42-is the most effective way to improve growth of the plant, SO2 was pier to it. S concentration in the plant went up firstly, and then went down as well as the added S.
引文
Acharya, M. M., Dashoral, K. Response of graded levels of nitrogen and phosphorus on vegetative growth and flowering in African marigold (Tagetes erecta Linn.). Journal of Ornamental Horticulture (New Series),2004,7(2):179-183.
    Agbaria, H. Nitrate reductase and glutamine synthetase activity in rose plants (Rose hybrida cvs. Ilseta and mercedes):Effects of root shoot interactions. Acta Horticulturae,1996,42(4): 95-99.
    Amberger-Ochsenbauer, S. Nutrition and post-production performance of halaenopsis pot plants. Acta Horticulture,1997,450:105-112.
    Archer M.J. A sand culture experiment to compare the effects of sulphur on five wheat cultivars (T. aestivum L.). Australian Journal of Agricultur Research,1974,25:69-380.
    Becker T W, Carrayol E, Hirel B. Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves:localization, relative proportion and their role in ammonium assimilation or nitrogen transport. Planta,2000,211:800-806.
    Bielenin, M., Matyslak, B. Effect of nutrition on growth and flower bud formation of Rhododendron cultivated on ebb and flow benches. Folia Horticulturae,2004,16(1): 101-105.
    Blake-Kalff, M. M., Harrison, K. R., Hawkesford, M. J., Zhao, F. J., McGrath, S. P. Distribution of sulfur within oilseed rape leaves in response to sulfur deficiency during vegetative growth. Plant Physiology,1998,118:1337-1344.
    Brunold C. Regulatory interactions between sulfate and nitrate assimilation. In:De Kok L.J., Stulen I., Rennenberg H., Brunold C. and Rauser W.E. (eds.), Sulfur Nutrition and Assimilation in Higher Plants Regulatory, Agricultural and Environmental Aspects[M]. SPB Academic Publishing Press, Netherlands,1993,61-75.
    Buchner P., Stuiver C.E.E., Westerman S., et al. Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfate nutrition. Plant Physiology,2004,136:3396-3408.
    Cacco, G., Ferrari, G., Saccomani, M. Pattern of sulfate uptake during root elongation in maize:its correlation with productivity. Plant Physiology,1980,48:375-378.
    Castro, A., Stolen, I., Posthumus, F. S., De Kok, L. J. Changes in growth and nutrient uptake in Brassica oleracea exposed to atmospheric ammonia. Annals of Botany,2006,97:121-131.
    Chiaiese, P., Ohkama-Ohtsu, N., Molvig, L., et al Sulphur and nitrogen nutrition influence the response of chickpea seeds to an added, transgenic sink for organic sulphur. Journal of Experimental Botany,2004,55:1889-1901.
    Cowling D.W., Jones L.H.P., Lockyer D.R. Increased yield through correction of sulphur deficiency in ryegrass exposed to sulphur dioxide. Nature,1973,243:479-480.
    David R. Ergle, Frank M. Eaton. Sulphur nutrition of cotton. Plant Physiology,1951,26:639-655.
    Davidian J.C., Hatzfeld Y., Cathala N., et al. Sulfate uptake and transport in plants. In:Brunold C., Rennenberg H., De Kok L.J., Stulen I. and Davidian J.C. (eds.), Sulfur Nutrition and Sulfur Assimilation in Higher Plants:Molecular, Biochemical and Physiological Aspects[M]. Paul Haupt Verlag Press, Switzerland,2000,19-40.
    De Kok L J, Westerman S, Stuiver C E E et al. Atmospheric H2S as plant sulfur source:interaction with pedospheric sulfur nutrition-a case study with Brassica oleracea L. I Brunold C, Rennenberg H, De Kok L J et al (Eds.). Sulfur nutrition and sulfur assimilation in higher plants:molecular, biochemical and physiological aspects [M]. Bern:Paul Haupt Publishers, 2000,41-55.
    De Kok L.J, Castro A., Durenkamp M., Stuiver C.E.E., Westerman S., Yang L., Stulen I.:Sulphur in plant physiology. International Fertiliser Society,2002a,500:1-26.
    De Kok L.J., Stuiver C.E.E., Rubinigg M., et al. Grill D. Impact of atmospheric sulfur deposition on sulfur metabolism in plants:H2S as sulfur source for sulfur deprived Brassica oleracea L. Botany Acta,1997,110:411-419.
    De Kok L.J., Tausz M. The role of glutathione in plant reaction and adaptation to air pollutants. In: Grill D., Tausz M., De Kok L.J. (eds), Significance of glutathione in plant adaptation to the environment[M]. Kluwer Academic Publishers Press, Netherlands,2001,185-206.
