用户名: 密码: 验证码:
不同条件下九孔鲍免疫防御因子的差异性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对九孔鲍在副溶血弧菌感染过程中以及在低氧胁迫和饥饿胁迫条件下机体细胞和体液免疫防御因子的变化,九孔鲍野生与养殖群体免疫防御因子及生化遗传差异性等内容进行研究。结果表明,在副溶血弧菌感染过程中九孔鲍血淋巴细胞当中的吞噬细胞和体液中的一些免疫因子发挥重要作用,吞噬细胞存在呼吸爆发现象,呼吸爆发产生的活性氧和活性氮是杀灭被吞噬的异源生物的主要因素;胞内MPO将H2O2转化为次氯酸(hypochlorous acid, HOCl)和氯胺(chloramines, RNCl)等次生氧代谢产物,强化杀菌效果;胞内ACP对异物发挥消化、降解作用;胞内CAT则积极参与胞内氧自由基的淬灭和清除作用;九孔鲍血淋巴液中的凝集素、溶菌酶、酚氧化酶等参与抗感染免疫过程,凝集素发挥免疫识别、免疫调理、凝集限制、免疫溶解等作用,溶菌酶发挥水解革兰氏阳性菌的作用,酚氧化酶则可能参与病原微生物的抑制和免疫识别,九孔鲍存在通过细胞增殖强化免疫效应的机制;此外,九孔鲍血淋巴液中还发现免疫球蛋白样物质IgG-like, IgA-like, IgM-like,补体样物质C3-like,C4-like,C反应蛋白样物质CRP-like等,它们与机体抗感染免疫应答具有一定的相关性。
     平均体重为14.25g±2.21g的九孔鲍在水温为22.1℃±1.3℃,盐度为30.72±0.54,pH8.20±0.14的海水环境中,溶解氧含量由7.49±0.14 mg·L-1下调至2.53±0.16 mg·L-1后120内并未见到个体死亡,而注射感染5.0x105 cells-abalone-1副溶血弧菌后120h内的累计死亡率高达91.11±7.70%,比对照组11.11±3.83%的累计死亡率高出80%,血淋巴的抑菌清除率下降至-(3340.47±298.57)%,显而易见,低氧胁迫使得九孔鲍拮抗副溶血弧菌感染的抵抗力显著下降。低氧(2.53±0.16 mg·L-1)胁迫下,九孔鲍血淋巴细胞数量(THC)下降30.62±4.87%、血淋巴细胞吞噬率下降62.77±5.79%、呼吸爆发产生的超氧阴离子数量下降22.21±5.89%。低氧胁迫下九孔鲍血淋巴细胞内MPO活性上升9.63±7.59%~22.90±13.73%、CAT活性提高7.68±6.83%~56.28±13.96%,反映出低氧胁迫下九孔鲍体内应激反应产生的物质氧化加剧,血淋巴细胞内产生大量的活性氧自由基。溶解氧含量由7.49±0.14 mg·L-1下调至4.51±0.12 mg·L-1后九孔鲍120h内的累计死亡率达到37.78±3.85%,血淋巴抑菌率下降至-(883.56±123.22)%;THC、血淋巴细胞吞噬率、呼吸爆发产生的超氧阴离子O2-数量等最大降幅分别达到12.51±6.59%、21.90±15.84%、12.93±5.74%;MPO活性在原有水平的-(10.61±4.20)%-7.13±6.45%之间波动,CAT活性在-(5.17±18.08)%~16.26±10.85%之间变化。
     在水温24.3℃±1.7℃、盐度为30.42±1.63、pH值为8.15±0.11环境条件下,饥饿胁迫20d九孔鲍尚能存活。在停食5d时,九孔鲍血淋巴液蛋白含量不仅没有下降,甚至略有升高,而7d后,九孔鲍血淋巴液蛋白质含量逐渐大幅度下降,由此推测,九孔鲍在饥饿胁迫早期并没有动用体蛋白作为能源物质,而饥饿7d后,体蛋白被大量消耗于机体的生命维持。饥饿胁迫状态下九孔鲍血淋巴细胞吞噬活性下降、血淋巴细胞呼吸爆发水平下降、体液溶菌酶活性、凝集活性下降、抗感染免疫机能下降。但是,九孔鲍经历5d时间的饥饿,血淋巴抗菌清除效率、血淋巴细胞吞噬活性、血淋巴细胞呼吸爆发产生的超氧阴离子水平、体液溶菌酶活性等免疫指标都不仅变化不大,有时甚至略有升高,说明九孔鲍具有面对饥饿胁迫的应激适应机制,饥饿之初,由于营养不足,机体通过提高免疫机能加强来适应环境、保护自我。饥饿胁迫持续时间超过7d,这种本能的逆境适应方式和机能维持终因体内的营养状况严重不足和体内资源的过度消耗而改变和衰退。饥饿胁迫下的九孔鲍血淋巴液中的溶菌酶活性、凝集活性下降可能由体液蛋白含量下降引起,胞内颗粒性物质减少则可能是血淋巴液中溶菌酶及凝集素活性减弱的直接原因。
     对九孔鲍野生与养殖群体的细胞与体液免疫因子进行比较,结果表明:九孔鲍野生群体与养殖群体之间、养殖鲍的提纯复壮群体与养殖性状退化群体之间的免疫因子及机体免疫防御机能均有显著的差异性。养殖鲍的提纯复壮群体(养殖10个月,个体大小为51.8mm~59.2mm)细胞与体液免疫因子活性都明显高于养殖性状退化的养殖群体(养殖20个月,个体大小为37.4mm~43.1mm)p<0.01),与野生群体(个体大小为67.7mm~76.7mm)相比,九孔鲍提纯复壮群体的细胞免疫因子活性略高于野生群体,体液免疫因子活性则明显低于野生群体。九孔鲍血淋巴细胞在吞噬活动中引发呼吸爆发产生活性氧的水平与九孔鲍自身生理、环境温度以及异物数量等因素有显著的相关性p<0.01)。环境温度由25℃下降至18℃,九孔鲍的细胞与体液免疫因子活性都有明显的下降。养殖九孔鲍退化群体在25℃和18℃温度条件下血淋巴液的抗菌活力水平差异性不明显。酚氧化酶存在于九孔鲍血淋巴液中,但,活性水平不高,在各类九孔鲍群体之间的差异性也不明显。
     对深圳野生与养殖、广东碣石养殖及南澳野生4个九孔鲍群体8种酶共16个位点进行了等位酶检测分析。研究表明,以P095为标准,上述4个九孔鲍群体的位点Sod-1、Aat、Me、Mdh-1、Est-1、Est-2为多态,多态位点比例为37.5%;野生群体的观察杂合度分别为:0.1604(深圳野生)、0.1604(南澳野生),养殖群体的观察杂合度分别为:0.1521(广东碣石养殖)、0.1562(深圳养殖);野生群体的期望杂合度分别为:0.1697(深圳野生)、0.1766(南澳野生),养殖群体的期望杂合度分别为:0.1534(广东碣石养殖)、0.1557(深圳养殖);野生群体的平均有效等位基因数分别为:1.3633(深圳野生)、1.3943(南澳野生),养殖群体的平均有效等位基因数分别为:1.3072(广东碣石养殖)、1.3120(深圳养殖)。九孔鲍野生群体间遗传距离为:0.0052,养殖群体间遗传距离为:0.0131,4个群体平均遗传距离为:0.011。综合分析后认为,九孔鲍养殖群体遗传多样性水平低于野生群体,群体间分化较低(FST=0.0411,Nm=5.8340)。
The roles and variation of cellular and humoral effectors involved in immune defense system of the abalone, Haliotis diversicolor supertexta, in duration of anti-infectious immune response against to Vibrio parahaemolyticus or exposed to hypoxic and starvation stress were studied in this paper, in addition, the variation in immune defense effecors and biochemical genetics among wild and cultivated populations were investigated either. The results showed that phagocytes involved in haemocytes and some humoral immune effectors of the analone acted the most important roles in immune response against toⅤ. parahaemolyticus infection, and reactive oxygen intermediates (ROIs) and reactive nitrogen intermediates (RNIs) produced by respiratory burst which occurred concurrently with phagocytosis employed the major effectors among bactericidal agents in phagocytes, and the bactericidal effects of ROIs highly enhanced by the way of intracellular myeloperoxidase (MPO) catalyzed the transformation of hydrogen peroxide (H2O2) to some subordinated reactive oxygen metabolites such as hypochlorous acid (HOCl) and chloramines (RNCl), while the intracellular acid phosphatase (ACP) acted in digestion and biodegradation for engulfed foreign microorganisms, and catalase (CAT) served as antioxidant in quenching and clearance to oxyradicals. All are they the main anti-infectious immune effectors in immunocytes. Furthermore, some effectors in haemolymph of the abaone such as agglutinin, lysozyme, and phenol oxidase were all took parts in the immune response against toⅤ. parahaemolyticus infection either. Agglutinin in haemolymph performed functions in recognition for foreign material, opsonization, inhibition and haemolysis. Lysozyme took effect in bacteriolysis for gram-positive bacteria, and phenol oxidase may contribute to bacteriostasis and foreign material recognition. There was a pathway of potentiation immune effection through haemocytes proliferation which had been found in H. diveersicolor supertexta in duration of infection with V. parahaemolyticus. In haemolymph of the abalones some kinds of substance similar to immunoglobulin, complement and C reaction protein had been found and been named IgG-like, IgA-like, IgM-like, C3-like, C4-like and CRP-like respectively. All of them had some dependencies in anti-infectious immune response against to V. parahaemolyticus certainly.