    De Kok L.J., Westerman S., Stuiver C.E.E., Weidner W., Stulen I. Grill D. Interaction between atmospheric hydrogen sulphide deposition and pedospheric sulphate nutrition in Brassica oleracea L. Phyton,2002b,42:35-44.
    Debore.D.L.and S.H.Duke. Effects of sulphur nutrition on nitrogen and carbon metabolism in Lucerne. Physiol Plant.1982,54:343-350
    Durenkamp M., De Kok L.J. The impact of atmospheric H2S on growth and sulphur metabolism of Allium cepa L. Phyton,2002,42:55-63.
    Durenkamp M., De Kok L.J. Impact of pedospheric and atmospheric sulphur nutrition on sulphur metabolism of Allium cepa L., a species with a potential sink capacity for secondary sulphur compounds. Journal of Experimental Botany,2004,55:1821-1830.
    Friedrich, J.W. and Schrader,L.E..Sulfur deprivation and nitrogen metabolism in maize Seedlings, Plant Physiology,1978,61:900-903.
    Gaikwad, S. A., Patil, S. S. D., Patil, G. D. Effect of different levels of nitrogen and phosphorus on the growth and flower production of China aster [Callistephus chinensis (L.) Nees]. Journal of Maharashtra Agricultural Universities,2004,29(2):140-142.
    Gilbert S.M., Clarkson D.T., Cambridge M, Lambers H., Hawkesford M. J. SO42- deprivation has an early effect on the content of ribulose-1,5-bisphosphate carboxylase/oxygenase and photosynthesis in young leaves of wheat. Plant Physiology,1997,115:1231-1239.
    Gilbert,S.M.Clarkson,D.T.and Cambridge,M..S04deprivation has an early effect on the content of Ribulose-1,5-BisphosPhate Carboxylas/Oxygenase and photosynthesis in young leaves of wheat Plant Physiology,1997,115:1231-1239
    Grawal, H. S. Effect of nitrogen, planting time and pinching on flower production in chrysanthemum (Dendranthema grandiflora Ramat. cv). Journal of Ornamental Horticulture (New Series),2004,7(2):196-199.
    Harwood, J. L. The biochemistry pergamon of plant [M]. Academic Press,1980,4,301-320.
    Hawkesford M.J. Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve utilization efficiency. Journal of Experimental Botany,2000,51: 131-138.
    Hawkesford M.J., De Kok L.J. Managing sulphur metabolism in plants. Plant, Cell and Environ, 2006,29,382-395.
    Hawkesford M.J., De Kok L.J. Sulfur in plants an ecological perspective. Springer, UK,2007.
    Hesse, H., Nikiforova, V., Gakiere, B., Hoefgen, R. Molecular analysis and control of cysteine biosynthesis:integration of nitrogen and sulphur metabolism. Journal of Experimental Botany, 2004,55:1283-1292.
    Hesse, H., Trachsel, N., Suter, M., et al. Effect of glucose on assimilatory sulphate reduction in Arabidopsis thaliana roots. Journal of Experimental Botany,2003,54:1701-1709.
    Hirai, M. Y., Saito, K. Post-genomics approaches for the elucidation of plant adaptive mechanisms to sulphur deficiency. Journal of Experimental Botany,2004,55:1871-1879.
    Hofgen, R., Laber, B., Schuttke, I., et al. Repression of acetolactate synthase activity through antisense inhibition. Plant Physiology,1995,107:469-477.
    Kajhara, S., Nobuyasu, H., Fujiwara, T. Effects of NH4+-N, Fe and Mn supplement on the yield of cut roses and the composition of recirculating nutrient solution in a closed rockwool cultivation system. Japanes Horticultural Research,2005,4 (2):181-186.
    Karmoker, J. L., Clarkson, D. T., Saker, L. R., Rooney, J. M., Purves, J. V. Sulphate deprivation depresses the transport of nitrogen to the xylem and the hydraulic conductivity of barley (Hordeum vulgare L.) roots. Planta,1991,185:269-278.
    Kataoka, T., Hayashi, N., Yamaya, T., et al. Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiology,2004a,136:4198-4204.
    Kataoka, T., Watanabe-Takahashi, A., Hayashi, N., Ohnishi, M., Mimura, T., Buchner, P., Hawkesford, M. J., Yamaya, T., Takahashi, H. Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell,2004b,16: 2693-2704.
    Kim, H., Hirai, M. Y., Hayashi, H., Chino, M., Naito, S., Fujiwara, T. Role of O-acetyl-1-serine in the coordinated regulation of the expression of a soybean seed storage-protein gene by sulfur and nitrogen nutrition. Planta,1999,209:282-289.