     The abalones of H.diversicolor supertexta with an average body weight 14.25g±2.21g can tolerate 120 hours exposure to a hypoxic condition while dissolved oxygen reduction from 7.49±0.14 mg·L-1 to 2.53±0.16 mg·L-1 without onset mortality occured at a water temperature 22.1℃±1.3℃, and a salinity level of 30.72±0.54%o, and pH 8.20±0.14, but they suffered 91.11±7.70% cumulative mortality rate which was 80% more than of the control animals duo to challenged withⅤ. parahaemolyticus at a dose of 5.0x105 cells-abalone-1, and a clearance efficiency in the haemolymph of H.diversicolor supertexta decreased to-(3340.47±298.57)% inhibition rate. Obviously, the resistance of the abalones against toⅤ. parahaemolyticus infection decreaced and the susceptivity inceassed correspondingly at the hypoxic stress above, in which the total haemocytes counts (THC) and percentage of phagocytosis and the amount of superoxide anion (O2-) produced by respiratory burst decreased at 30.62±4.87%,62.77±5.79%,22.21±5.89% respectively. What intracellular MPO activity and CAT activity went up from 9.63±7.59% to 22.90±13.73% and 7.68±6.83% to 56.28±13.96% respectively while dissolved oxygen reduction from 7.49±0.14 mg·L-1 to 2.53±0.16 mg-L"1 suggests that the intracellular oxidation introduced by hypoxic stress response intensified and there must be much more oxyradical. The trial abalones of H. diversicolor supertexta possessed a cumulative mortality rate of 37.78±3.85% and a haemolymph inhibition rate of -(883.56±123.22)%, and the maximal downtrends of 12.51±6.59%, 21.90±15.84%,12.93±5.74% in THC and percentage of phagocytosis and the amount of O2-production respectively, and a variation of MPO activity range from -(10.61±4.20)% to 7.13±6.45% and CAT activity from -(5.17±18.08)% to 16.26±10.85% while dissolved oxygen went down from 7.49±0.14 mg·L-1 to 4.51±0.12 mg·L-1 due to infection with V. parahaemolyticus.
     The abalones of H.diversicolor supertexta with an average body weight 14.25g±2.21g can survive in a period of 20 days starvation at 24.3℃±1.7℃water temperature, 30.42±1.63%o salinity level and pH 8.15±0.11. The concentration of haemolymph protein in the abalones increased slightly in 5 days exposure time to starvation and dropped progressively with a wide range from 7d. Based on this, it will be surmised that there was hardly any humoral protein consumed for living energy in early starvation and mass humoral protein consumed for life support from 7d to starvation. The abalones survived with decreases in phagocytosis activity of haemocytes and respiratory burst and haemolymph lysozyme activity and haemolymph agglutination titers and anti-infectious immunity in duration of starvation, however, rather than did not greatly alter, some immune parameters such as the haemolymph clearance efficiency and phagocytosis activity of haemocytes and respiratory burst and haemolymph lysozyme activity sometimes went up somewhat in 5 days early starvation. Consequently, it would be suggested that the abalones were born with functions of starvation stress adaptation. In early duration of starvation the abalones did protect themselves and adaptate to surroundings by improving immune effection owing to subnutrition, and this biophilia styles of stress adaptation and natural ability maintaining changed or degenerated from 7d to starvation resulted from serious poor nutritional state and overmuch intravital resources degradation. Perhaps the haemolymph lysozyme activity and agglutinating titers decreased resulting from reduction of haemolymph protein, while the intracellular granules reduction may result in the haemolymph lysozyme activity and agglutinating titers dropped down directly.
     Comparion of wild population with a body length ranged from 67.7mm to 76.7mm and cultivated population of the abalone, Haliotis diversicolor supertexta, in cellular and humoral immune effectors showed that there were clear differences both in activities of immune defense effectors and immune defense function either between wild population and cultivated population or between purification and rejuvenation cultivated population which gained a body length ranged from 51.8mm to 59.2mm in 10 months of cultivation and degenerate cultivated population which only gained a body length ranged from 37.4mm to 43.1mm in 20 months of cultivations. Comparing with degenerate population, activities of both cellular and humoral immune effectors in purification and rejuvenation cultivated abalone population of H. diversicolor supertexta were obviously higher. While, comparing with wild population, only activities of cellular immune effectors in the purification and rejuvenation cultivated abalone population were somewhat higher, but the activities of humoral immune effectors were obviously lower. The amount of reactive oxygen intermediates (ROIs) produced by respiratory burst which occurred concurrently with phagocytosis were much in relation to the physical states of the abalones themselves and the environmental temperatures and the quantities of the stimulants. Activity of both cellular and humoral immune effectors had a significant decrease as the environmental temperature dropped down from 25℃to 18℃, while the antibacterial activities of the degenerative abalone population only had a little difference under two kinds of surrounding temperatures. There was some phenol oxidase in the hemolymph of the abalones, but their activities were low and had no marked activity difference within three above different populations.