    Koprivova, A., Suter, M., den Campm R. O., et al. Regulation of sulfate assimilation by nitrogen in Arabidopsis. Plant Physiology,2000,122:737-746.
    Krishnan, H. B., Jiang, G, Krishnan, A. H., et al. Seed storage protein composition of non-nodulating soybean (Glycine max (L.) Merr.) and its influence on protein quality. Plant Science,2000,157:191-199.
    Kutz, A., Muller, A., Hennig, P., et al. A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. The Plant Journal,2002,30:95-106.
    L. Watson and M.J. Dallwitz. The families of flowering plants:descriptions, illustrations, identification, information retrieval[M]. Published by Delta-intkey,2002.
    Lappartient,A.G. and Touraine,B..Demand-driven control of root ATP-sulfurlase activity and SO42-uptake in intact Canola. Plant Physiologyogy,1996,111:147-157.
    Leustek, T., Martin, M. N., Bick, J. A. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annual Review of Plant Physiologyogy and Plant Molecular Biology,2000,51:141-159.
    Leustek, T., Salitok. Sulfate transport and assimilation in Plants. Plant Physiologyogy,1999,120: 637-644.
    Lewandowaka M., Sirko A. Recent advances in understanding plant response to sulfur-deficiency stress. Acta Biochimica Polonica,2008,55:457-471.
    Liping Yang Ineke Stulen, Luit J, De Kok. Sulfur dioxide:Relevance of toxic and nutritional effects for Chinese cabbage. Environmental and Experimental Botany 2006,57:236-245.
    Lopez-Bucio J., Cruz-Ramirez A., Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology,2003,6:280-287.
    Lunde C., Zygadlo A., Simonsen H.T., Nielsen P.L., Blennow A.,&Haldrup A. Sulfur starvation in rice:the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. Physiol Plant,2008,134:508-521.
    Luther, H. E. An Alphabetical List of Bromeliad Binomials The Marie Selby Botanical Gardens, Sarasota, Florida[M], Published by The Bromeliad Society International, USA.2002.
    Maas F.M., De Kok L.J., Strik-Timmer W., et al. Plant responses to H2S and SO2 fumigation. Ⅱ. Differences in metabolism of H2S and SO2 in spinach. Plant Physiology,1987,70:722-728.
    Maathuis F.J.M. Physiological functions of mineral macronutrients. Current Opinion in Plant Biology,2009,12:250-258.
    Marshner, H. Mineral Nutrition of Higher Plants. Second edition[M]. Elsevier Academic Press, London, UK,2005.
    Migge, A., Bork, C., Hell, R., Becker, T. W. Negative regulation of nitrate reductase gene expression by glutamine or asparagine accumulating in leaves of sulfur-deprived tobacco. Planta,2000,211:587-595.
    Misson, J., Raghothama, K. G., Jain, A., Jouhet, J., Block, M. A., Bligny, R., Ortet, P., Creff, A., Somerville, S., Rolland, N., Doumas, P., Nacry, P., Herrerra-Estrella, L., Nussaume, L., Thibaud, M. C. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proceedings of the National Academy of Sciences,2005,102:11934-11939.
    Miyake, T., Sammoto, H., Kanayama, M., Tomochika, K., Shinoda, S., Ono, B. Role of the sulphate assimilation pathway in utilization of glutathione as a sulphur source by Saccharomyces cerevisiae. Yeast,1999,15:1449-1457.
    Molvig, L., Tabe, L. M., Eggum, B. O., et al. Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proceedings of the National Academy of Sciences,1997,94:8393-8398.
    Morris R.J. Sulphur in world agric..TSI-FAJSymp. Sulphur in Indian Agricuture.,1988,1:1-14.
    Mullins, I. M., Hilu, K. W. Amino acid variation in the 10 kDa Oryza prolamin seed storage protein. Journal ofAgricutural Food Chemistry,2004,52,2242-2246.
    Nikiforova V., Freitag J., Kempa S., et al. Transcriptome analysis of sulfur depletion in Arabidopsis thaliana:interacting of biosynthetic pathways provides response specificity. Plant Journal,2003,33:633-50.
    Nikiforova V.J., Bielecka M., Gakiere B., Krueger S., Rinder J., Kempa S., Morcuende R., Scheible W.R., Hesse H., Hoefgen R. Effect of sulfur availability on the integrity of amino acid biosynthesis in plants. Amino Acids,2006,30:173-183.
    Nikiforova V.J., Kopka J., Tolstikov V., et al. Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiology, 2005,138:304-318.
    Nikiforova, V., Freitag, J., Kempa, S., et al. Transcriptome analysis of sulfur depletion in Arabidopsis thaliana:interlacing of biosynthetic pathways provides response specificity. Plant Journal,2003,33:633-650.