     Conducted an investigation into genetic variation and diversity of wild and cultivated abalone populations of Haliotis diversicolor supertexta from Shenzhen and wild population from Nanao and cultivated population from Guangdong Jieshi altogether 4 populations in 8 enzyme systems presumably encoded by 17 allozyme loci using the assay of vertical slab polyacrylamide gel electrophoresis, it was found that six loci(Sod-1、Aat、Me、Mdh-1、Est-1、Est-2) presented polymorphic (P0.95) in the four populations above, and the percentage of polymorphic loci (P) was 37.5%; the observed heterozygosity (Ho) in both of wild populations were 0.1604, and the cultivated populations were 0.1521(GDSZ C.) and 0.15629(SZ C.) respectively; the expected heterozygosity (He) in wild populations were 0.1697 (SZ W.) and 0.1766 (NA W.) respectively, the cultivated populations were 0.1534 (GDSZ C.) and 0.1557(SZ C.) respectively; mean effective number of alleles per locus (Ae) in wild populations were 1.3633 (SZ W.) and 1.3943 (NA W.) respectively, while the cultivated populations were 1.3072 (GDSZ C.) and 1.3120 (SZ C.) respectively. The genetic distance between the two wild populations above was 0.0052, while the genetic distance between the cultivated populations was 0.0131, and the average of the four populations were 0.011. All of these results showed that there were a loss of genetic variation in cultivated populations of H. diversicolor supertexta, low level of differentiation was found between wild and cultivated populations (Fst=0.0411, Nw=5.8340).
引文
[1]高晓明主编.医学免疫学[M],北京,高等教育出版社,2006,7:38-52,216-230.
    [2]康恩洁主编.医学免疫学[M],成都,四川大学出版社,2004,1:229-239.
    [3]杨汉春主编.医学免疫学[M],北京,中国农业大学出版社,2003,8:218-236.
    [4]于善谦等编.免疫学导论[M],北京,高等教育出版社,1999,7:269-281.
    [5]肖克宇等编著.水产动物免疫与应用[M],北京,科学出版社,2007,1:83-101.
    [6]管华诗主编.海水养殖动物的免疫、细胞培养和病害研究[M],济南,山东科学技术出版社,1999,10:32-43.
    [7]高绪生等编著.鲍鱼[M],沈阳,辽宁科学技术出版社,2006,7:33-49.
    [8]张朝霞,王军,张蕉南,等.东山九孔鲍细菌性疾病研究[J].台湾海峡,2001,20(2):193-200.
    [9]陈月忠,黄万红,陈木.闽粤地区鲍暴发性流行病的病因分析和流行病学研究[J].海洋科学,2005,29(8):100-104.
    [10]Adema C M, van der Knaap W, Sminia T.1991. Molluscan hemocyte-mediated cytotoxicity:the role of reactive oxygen intermediates. Rev Aquat Sci 1991; 4:201-23.
    [11]Sahaphong S, Linthong V, Wanichanon C, et al.2001. Morphofunctional study of the haemocytes of Haliotis asinina. J Shellfish Res 20:711-717.
    [12]Malham S, Lacoste A, Gelebart F, et al.2003. Evidence for a direct link between stress and immunity in the mollusc Haliotis tuberculata. J Exp Zool 295A:136-144.
    [13]Cheng W, Hsiao I-S, Chen J-C.2004. Effect of ammonia on the immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Fish Shellfish Immunol 17:193-202.
    [14]Cheng W, Li C-H, Chen J-C.2004. Effect of dissolved oxygen on the immune response of Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Aquaculture 232:103-115.
    [15]Celia Hooper, Rob Day, Ron Slocombe, et al.2007. Stress and immune response in abalone: Limitation in current knowledge and investigative methods based on other models. Fish & Shellfish immunology 22:363-379.
    [16]李太武,丁明进,相建海等.皱纹盘鲍对河流弧菌-Ⅱ疫苗免疫的研究[J].海洋与湖沼,1997.28(1):27-31.
    [17]张剑诚,张峰,王吉桥.皱纹盘鲍血细胞分类及活性氧产生机理的研究[J].大连水产学院学报,2004,19(3):182-187.
    [18]陈全震,杨俊毅,王小谷,等.皱纹盘鲍血细胞的亚显徽结构及分类研究[J].水产学报,2001.25(6):492-494.
    [19]饶小珍,陈寅山,林 岗,等.九孔鲍血细胞的研究[J].福建师范大学学报(自然科学版),2007,23(3):156-160.
    [20]饶小珍,陈寅山,林岗,等.九孔鲍血细胞吞噬能力的研究[J].海洋水产研究,2007,28(2):56-61
    [21]王江勇,郭志勋,冯 娟,等.杂色鲍血细胞的分类及显微与超微结构研究[J].台湾海峡,2008,27(2):156-160.
    [22]Hine P M. The inter-relationships of bivalve haemoeyte. [J]. Fish & Shellfish Immunology,1999,9: 367-385.
    [23]Winton Cheng, Feng-Ming Juang, Jiann-Chu Chen,2004. The immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus at different salinity levels. Fish & Shellfish Immunology 16,295-306.
    [24]Winton Cheng, I-Shan Hsiao, Chih-Hung Hsu, et al.,2004. Change in water temperature on the immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Fish & Shellfish Immunology 17,235-243.
    [25]陈政强,陈昌生,战文斌,等.不同类群九孔鲍免疫防御机能的比较[J].水产学报,2004,28(2):189-194.
    [26]揭鸿英.九孔鲍非特异性免疫研究[D].福建农林大学,2006
    [27]张峰,李光友.贝类血细胞活性氧体内防御作用的研究进展[J].海洋科学,1999,(2):16-18.
    [28]张 峰,李光友,张培军.皱纹盘鲍血细胞活性氧产生的研究[J].中国水产科学,1999,6(3):37-39.
    [29]Linda B. Martello, Ronald S. Tjeerdema,2001. Combined effects of pentachlorophenol and salinity stress on chemiluminescence activity in two species of abalone. Aquatic Toxicology 51,351-362.
    [30]陈媛等主编.自由基医学基础与病理生理[M],北京,人民卫生出版社,2002,10:1-300.
    [31]Asokan R, Arumugam M, Mullainadhan P.1997. Activation of prophenoloxidase in the plasma and haemocytes of the marine mussel Perna viridis Linnaeus. Dev Comp Immunol 21:1-12.
    [32]丁秀云,李光友,翟玉梅.皱纹盘鲍经诱导后血淋巴中一些因子变化的研究[J].海洋与湖沼,1996,27(4):362-367.
    [33]Shuhong W, Yilei W, Zhaoxia Z, et al.2004. Response of innate immune factors in abalone Haliotis diversicolor supertexta to pathogenic or non-pathogenic infection. J Shellfish Res 23:1173-7.
    [34]纪荣兴,邹文政,鄢庆枇,等.九孔鲍接种灭活病毒的免疫效果分析[J].集美大学学报,2008,13(4):27-32.
    [35]王江勇,郭志勋,冯娟,等.病毒感染后杂色鲍部分血清免疫因子的变化[J].中国水产科学,2005,12(3):344-347.
    [36]王淑红,王艺磊,张朝霞,等.弧菌和大肠杆菌感染对杂色鲍无细胞血淋巴中几种酶活力的影响[J].中国水产科学,2004,11(1):37-40.
    [37]陈昌生,王淑红,纪德华,等.氨氮对九孔鲍过氧化氢酶和超氧化物歧化酶活力的影响[J].上海水产大学学报,2001,10(3):218-222.
    [38]王勇军,王长法,张士璀.水产动物中一氧化氮合酶的研究概况[J].海洋水产研究,2003,24(2):88-93.