    Norman, T. Effects of sulfur on the photosynthes is of intact leaves and isolated chloroplast of sugarbeets. Plant Physiologyogy,1976,57:477-479.
    Ohkama, N., Goto, D. B., Fujiwara, T., et al. Differential tissue-specific response to sulfate and methionine of a soybean seed storage protein promoter region in transgenic Arabidopsis. Plant Cell Physiology,2002,43:1266-1275.
    Pedersen C.A., Knudsen L., Schnug E. Sulphur fertilization. In:Schnug, E. (ed.), Sulphur in Agroecosystems[M]. Kluwer Academic Publishers press, Netherlands,1998,115-134.
    Prosser, I. M., Purves, J. V., Saker, L. R., et al. Rapid disruption of nitrogen metabolism and nitrate transport in spinach plants deprived of sulphate. Journal of Experimental Botany,2001,52: 113-121.
    Qasim, M., Ahmad, I., Nadeem, A. Influence of various nitrogen levels on growth and biomass of Jasminum sambac. Journal of Agricultural Sciences,2003,40(3):144-150.
    Randall, P. J. Evaluation of the sulphur status of soils and plants:techniques and interpretation. TSI-FAI Symp. Sulphur in Indian Agricuture,1988,3:1-15.
    Reuveny, Z., Dougall, D.K., Pm, T. Regulatory coupling of nitrate and sulfate assimilation pathways in cultured tobacco cells. Proceedings of the National Academy of Science,1980, 77:6670-6672.
    Saccomani M, Cacco G, Ferrari G. Effect of nitrogen and/or sulfur deprivation on the uptade and assimilation steps of nitrate and sulfate in maize seedlings. Journal of Plant Nutrition.1984,7: 1043-1057.
    Saito, K. Sulfur assimilatory metabolism the long and smelling road. Plant Physiologyogy,2004, 136:2443-2450.
    Sano, H., Youssefian, S. Light and nutritional regulation of transcripts encoding a wheat protein kinase homolog is mediated by cytokinins. Proceedings of the National Academy of Science, 1994,91:2582-2586.
    Sarkar, I. Nilimesh roychowdhury effects of nitrogen and phosphorus on the growth and flowering of carnation mixed under open condition. Environment and Ecology,2003,21(3):696-698.
    Satoshi Kubota, Yoshiyuki Muramatsu, Mayumi Matsuura, Masahiro Ito, Hisashi Sumiyoshi and Masaji Koshioka. The Growth and Flowering of Odontioda Orchid are Stimulated by Nitrogen Application. Horticultural Research. (Japan),2009,8 (2):175-180.
    Schachtman D.P., Shin R. Nutrient sensing and signaling:NPKS. Annual Review of Plant Boilogy,2007,58:47-69.
    Scott N.M., Dyson P.W., Ross J., et al. The effect of sulphur on the yield and chemical com position of winter barley. Journal of Agricultural Science,1984,103:699-702.
    Stuiver C.E.E., De Kok L.J., Westerman S. Sulfur deficiency in Brassica oleracea L.:development, biochemical characterization, and sulfur/nitrogen interactions. Russian Journal of Plant Physiology,1997,44:505-513.
    Sunarpi, Anderson, J. W. Distribution and redistribution of sulphur supplied as [35S] sulphate to root during vegetative growth of soybean. Plant Physiologyogy,1996,110:1151-1157.
    Tabatabai M.A. Sulfur in Agriculture[M]. American Society of Agronomy, Madison, Wisconsin, USA,1986.
    Tabe, L. M., Droux, M. Limits to sulfur accumulation in transgenic lupin seeds expressing a foreign sulfur-rich protein. Plant Physiology,2002,128:1137-1148.
    Tabe, L. M., Droux, M. Sulfur assimilation in developing lupincotyledons could contribute significantly to the accumulation of organic sulfur reserves in the seed. Plant Physiologyogy, 2001,126:176-187.
    Tausz, M., Weidner, W., Wonisch, A., et al. Uptake and distribution of 35S-sulphate in needles and roots of spruce seedlings as affected by exposure to SO2 and H2S. Environal Experimantal Botany,2003,50,211-220.
    Vauclare, P., Kopriva, S., Fell, D., et al. Flux control of sulphate assimilation in Arabidopsis thaliana:adenosine 5'-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols. Plant Journal,2002,31:129-140.
    Wang K.J., Hu C.H., Dong S.T., et al:Effect of sulfate supply level on characteristics of N and S metabolism and on root vigor of corn. Chinese Journal of Applied Ecology,2003,14 (2): 191-195.
    Wang Y T. Potassium nutrition affects Phahenopsis growth and flowering. HortSdence,2007,42(7): 1563-1567.
    Westerman S., De Kok L.J., Stuiver C.E.E., Stulen I. Interaction between metabolism of atmospheric H2S in the shoot and sulphate uptake by the roots of curly kale (Brassica oleracea). Physiol Plant,2000a,109:443-449.
    Westerman S., Weidner W., De Kok L.J., et al. Effect of H2S exposure on 35S-sulphate uptake, transport and utilization in curly kale. Phyton,2000b,40:293-302.
    Woodson, W. R., Boodley, J. W. Effects of nitrogen from and potassium concentration on growth, flowering, nitrogen utilization of greenhouse roses. Journal of the American Society for Horticultural Science,1982,107(2):275-278.
    Yang L., Stulen I. and De Kok L.J. Interaction between atmospheric sulfur dioxide deposition and pedospheric sulfate nutrition in Chinese cabbage. In Sulfur Transport and Assimilation in Plants:Regulation, Interaction and Signaling[M], Backhuys Publishers, Leiden, The Netherlands,2003.
    Yang L., Stulen I., De Kok L.J. Sulfur dioxide:Relevance of toxic and nutritional effects for Chinese cabbage. Environtal Experimental Botany,2006,57:236-245.
    Yoneda K., Usui M., Kubota S. Effect of nutrient deficiency on growth and flowering of Phalaenopais. Journal of the Japanese Society for Horticultural Science,1997,66(1): 141-147.
    Yoshimoto, N., Inoue, E., Saito, K., Yamaya, T., Takahashi, H. Phloem-localizing sulfate transporter, Sultrl;3, mediates redistribution of sulfur from source to sink organs in Arabidopsis. Plant Physiologyogy,2003,131:1511-1517.
    Zhang J., Wu L.H. Wang M.Y. Can iron and zinc in rice grains (Oryza sativa L.) be biofortified with nitrogen under pot conditions? Journal of Science Food Agricultre,2008,88:1172-1177.
    Zhao F J, Hawkesfordt M J, McGrath S P. Sulfur assimilatory and effects on yield and quality of wheat. Cereal Science,1999,30:1-17.
    Zhao F J, Almon S E, Withers P T A, et al. Variation in the bread making quality and rheological properties of wheat in relation to sulphur nutriton under field conditions Journal of Cereal Science,1999,30:19-31.
    Zhao, F. J., Hawesford, M. J., Warrilow, H. G. S. Response of two wheat varieties to sulphur addition and diagnosis of sulphur deficiency. Plant and Soil,1996,181:317-327.
    包满珠.花卉学[M].北京:中国农业出版社,2003.
    蔡虹,赵世伟,周斯建.凤梨[M].北京:中国林业出版社,2004.
    藏小平,徐雪荣.棕榈植物的营养与施肥[J].广西热带农业,2002,(1):14-15.
    曹志洪.硫素营养对改善农产品质量的作用[J].国际硫肥会议论文集[C],2000:1-22.
    曾韶西,王以柔,刘鸿先.低温下黄瓜幼苗子叶硫氢基(SH)含量变化与膜脂过氧化[J].植物学报,1991,33(1):50-54.
    常永义,朱建兰.红地球葡萄缺素症研究[J].河北林业科技,2004,(10):102-122.
    陈防,陈行春,鲁剑巍,等.钾、硫配施对作物产量与品质的影响[J].土壤通报,1994,25(5):216-218.
    陈克文.作物的硫素营养与土壤肥力[J].土壤通报,1982,(5):43-46.
    陈秋舲,李延,陈木旺.S素营养对水稻若干生理代谢的影响[J].福建农业大学学报,1997,26(3):328-332.
    陈文朝,黄韦荣.仙客来的矿质营养[J].中国花卉园艺,2006,18:15-21.
    陈向明.牡丹花期体内矿质元素含量特征[J].安庆师范学院学报,2002,2(8):60-62.
    陈岩.三种微量元素及营养液浓度对蝴蝶兰生长的影响[D].哈尔滨:东北林业大学硕士生学文论文,2008.
    丁兴萃.矿质元素在保护地栽培促进早竹开花中的影响[J].浙江林业科技,2006,26(4):12-14.
    樊卫国,刘进平.刺梨对缺素胁迫的反应[J].贵州农学院学报,1997,16(3):43-47.
    范燕萍,余让才,陈建勋,等.氮素营养胁迫对匙叶天南星生长及光合特性的影响[J].园艺学报,2000,27(4):297-299.
    方升佐,李光友.立地条件对青檀檀皮中矿质元素含量的影响[J].林业科学,2002,38(1):8-14.
    冯光泉,金航,陈中坚,等.不同营养元素对三七生长的影响研究[J].现代中药研究与实践,2003,(S):18-21.