    [39]王广军,谢骏,余德光.副溶血弧菌对九孔鲍血清中一氧化氮及一氧化氮合酶活力的影响[J].上海水产大学学报,2005,14(3):237-241.
    [40]王广军,谢骏,吴嘉敏,等.注射L-精氨酸对杂色鲍血清中NO、NOS的影响[J].水利渔业,2008,28(4):29-30.
    [41]李太武,李晔,苏秀榕,等.杂色鲍抗菌肽的分离提取及基因克隆[C].中国海洋湖沼学会第九次全国会员代表大会暨学术研讨会论文摘要汇编,2007年.
    [42]陈皓文,孙丕喜,宋庆云.外源凝集素-水产动物御敌的有力兵器[J].黄渤海海洋,1995,13(3):61-70.
    [43]江红,孙册.软体动物凝集素[J].生命的化学,1996,16(5):28-31.
    [44]孙虎山,李光友.双壳贝类参与免疫防御的体液因子[J].海洋科学,2001,25(4):34-36.
    [45]马洪明,麦康森.贝类血细胞的吞噬作用和非我识别[J].海洋科学,2003,27(2):16-18.
    [46]王长法,张士璀,王昌留.水生无脊椎动物凝集素研究概述[J].海洋科学,2005,29(4):63-66.
    [47]冯建军,王艺磊,关瑞章.杂色鲍血清凝集素的初步研究[J].集美大学学报(自然科学版),2004,9(4):287-293.
    [48]饶小珍,陈寅山,柯佳颖,等.九孔鲍血清凝集素凝集作用的研究[J].水产科学,2006,25(10):496-499.
    [49]Evelyne Bachere.2003. Anti-infectious immune effector in marine invertebrates:potential tools for disease control in larviculture. Aquaculture,227:427-438.
    [50]叶淑芳.中国对虾体液免疫实验方法的探讨[J].海洋科学,1991,(6):66-67.
    [51]王雷,李光友,毛远兴.口服免疫药物后中国对虾某些血淋巴因子的测定及方法研究[J].海洋与湖沼,1995,26(1):34-41.
    [52]王伟庆,李爱杰,兰翠霞,等.用免疫消浊比浊法测定中国对虾血清中的免疫因子[J].水产学报,1998,22(2):170-174.
    [53]章跃陵,彭宣宪,王三英.日本对虾血清三类免疫球蛋白样物质的研究[J].海洋科学,2001,(5):37-41.
    [1]高绪生等编著.鲍鱼[M],沈阳,辽宁科学技术出版社,2006,7:33-49.
    [2]候旭光.世界重要鲍的生物学特征[J].齐鲁渔业,1 998,15(4):20-22.
    [3]翟兴文.九孔鲍养殖技术[J].水产养殖,2002,(2):-21.
    [4]Winton Cheng, Shinn-Pyng Yeh, Chen-Shu Wang,2002. Osmotic and ionic changes in Taiwan abalone Haliotis diversicolor supertexta at different salinity levels. [J] Aquaculture 203,349-357.
    [5]陈昌生,王淑红,纪德华,等.氨氮对九孔鲍过氧化氢酶和超氧化物歧化酶活力的影响[J].上海水产大学学报,2001,10(3):218-222.
    [6]Winton Cheng, Feng-Ming Juang, Jiann-Chu Chen,2004. The immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus at different salinity levels[J]. Fish & Shellfish Immunology,16,295-306.
    [7]Winton Cheng, I-Shan Hsiao, Chih-Hung Hsu, et al.,2004. Change in water temperature on the immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus[J]. Fish & Shellfish Immunology,17,235-243.
    [8]Cheng W, Hsiao I-S, Chen J-C.2004. Effect of ammonia on the immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus[J]. Fish & Shellfish Immunology,17:193-202.
    [9]Cheng W, Li C-H, Chen J-C.2004. Effect of dissolved oxygen on the immune response of Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus[J]. Aquaculture,232: 103-115.
    [10]Shuhong W, Yilei W, Zhaoxia Z, et al.2004. Response of innate immune factors in abalone Haliotis diversicolor supertexta to pathogenic or non-pathogenic infection[J].J Shellfish Res 23:1173-7.
    [11]王淑红,王艺磊,张朝霞,等.弧菌和大肠杆菌感染对杂色鲍无细胞血淋巴中几种酶活力的影响[J].中国水产科学,2004,11(1):37-40.
    [12]冯建军,王艺磊,关瑞章.杂色鲍血清凝集素的初步研究[J].集美大学学报(自然科学版),2004,9(4):287-293.
    [13]陈政强,陈昌生,战文斌,等.不同类群九孔鲍免疫防御机能的比较[J].水产学报,2004,28(2):189-194.
    [14]王广军,谢骏,余德光.副溶血弧菌对九孔鲍血清中一氧化氮及一氧化氮合酶活力的影响[J].上海水产大学学报,2005,14(3):237-241.
    [15]王江勇,郭志勋,冯娟,等.病毒感染后杂色鲍部分血清免疫因子的变化[J].中国水产科学.2005,12(3):344-347.
    [16]饶小珍,陈寅山,柯佳颖,等.九孔鲍血清凝集素凝集作用的研究[J].水产科学,2006,25(10):496-499.
    [17]揭鸿英.九孔鲍非特异性免疫研究[D].福建农林大学,2006
    [18]Celia Hooper, Rob Day, Ron Slocombe, et al.,2007. Stress and immune responses in abalone--Limitations in current knowledge and investigative methods based on other models[J]. Fish & Shellfish Immunology 22,363-379.
    [19]饶小珍,陈寅山,林岗,等.九孔鲍血细胞的研究[J].福建师范大学学报(自然科学版),2007,23(3):156-160.
    [20]饶小珍,陈寅山,林岗,等.九孔鲍血细胞吞噬能力的研究[J].海洋水产研究,2007,28(2):56-61
    [21]李太武,李晔,苏秀榕,等.杂色鲍抗菌肽的分离提取及基因克隆[C].中国海洋湖沼学会第九次全国会员代表大会暨学术研讨会论文摘要汇编,2007年.
    [22]王广军,谢骏,吴嘉敏,等.注射L-精氨酸对杂色鲍血清中NO、NOS的影响[J].水利渔业,2008,28(4):29-30.
    [23]纪荣兴,邹文政,鄢庆枇,等.九孔鲍接种灭活病毒的免疫效果分析[J].集美大学学报,2008,13(4):27-32.
    [24]于江勇,郭志勋,冯娟,等.杂色鲍血细胞的分类及显微与超微结构研究[J].台湾海峡,2008,27(2):156-160.
    [25]Evelyne Bachere.2003. Anti-infectious immune effector in marine invertebrates:potential tools for disease control in larviculture. Aquaculture,227:427-438.
    [26]Liu, P.C., Chen, Y.C., Huang, C.Y., Lee, K.K.,2000. Virulence of Vibrio parahaemolyticus isolated from cultured small abalone, Haliotis diversicolor supertexta, with withering syndrome. Lett. Appl. Microbiol.31,433-437
    [27]Lee, K.K., Liu, P.C., Chen, C.Y., Huang, C.Y.,2001. The implication of ambient temperature with outbreak of vibriosis in cultured small abalone Haliotis diversicolor supertexta Lischke. J. Therm. Biol.26,585-587.