    冯宗炜.中国酸雨的生态影响和防治对策[J].云南环境科学,2000,19:1-6.
    高桥英一.作物の要素欠乏、过剩症[M].东京:农山渔村文化协会,1980.
    谷洁,吕殿青,张文孝.陕西渭北早原小麦的缺素试验研究[J].国外农学-麦类作物,1994,(4):45-46.
    郭秀珠,黄品湖,王月英.君子兰专用营养液的研制[J].林业实用技术,2005,(11):42.
    郭学望,包满珠.园林树木栽植养护学[M].北京:中国林业出版社,2004.
    郭衍银,徐坤,王秀峰,等.生姜对氮磷钾缺乏的反应[J].土壤肥料,2004,(1):7-11.
    韩建萍,王永炎,张文生,等.矿质元素及pH值与栀子中栀子苷含量的相关性[J].生命科学研究,2006,10(2):134-137.
    何华勤,梁义元,陈露洁,等.低磷营养胁迫下水稻化感抑草潜力的变化特性及其作用机理[J].应用生态学报,2006,17(11):2070-2074.
    胡松华.观赏凤梨[M].中国农业出版社,2003.
    胡继颖.大花蕙兰磷营养生理研究[D].北京:北京林业大学硕士学位论文,2008.
    环保部.环境保护部通报2007环境状况:COD和S02排放双降.2008.http://www.gov.cn/gzdt/2008-06/04/content_1005560.htm
    黄奔立,伍烨,张顺琦,等.矿质营养缺乏对黄瓜生理生化特性的影响[J].生物技术通报,2006,(S):326-329.
    黄鑫,王磊,李成,等.玉米幼苗缺素症状研究[J].东北农业大学学报,2004,35(3):272-275.
    黄智明,张应麟,钟志权.观赏凤梨[M].广西科技出版社,2000.
    季应明.番茄营养元素缺乏与过剩症状的研究[J].江苏农业科学,1996,(4):46-49.
    焦雪辉,吴沙沙,吴锦娣,等.观赏凤梨盆花设施标准化生产.温室园艺,2010,(8):66-69.
    姜理英,杨肖娥,石伟勇.钠钾替代作用及对作物的生理效应[J].土壤通报,2001,32(1):28-311.
    蒋卫东,韩晓日.盘锦、营口地区水稻综合缺素症发生原因分析[J].沈阳农业大学学报,2003, 34(1):23-27.
    楷永,陈心启,朱光华.中国植物志[M].北京:科学出版社,1999.
    康红梅,张启翔,潘会堂,等.复合基质及其对切花月季生长的影响[J].湖南农业大学学报,2003,29(3):268-270.
    雷道才,梁传平,陈有志,等.大乌圆龙眼实生幼苗缺素沙培试验初报[J].中国南方果树,1998,27(3):29-30.
    李成,史芝文.高梁缺素症状的研究[J].农业与技术,2004,24(1):18-22.
    李桂琴,桂明珠,史芝文.亚麻苗期缺素症状的研究[J].中国麻作,1997,319(4):25-29.
    李桂琴,史芝文,李桂芳,等.甜菜苗期缺素症状研究[J].中国甜菜,1993,(2):1-6.
    李奎,田明华,王敏.中国花卉产业化发展的分析[J].中国林业经济,2010,100(1):54-58.
    李立人,王维光,韩祺.苜蓿二磷酸核酮糖(RUBP)羧化酶体内活化作用的调节[J].植物生理学报,1986,12(3):33-39.
    廖红,严小龙.高级植物营养学[M].北京:科学出版社,2003.
    林春华,黄亮华,曹毅.深液流水培芥蓝缺素试验[J].广东农业科学,1999,(5):27-29.
    林绍生,黄品湖,金川,等.几种花卉植物体营养含量分析研究[J].中国林副特产,2002,5(2):31-32.
    刘存辉,董树亭,胡昌浩.硫在作物增产中的作用研究进展[J].山东农业大学学报,1998,29(1):121-124.
    刘建福,陈长吉,林松柏,等.澳洲坚果对营养胁迫的生理响应研究[J].西南农业学报,2002,15(3):90-93.
    刘丽娟,冯玉才,赵兰坡,等.穿龙薯蓣氮、磷、钾缺素症状研究[J].吉林农业大学学报,2006:28(4):426-429.
    刘勤,赖辉比,曹志洪.不同供硫水平下烟草硫营养及对N、 P、 Cl等元素吸收的影响[J].植物营养与肥料学报,2000,6(1):63-68.
    刘世平,梁开明,蔡楚雄,等.台湾青枣病虫害及缺素症的防治[J].广东农业科学,2007,(7):14-18.
    刘松忠等,氮硫供应对大葱含硫有机物及其代谢关键酶活性的影响[J].西北农业学报,2010(6):第148-152页.
    刘晓荣,廖飞雄,王碧青,等.基质、氮磷钾比例和氮肥浓度对文心兰生长的影响[J].中国农学通报,2011,27(02):151-156.
    刘永贤,李桂香,农梦玲,等.烟草微量元素缺乏症状的研究进展[J].广西农学报,2007,22(3):48-51.
    刘玉艳,于凤鸣,张凯旋.香雪兰生长发育与矿质营养的吸收规律[J].河北科技师范学院学报,2005,19(2):9-12.
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    罗平源,史继孔,张万萍.银杏雌花芽分化期内源激素、碳水化合物和矿质营养的变化[J].浙江林业学报,2006,23(5):532-537.
    马国瑞,石伟勇.花卉营养失调症原色图谱[M].北京:中国农业出版杜,2005.
    马友华,丁瑞兴,张继榛,等.硒和硫相互作用对烟草氮吸收和积累的影响[J].安徽农业大学学报,1999,26(1):95-100.
    牟宗敏,严宁,胡虹.矿质营养对主要观赏兰科植物开花影响的研究进展[J].北方园艺,2010(4):225-228.
    潘瑞炽.墨兰矿质营养研究[J].华南师范大学学报,1996,(1):47-50.
    彭桂群,王力华,邓正正.平阴玫瑰花芽分化期叶片矿质元素含量动态变化[J].沈阳农业大学学报,2005,36(4):419-423.
    漆小雪,韦霄,蒋运生,等.银杏大小年结果植株叶片的营养元素比较研究[J].广西植物,2006,26(3):325-329.
    祁葆滋.硫营养对小麦、玉米碳、氮代谢中几项生理参数的影响[J].作物学报,1989,15(1):31-35.
    邱瑾,杨盛昌,钟然.矿质营养对水仙若干生理生化指标的影响[J].亚热带植物科学,2005,34(2):21-24.
    上官铁梁,张红,席玉英,等.珍稀濒危植物矮牡丹体内矿质元素的研究[J].植物研究,2001,21(2):262-265.
    施冰,刘晓东,李义.大花萱草不同发育阶段矿质营养及水分含量的动态研究[J].东北林业大学学报,2001,29(2):113-116.
    史永江,张志华,孙宁.土壤矿质元素含量与核桃SOD、POD活性的关系[J].天津农学院学报,2005,12(4):12-15.
    史芝文,徐淑芬,丁国华,等.烟草缺素症状研究[J].农业与技术,1997,1:1-6.
    隋方功,于常春,刘培利.缺素培养对夏谷幼苗吸收磷钾钙镁的影响[J].莱阳农学院学报,1992,9(3):205-210.
    孙玉琴,韦美丽,韩进,等.三七缺素症状初步研究[J].中药材,2008,31(1):4-6.
    台德卫,张效忠,苏泽胜,等.不同磷营养胁迫下水稻苗期性状基因型差异的研究[J].分子植物育种,2005,3(5):704-710.
    谭勇,梁宗锁,王渭玲,等.氮、磷、钾营养胁迫对黄芪幼苗根系活力及根系导水率的影响[J].中国生态农业学报,2007,15(6):69-72.
    汤少红,石伟勇,余琼芳,等.基质栽培仙客来矿质营养吸收规律的研究[J].园艺学报,2006,(4):894.
    唐菁,康红梅.几种栽培花卉基质的理化特性研究[J].土壤通报,2006,37(2):291-293.
    汪剑呜,刘瑛,孙学兵,等.红麻苗期主要矿质营养缺乏研究初报[J].中国麻业,2003,25(3):124-127.
    王才斌,迟玉成,郑亚萍,等.花生硫营养研究综述[J].中国油料,1996,18(3):76-78.
    王彩云,黄普乐,陈红锋,等.盆栽对节白蜡叶片中主要矿质元素含量的年变化[J].植物生理学通讯,2000,(3):227.
    王敏艳,吴良欢,祝伟根,张勇勇.非洲菊优质高效有机生态栽培基质研究[J].浙江农业学报,2005,17(5):326-329.
    王庆仁,林葆.硫胁迫对油菜超微结构及超细胞水平硫分布的影响[J].植物营养与肥料学报,1999,(5):46-49.
    王庆仁,林葆.植物硫营养研究的现状与展望[J].土壤肥料,1996,(3):16-19.
    王书林,李应军.药用植物川麦冬营养缺素的初步研究[J].中药研究与信息,2004,6(1):15-17.