    [28]张朝霞,王军,张蕉南,等.东山九孔鲍细菌性疾病研究[J].台湾海峡,2001,20(2):193-200.
    [29]Kuo-Kau Lee, Ping-Chung Liu, Chi-Yang Huang,2003. Vibrio parahaemolyticus infectious for both humans and edible mollusk abalone[J]. Microbes and Infection 5,481-485.
    [30]陈月忠,黄万红,陈木.闽粤地区鲍暴发性流行病的病因分析和流行病学研究[J].海洋科学,2005,29(8):100-104.
    [31]蔡俊鹏,刘江涛,王志.引起南方九孔鲍苗大规模死亡的一株病原菌的分离鉴定及其致病性研究[J].水产科学,2006,25(7):334-337.
    [32]S. Jayasree.2001. Biological properties of a natural agglutinin in the hemolymph of Indian white prawn, Penaeus indicus H. Milne Edwards[J]. Aquaculture,194:245-252.
    [33]Yen-Ling Song, Chun-I Yu, Tzu-Wen Lien, et al.2003. Haemolymph parameters of Pacific white shrimp (Litopenaeus vannamei) infected with Taura syndrome virus[J]. Fish & Shellfish immunology 14:317-313.
    [34]林清华.免疫学实验[M].武汉,武汉大学出版社,2004-01
    [35]Wintong Cheng, Chun-Hung Liu, Jung-Ping Hsu, et al.2002. Effect of hypoxia on the immune response of giant freshwater prawn Macrobrachium rosenberguii and its susceptibility to pathogen Enterococcus[J]. Fish & Shellfish immunology 13:351-365.
    [36]Marcelo M, Ricardo C, Jenny R, et al.2000. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei[J].Aquac,191:89-107.
    [37]杜爱芳.中国对虾血细胞吞噬功能的研究[J].中国水产科学,1997,4(2):1-5.
    [38]管华诗主编.海水养殖动物的免疫、细胞培养和病害研究[M],济南,山东科学技术出版社,1999,10:32-43.
    [39]Yen-Ling Song, Yeun-Ting Hsieh.1994. Immunostimulation of tiger shrimp(Penaeus monodon) haemocytes for generation of microbicidal substances:analysis of reactive oxygen species [J]. Dev. Comp. Immunol.18,201-209.
    [40]Holmblad, T., Soderhall, K.,1999. Cell adhesion molecules and anti-oxidative enzymes in a crustacean, possible role in immunity [J]. Aquaculture 172,117-123.
    [41]L Villamil, A Figueras, R Aranguren and B Novoa,2003. Non-specific immune response of turbot, Scophthalmus maximus (L.), experimentally infected with a pathogenic Vibrio Pelagius [J]. Journal of Fish Diseases,26,321-329.
    [42]庞战军,周玫,陈媛.自由基医学研究方法[M].北京,人民卫生出版社,2000,06
    [43]Jesus Ortuno, Alberto Cuesta, Alejandro Rodriguez, et al.2002. Oral administration of yeast, Saccharomyces cerevisiae, enhances the celluar innate immune response of gilthead seabream (Sparus aurata L.) [J]. Veterinary immunology and immunopathology.85:41-50.
    [44]王淑红,邹志华,张子平,等.副溶血弧菌感染的九孔鲍血细胞均一化全长cDNA文库的构建[J].台湾海峡,2008,27(3):278-284.
    [45]Ratcliffe, N.A., Rowley, A.F., Fitzgerald, S.W., Rhodes, C.P.,1985. Invertebrate immunity:basic concepts and recent advances [J]. Int. Rev. Cyt.97,183-350.
    [46]Fryer, S. E., Bayne, C. J.,1989. Opsonization of yeast by the plasma of Biomphalaria glabrata (Gastropoda):a strain specific, time-dependent process [J]. Parasite Immunol.11,269-278.
    [47]肖克宇等编著.水产动物免疫与应用[M],北京,科学出版社,2007,1:83-101.
    [48]刘世良,麦康森.贝类免疫系统和机理的研究进展[J].海洋学报,2003,25(2):95-105.
    [49]李太武,丁明进,相建海等.皱纹盘鲍对河流弧菌-II疫苗免疫的研究[J].海洋与湖沼,1997.28(1):27-31.
    [50]张剑诚,张峰,王吉桥.皱纹盘鲍血细胞分类及活性氧产生机理的研究[J].大连水产学院学报,2004,19(3):182-187.
    [51]Bachere, E., Miahle, E., Noel, D., Boulo, V., Morvan, A., Rodriguez, J.,1995. Knowledge and research prospects in marine mollusk and crustacean immunology [J]. Aquaculture 132,17-32.
    [52]Malham S, Lacoste A, Gelebart F. et al.2003. Evidence for a direct link between stress and immunity in the mollusc Haliotis tuberculata [J]. J Exp Zool 295A:136-144.
    [53]Le Moullac. G., Soyez. C., Saulnier, D., Ansquer, et al.,1998. Effect of hypoxia stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris [J]. Fish Shellfish Immunology.8,621-629.
    [54]Mikulski, C.M., Burnett, L.E., Burnett, K.G.,2000. The effect of hypercapnic hypoxia on the survival of shrimp challenged with Vibrio parahaemolyticus [J]. J. Shellfish Res.19,301-311.
    [55]Cheng, W., Liu, C. H., Hsu, J. P., Chen, J. C.,2002. Effects of hypoxia on the immune response of giant freshwater prawn Macrobrachium rosenbergii and its susceptibility to pathogen Enterococcus [J]. Fish Shellfish Immunology.13,351-365.
    [56]陈媛,等主编.自由基医学基础与病理生理[M],北京,人民卫生出版社,2002,10:1-300.
    [57]王勇军,王长法,张士璀.水产动物中一氧化氮合酶的研究概况[J].海洋水产研究,2003,24(2):88-93.
    [58]高晓明主编.医学免疫学[M],北京,高等教育出版社,2006,7:38-52,216-230.
    [59]Antonella Franchini, Paolo Fantanili, Enzo Ottavoani.1995. Invertebrate immunocytes:relationship between phagpcytosis and nitric oxide production [J]. Comp. biochem. Phisiol. 110B,403-407.
    [60]杨汉春主编.医学免疫学[M],北京,中国农业大学出版社,2003,8:218-236.
    [61]罗依惠,邵健忠,项黎新,等.草鱼血清凝集素的研究[J].浙江大学学报(理学版),1999,26(2):69-74.
    [62]薛江楠,石安静.淡水育珠蚌血清凝集素的研究[J].四川大学学报(自然科学版),2000,37(2):242-246.
    [63]邵健忠,项黎新.草鱼血清中一种新的凝集素免疫因子[J].海洋与湖沼,2001,32(5):519-526.
    [64]Marcia R C, Marques, et al.2002. Characterization and partial purification of a lectin from the hemolymph of the white shrimp Litopenaeus schmitti [J]. Developmental and Comparative Immunology,26:715-721.
    [65]Weiss I M, Kaufmann S, Mann K, et al.2000. Purification and characterization of perlucin and perlustrin, two new proteins from the shell of the mollusc Haliotis laevigata [J]. Biochem Biophys Res Commun,267:17-21.
    [66]Rajagopalan M, Periasamy M, Munusamy A.2002. Isolation and characterization of an acetyl group-recognizing agglutinin from the serum of the Indian white shrimp Fenneropenaeus indicus [J]. Archives of Biochemistry and Biophysics,402:65-76.
    [67]Sathasivam M, Periasamy M, Munusamy A.1999. Purification and characterization of a natural agglutinin from the serum of the hermit crab Diogenes affnis [J]. Biochimica et Biophysica Acta, 1472:13-24.
    [68]Jayasree S.2001. Purification and Characterization of a Natural Agglutinin in the Hemolymph of the prawn Penaeus indicus H Milne Edwards [J]. Journal of Invertebrate Pathology,77:237-242.
    [69]裴炎,卢晓风,杨星勇,等.棕尾别麻绳幼虫与蛹血淋巴凝集素的纯化与特性[J].动物学报,2001,47:59-63.
    [70]赵永芳.生物化学技术原理及应用[M].科学出版社,2002,13-70.
    [71]沈杰.甘露糖结合凝集素的分离纯化与性质研究[A].中国优秀博硕士论文库,2003.
    [72]丁秀云,李光友,翟玉梅.皱纹盘鲍经诱导后血淋巴中一些因子变化的研究[J].海洋与湖沼,1996,27(4):362-367.
    [73]王雷,李光友,毛远兴.口服免疫药物后中国对虾某些血淋巴因子的测定及方法研究[J].海洋与湖沼,1995,26(1):34-41.
    [74]彭其胜,郭文场,杨振国,等.中国对虾血淋巴凝集素的血凝活性与促噬活性[J].水产学报,2001,25(3):197-202.
    [75]Linda B. Martello, Ronald S. Tjeerdema,2001. Combined effects of pentachlorophenol and salinity stress on chemiluminescence activity in two species of abalone [J]. Aquatic Toxicology 51,351-362.
    [76]Tor Haug, Anita K. Kjuul, Klara Stensvag, et al.2002. Antibacterial activity in four marine crustacean decapods [J]. Fish & Shellfish Immunology 12,371-385.
    [77]王长法,张士璀,王昌留.水生无脊椎动物凝集素研究概述[J].海洋科学,2005,29(4):63-66.
    [78]陈政强,黄偼,战文斌,等.贝类凝集素的特性与功能[J].集美大学学报(自然科学版),2007,12(4):314-321.
    [79]陈皓文,孙丕喜,宋庆云.外源凝集素-水产动物御敌的有力兵器[J].黄渤海海洋,1995,13(3):61-70.
    [80]江红,孙册.软体动物凝集素[J].生命的化学,1996,16(5):28-31.
    [81]孙册.凝集素[M].北京:北京科学出版社,1986,1-142.
    [82]赵寅生.凝集素生物学功能及应用(综述)[J].安徽农业大学学报,2001,28(4):445-44.
    [83]牟海津,江晓路,刘树青,等.日本对虾溶血素的活性测定及性能研究[J].海洋与湖沼,1999,30(4):362-367.
    [84]陈政良.补体激活第三途径一一凝集素途径[J].国外医学分子生物学分册,1999,21(5):295-298.
    [85]王艾丽,武建国.甘露聚糖结合凝集素的生物学功能及其临床意义[J].医学研究生学报.2002,15(5):458-461.
    [86]马洪明,麦康森.贝类血细胞的吞噬作用和非我识别[J].海洋科学,2003,27(2):16-18.
    [87]Johansson M, Soderhall K.1989. Cellular immunity in crustaceans and the proPo system [J]. Parasitol Today.5:171-6.
    [88]Asokan R, Arumugam M, Mullainadhan P.1997. Activation of prophenoloxidase in the plasma and haemocytes of the marine mussel Perna viridis Linnaeus [J]. Dev Comp Immunol; 21:1-12.
    [89]Mercado L, Marshall S, Arenas G. Detection of phenoloxidase (PO) in haemocytes of the clam Venus antique [J]. Malacologia 2002; 44:17-22.
    [90]Coles J, Pipe R.1994. Phenoloxidase activity in the haemolymph and haemocytes of the marine mussel Mytilus edulis [J]. Fish & Shellfish Immunology; 4:337-52.
    [91]Peters R, Raftos DA.2003. The role of phenoloxidase suppression in QX-disease outbreaks among Sydney rock oysters(Saccostrea glomerata) [J]. Aquaculture; 223:29-39
    [92]Newton K, Peters R, Raftos DA.2004. Phenoloxidase and QX disease resistance in Sydney rock oysters(Saccostrea glomerata) [J]. Dev Comp Immunol; 28:565-9.
    [93]王小明,刘中令.用一种新型的快速免疫消浊比浊法测定血浆特种蛋白[J].上海医学检验杂志,1993,8(2):71-73.
    [94]叶淑芳.中国对虾体液免疫实验方法的探讨[J].海洋科学,1991,(6):66-67.
    [95]王伟庆,李爱杰,兰翠霞,等.用免疫消浊比浊法测定中国对虾血清中的免疫因子[J].水产学报,1998,22(2):170-174.
    [96]章跃陵,彭宣宪,王三英.日本对虾血清三类免疫球蛋白样物质的研究[J].海洋科学,2001,(5):37-41.
    [1]于赫男,林小涛,周小壮,等.饥饿胁迫下凡纳滨对虾能源物质的消耗[J].海洋科学,2006,30(12):43-46,72.
    [2]王志铮,施建军,吕敢堂,等.受短期饥饿胁迫下麦瑞加拉鲮鱼(Cirrhina mrigola)幼鱼的生长、肌体组分及其内脏消化酶活力的变化特征[J].海洋与湖沼,2006,37(3):218-223.
    [3]闫智恒,刘存歧,王军霞,等.饥饿对日本沼虾摄食节律的影响[J].四川动物,2008,27(5):843-847.
    [4]李志华,谢松,王军霞,等.饥饿对日本沼虾生长和部分免疫功能的影响[J].上海水产大学学报,2007,16(1):16-21.
    [5]潘沙芳,李太武,苏秀榕.泥蚶血细胞耐饥饿及抗菌力特性的研究[J].水产科学,2007,26(1):22-25.
    [6]孙红梅,黄权,丛波.饥饿对黄颡鱼血液中几种免疫相关因子的影响[J].大连水产学院学报,2006,21(4):307-310.
    [7]孙红梅,黄权,丛波,等.饥饿对黄颡鱼免疫机能的影响[J].水利渔业,2006,26(3):80-81.
    [8]黄辨非,童响波,罗静波.饥饿对泥鳅某些血液指标的影响[J].淡水渔业,2006,36(6):33-35.
    [9]陈惠群,杨文鸽.饥饿对鳗鲡某些血液指标的影响[J].水产养殖,2002,23(5):32-33.
    [10]杜震宇,刘永坚,田丽霞,等.饥饿对于鲈肌肉、肝脏和血清主要生化组成的影响[J].动物学报,2003,49(4):458-465.
    [11]王沛宾,林学群,尹秀芬.饥饿与恢复投喂对红鳍笛鲷血液生化指标的影响[J].水产养殖,2004,25(5):31-34.
    [12]张守领,顾若波,徐钢春,等.饥饿对于花骨鱼肌肉和血清主要生化指标的影响[J].上海交通大学学报(农业科学版).2006,24(6):513-516.
    [13]钱云霞,陈惠群,孙江飞.饥饿对养殖鲈鱼血液生理生化指标的影响[J].中国水产科学,2002.9(2):133-137.
    [14]沈文英,张利红,郑永萍,等.饥饿对银鲫血液组分和卵巢发育的影响[J].动物学研究,2003,24(6):441-444.