    王渭珍,梁宗锁,谭勇,等.黄芪幼苗N,P,K营养缺乏症状和生理特性研究[J].中国中药杂志,2008,33(8):949-952.
    王小如.电感耦合等离子体质谱应用实例[M].北京:化学工业出版社,2005.
    王月福,姜东,于振文,曹卫星.氮素水平对小麦籽粒产量和蛋白质含量的影响及其生理基础.中国农业科学,2003,36:513-520.
    吴楚,谢裕春,甘彩霞,等.磷胁迫对黄瓜幼苗生长、光合作用、生物量及其分配的影响[J].安徽农业科学,2005,33(10):1825-1827.
    吴燕,刘长干,高青海.氮素对花卉生长及品质的影响[J].安徽农业科学,2007,35(5):1417-1418.
    吴月嫦,谢深喜.P、 K、Ca缺失对枇杷幼苗生长发育及生理特性的影响[J].果树学报,2006,23(1):55-58.
    奚旦立,孙裕生,刘秀英.环境监测(第三版)[M].高等教育出版社,2004.
    薛应龙.植物生理学实验手册[M].上海科学技术出版社,1985.
    杨空松,陈小荣,傅军如,等.营养胁迫下东乡野生稻生物学特性鉴定初报[J].植物遗传资源学报,2006,7(4):427-433.
    杨丽娟,李贵琴,桂明珠,等.玉米缺素症状的研究[J].玉米科学,2000,8(2):75-79.
    杨明杰,林咸永,肖永娥.Cd对不同种类植物生长和养分积累的影响[J].应用生态学报,1998,9(1):89-94.
    杨旭东.荔枝缺素症的表现[J].云南农业,2007,(7):20.
    杨宇红,张雄飞,卢翰,等.茄果类蔬菜缺素症状及恢复试验初报[J].长江蔬菜,1990,(1):28-29.
    余让水,林麓,许能琨,等.龙舌兰杂种11648号麻主要矿质营养缺乏症研究[J].中国麻作,1991,(1):37-41.
    郁书君,李贞植,俞奉植.杜鹃无土栽培基质配方的研究[J].园艺学报,2004,31(2):210-214.
    张丽萍,陈震,马小军,等.氮、磷、钾对黄连植株生长、小檗碱含量的影响[J].中国中药杂志,1997,22(1):13-14.
    张鹏飞,刘亚令,张燕,等.核桃无融合生殖现象及其矿质营养变化研究[J].安徽农业科学,2006,34(10):2032-2033.
    张秋芳,彭嘉桂,林琼,等.硫素营养胁迫对水稻根系和叶片超微结构的影响[J].土壤,2008,40(1):106-109.
    张小冰,杨斌.月季无土栽培营养液特性的分析与比较[J].山西农业大学学报,2000,20(2):39-42.
    张晓东,李疆,尚新业,等.不同营养元素对阿月浑子苗期缺素症的影响[J].经济林研究,2007,25(4):41-44.
    张英聚.植物的硫营养[J].植物生理学通讯,1987,(2):9-15.
    张钊,周冀衡,邵岩,等.缺素对烤烟叶片腺毛生长发育影响的研究[J].中国烟草学报,2007,]3(5):50-53.
    张正芳.桑树缺素症的主要表现与防治方法[J].蚕史文化,2007,28(3):51-52.
    郑国栋,张新明.养分胁迫对荔枝叶片矿质营养的影响研究[J].安徽农业科学,2008,36(1):244-245.
    中国科学院中国植物志编辑委员会.中国植物志—菊科[M].北京:科学出版社,1979-1999,(74--80卷).
    周利华,聂立水,吴京科.福建比利时杜鹃叶片矿质营养含量的研究[J].河北林果研究,2005,20(4):317-322.
    周利华,聂立水,吴京科.西洋杜鹃叶片矿质营养含量的研究[J].西南园艺,2006,34(2):13-15.
    周佩珍.植物生理学[M].合肥:安微科技出版社,1987:56-57.
    朱继正,侯振安,李国英,等.甜菜缺素症状及焉耆垦区甜菜营养生理性病害的诊断[J].石河子大学学报:自然科学版,2001,5(4):291-294.
    朱青,尹迪信,易斌,等.贵州铜仁地区红苕缺素试验初报[J].耕作与栽培,1996,(4):7-8.
    朱青,尹迪信.贵州铜仁地区水稻缺素试验[J].贵州农业科学,2006,34(6):52-54.
    朱云集,李国强,郭天财,等.硫对不同氮水平下小麦旗叶氮硫同化关键酶活性及产量的影响[J].作物学报,2007,33(7):1116-1121.
    宗边.环境保护部公布2010年全国环境质量状况报告.中华人民共和国环境保护部,2011.http://www.mep.gov.cn/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700