    [15]Gillis T. E., Ballantyne J. S..1996. The effects of starvation on plasma free amino acid and glucose concentrations in lake sturgeon[J]. Journal of Fish Biology,49(6):1306-1316.
    [16]沈文英,林浩然,张为民.饥饿和再投喂对草鱼鱼种生物化学组成的影响[J].动物学报,1999,45(4):404-412.
    [17]翁幼竹,李少菁,王桂忠.饥饿对锯缘青蟹幼体生化组成的影响[J].厦门大学学报(自然科学版),2002,41(1):84-88.
    [18]S. Jayasree.2001. Biological properties of a natural agglutinin in the hemolymph of Indian white prawn, Penaeus indicus H. Milne Edwards[J]. Aquaculture,194:245-252.
    [19]Yen-Ling Song, Chun-I Yu, Tzu-Wen Lien, et al.2003. Haemolymph parameters of Pacific white shrimp(Litopenaeus vannamei) infected with Taura syndrome virus[J]. Fish & Shellfish immunology 14:317-313.
    [20]林清华.免疫学实验[M].武汉,武汉大学出版社,2004-01
    [21]Wintong Cheng, Chun-Hung Liu, Jung-Ping Hsu, et al.2002. Effect of hypoxia on the immune response of giant freshwater prawn Macrobrachium rosenberguii and its susceptibility to pathogen Enterococcus[J]. Fish & Shellfish immunology 13:351-365.
    [22]Marcelo M, Ricardo C, Jenny R, et al.2000. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei [J]. Aquac,191:89-107.
    [23]Le Moullac, G., Soyez, C., Saulnier, D., et al.,1998. Effect of hypoxia stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris. Fish & Shellfish Immunology.8,621-629.
    [24]Jesus Ortuno, Alberto Cuesta, Alejandro Rodriguez, et al.2002. Oral administration of yeast, Saccharomyces cerevisiae, enhances the celluar innate immune response of gilthead seabream (Sparus aurata L.) [J]. Veterinary immunology and immunopathology.85:41-50.
    [25]Mikulski, C.M., Burnett, L.E., Burnett, K.G.,2000. The effect of hypercapnic hypoxia on the survival of shrimp challenged with Vibrio parahaemolyticus. J. Shellfish Res.19,301-311.
    [26]罗依惠,邵健忠,项黎新,等.草鱼血清凝集素的研究[J].浙江大学学报(理学版),1999,26(2):69-74.
    [27]薛江楠,石安静.淡水育珠蚌血清凝集素的研究[J].四川大学学报(自然科学版),2000,37(2):242-246.
    [28]邵健忠,项黎新.草鱼血清中一种新的凝集素免疫因子[J].海洋与湖沼,2001,32(5):519-526.
    [29]管华诗主编.海水养殖动物的免疫、细胞培养和病害研究[M],济南,山东科学技术出版社,1999,10:32-43.
    [30]杜爱芳.中国对虾血细胞吞噬功能的研究[J].中国水产科学,1997,4(2):1-5.
    [31]Cheng W, Li C-H, Chen J-C.2004. Effect of dissolved oxygen on the immune response of Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus[J]. Aquaculture,232: 103-115.
    [32]Yen-Ling Song, Chun-1 Yu, Tzu-Wen Lien, et al.2003. Haemolymph parameters of Pacific white shrimp(Litopenaeus vannamei) infected with Taura syndrome virus[J]. Fish & Shellfish immunology 14:317-313.
    [33]Yen-Ling Song, Yeun-Ting Hsieh.1994. Immunostimulation of tiger shrimp(Penaeus monodon) haemocytes for generation of microbicidal substances:analysis of reactive oxygen species [J]. Dev. Comp. Immunol.18,201-209.
    [34]Adams, A.,1991. Response of penaeid shrimp to exposure to Vibrio species. Fish & Shellfish Immunology.1,59-70.
    [35]张桂蓉,严安生,高玉芹,等.饥饿对异育银鲫几项血液指标的影响[J].水利渔业,2003,23(1):9-10.
    [36]陈晓耘.饥饿对南方鲶幼鱼血液的影响[J].西南农业大学学报,2000,22(2):167-169,176.
    [37]程超,施光美.饥饿对鲫鱼血液生理生化指标和流变学性质的影响[J].水产渔业科学,2008,24(1):516-519.
    [1]王军,苏永全,张焦南等.1999年春季东山九孔鲍爆发性病害的研究[J].厦门大学学报(自然科学版),1999,38(5):641-644.
    [2]宋振荣,纪荣兴,颜素芬等.引起九孔鲍大量死亡的一种球状病毒[J].水产学报,2000,24(5):463-466.
    [3]张朝霞,王 军,苏永全等.九孔鲍爆发性流行病的病原与病理[J].厦门大学学报(自然科学版),2001,40(4):949-954.
    [4]于仁诚,谢华.中国对虾血细胞活性氧指标的初步研究[C].海洋渔业和水产品加工技术国际研讨会论文集.2001,555-561.
    [5]管华诗,童裳亮,王文兴等.海水养殖动物的免疫、细胞培养和病害研究[M].山东科学技术出版社,1999,21-41.
    [6]沈萍,范秀容,李广武.微生物学实验[M],高等教育出版社,1999,90-95.
    [7]李静,石安静,李强.圆背角无齿蚌损伤后血细胞的吞噬活性[J].水产学报,2000,24(5):399-402.
    [8]Marcelo Munoz, Ricardo Cedeno, Jenny Rodriguez et al.2000, Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp,Penaeus vannamei[J], Aquacuture,191 (2000)89-107.
    [9]丁秀云,李光友,翟玉梅.皱纹盘鲍经诱导后血淋巴中一些因子变化的研究[J].海洋与湖沼,1996,27(4):362-367.
    [10]Hartmark D, Stein H, Rasmmson T, et al.1980, Insect immunity:Purification and properties of three inducible bactericidal proteins from haemolymph of immunized pupae of Hyalophoracecropea[J]. Eur, J, Biochem,106:7-12.
    [11]Ashida, M.,1971, purification and characterization of pro-phenoloxidase from haemolymph of the silkworm Bombyx morl[J], Arch, Biochem. Biophy.,144:749~762.
    [12]余燕萍,石安静.贝类血细胞研究进展[J].动物学杂志,1998,33(5):40-44.
    [13]周永灿,潘金培.贝类血细胞和体液的防御研究进展[J].水产学报,1997,21(4):449-454.
    [14]张峰,李友光.贝类血细胞活性氧体内防御作用的研究进展[J].海洋科学,1999,23(2):16-19.
    [15]相建海,王凤起,王继业等.海水养殖动物疾病发生与控制[M].海洋出版社,2001,74-84.
    [16]Carballal M J, Lopez C, Azevedo C et al.1997, Enzymes involved in defense functions of hemocytes of mussel Mytilus galloprovincialis [J]. J. Invertebr. Pathol.70:96-105.
    []7]聂宗庆,王素平.鲍养殖实用技术[M],中国农业出版社,2000,18-72.
    [1]Colombera D., Tagliaferri F.1983. Chromosomes of H. tuberculata and H. lamellose [J]. Caryologia, 36:231-234.
    [2]Arai K., Wilkins N.1986. Chromosomes of Haliotis tuberculata L [J]. Aquaculture,58:305-308.
    [3]Nakamura H.1985. Chromosomes of H. diversicolor aquatilis (Archaeogastropoda:Haliotidae) [J]. Mol. Rev.,18:113-114.
    [4]Arai K., Fujino K., Kudo M.1988. Karyotypes and zymogram differences among three species of the abalones Haliotis planate, H. varia, H. diversicolor [J]. Bull. Jpn. Soc. Sci., Fisherses,54:2055-2064.
    [5]Jarayabhand P., Yom-La R., Popongviwat A.1998. Karyotypes of marine mollusks in the family Haliotidae found in Thailand [J]. J. Shellfish Res.,17:761-764.
    [6]Minkler J.1977. Chromosomes of the black abalone(Haliotis cracherodii) [J]. Experientia,33:-1143.
    [7]Arai K., Tsubaki H., Ishitani Y., Fujino K.1982. Chromosomes of H. disdus hannai Ino and H. disdus Reeve [J]. Bull. Jpn. Soc. Sci., Fisherses 48:1689-1691.
    [8]Nakamura H.1986. Chromosomes of Archaeogastropoda (Mollusca:Prosobranchia) with some remarks on their citotaxonomy and phylogeny [J]. Pub. Seto Marine Biol. Lab.,31:191-297.
    [9]Gallardo-Escarate C., Alvarez-Borrego J., Portilla M A D R., Kober V.2004. Chromosomes of pacific red abalone Haliotis rufenscnes (Archaeogastropoda:Haliotidae) using image analysis [J]. J. Shellfish Res.,23(1):205-209.
    [10]Geiger D., Groves L.1999. Review of fossil abalone (Gastropoda:Vestigastropoda:Haliotidae) with comparison to recent species [J]. J. Paleontol,73:872-885.
    [11]Brown L. D.1991. Genetic variation and population structure in the blacklip abalone, Haliotis rubra [J]. Aust. J. Mar. Freshwater Res.42:77-90.
    [12]Brown L. D. Murray N. D.1992. Population genetics, gene flow and stock structure in Haliotis rubra and Haliotis laevigata. IN:Abalone of the world:biology, fisheries and culture. (Eds Shepherd, S. A., M. J. Tegner & S. A. Guzman del Proo), Blackwell Scienctific:Oxford, pp.24-33.
    [13]Burton R S., Tegner M J.,2000. Enhancement of red abalone Haliotis rufescens stocks at San Miguel Island:reassessing a success story [J]. Mar. Ecol. Prog. Ser.202:303-308.
    [14]Hamm D.E., Burton R.S.2000. Population genetics of black abalone, Haliotis cracherodii, along the central California coast [J]. J. Exp. Mar. Bio.Eco.,254:235-257.
    [15]Zuniga G., Guzman Del Proo S. A., Cisneros R., Rodriguez, G.2000. Population genetic analysis of the abalone Haliotis fulgens (mollusca Gastropoda) in Baja California, Mexico [J]. J Shellfish Res.19: 853-859.
    [16]Hancock B.2000. Genetic subdivision of Roe's abalone, Haliotis roei Grey (mollusca Gastropoda), in south-western Australia [J]. Mar. Freshwater Res.51:679-687.
    [17]Li Z. B., Chen C. S.2004. Genetic structure of cultured H. diversicolor supertexta (Reeve) populations [J]. Journal of Shellfish Research,23(4):1135-1137.
    [18]黎中宝,刘文彪,韩芳,李华,陈孝德.四种经济鲍遗传多样性与分化的研究[J].中国生态农业学报.2005,12(4):15-19.
    [19]黎中宝,田柱,朱冬蕊,叶承义.九孔鲍和杂色鲍等位酶的的生化遗传分析[J].海洋科学,2004,28(2):27-31.
    [20]黎中宝,邓书林,许秀芹,丁洋.盘鲍和皱纹盘鲍等位酶的生化遗传分析[J].海洋科学,2004,28(4):43-49.
    [21]黎中宝,Appleyard S A., Elliott N G..多元PCR在微卫星研究中的应用[J].海洋与湖沼,2005,36(4):319-325.
    [22]黎中宝.用RAPD技术研究几种鲍亲缘关系[J].中国生态农业学报,2004,12(4):60-63.
    [23]Huang B. X., Peakall R., Hanna P.J.,2000. Analysis of genetic structure of blacklip abalone(Haliotis rubra) populations using RAPD, minisatellites and microsatellites markers. Marine Biology,136: 207-216.
    [24]Conod N, Bartlett J. P., Evans B. S., Elliott N. G.,2002. Comparison of mitochondrial and nuclear DNA analyses of population structure in the blacklip abalone Haliotis rubra leach [J], Mar. Freshwhater Res.,53,711-718.
    [25]Withler R. E., Campbell A., Li S., Miller K. M., Brouwer D., Lucas B. G.,2001. High levels of genetic variation in northern abalone Haliotis kamtschatkana of British Colombia [J]. Fisheries and Oceans Science,097:1-27.
    [26]Evans B., Bartlett J., Sweijd N., Cook P., Elliott N. G.,2004. Loss of genetic variation at microsatellite loci in hatchery produced abalone in Australia(Haliotis rubra) and south abalone(Haliotis midae) [J]. Aquaculture,233,109-127.
    [27]Li Q., Park C., Endo T., Kijima A.,2004. Loss of genetic variation at microsatellite loci in hatchery strains of the Pacific abalone(Haliotis discus hannai) [J]. Aquaculture,235,207-222.
    [28]Selvamani M. J. P., Degnan S. M., Degnan B. M.2001. Microsatellite genotying of individual abalone larvae:parentage assignment in aquaculture [J]. Mar. Biotechnol.,3:487-485.
    [29]Li Q., Park C., Kijima A.,2003a. Allelic transmission of microsatellites and application to kinship analysis in newly hatched Pacific abalone larvae [J]. Fisheries Science,69:883-889.
    [30]Li Q., Park C., Kobayashi T., Kijima A.,2003b. Inheritance of microsatellite DNA markers in the the Pacific abalone Haliotis discus hannai [J]. Mar. Biotechnol.5:331-338.
    [31]Li Z. B., Appleyard S. A., Elliott N. G.2005. Genetic structures of Haliotis rubra and Haliotis conicorpora populations using microsatellite markers and mtDNA-RFLP analysis [J]. Marine Freshwater Research, (In press).
    [32]Klinbunga S., Pripue P., Khamnamtong N., Puanglarp N., Tassanakajon A., Jarayabhand P., Hirono I., Aoki T., Menasveta P.,2003. Genetic diversty and molecular markers of the tropical abalone(Haliotis asinina) in Thailand [J]. Mar. Biotechnol.5:505-517.
    [33]万俊芬,汪小龙,潘洁,等.日本盘鲍×皱纹盘鲍子代杂种优势的RAPD分析[J].青岛海洋大学学报,2001,31(4):506-512.
    [34]张国范,王继红,赵洪恩,等.皱纹盘鲍中国群体和日本群体的自交与杂交F1的RAPD标记[J].海洋与湖沼,2002,33(5):484-491.
    [35]孙博,刘晓,张国范.一个皱纹盘鲍人工群体内个体大小遗传变异的RAPD分析[J].海洋科学,2003,27(5):27-30.
    [36]Sweijd N. A., Bowie R. C. K., Lopata A. L., Marinaki A. M., Harley E. H., Cook P. A.1998. A PCR technique for forensic, species-level identification of abalone tissue [J]. J. Shellfish Res.17:889-895.
    [37]Elliott N. G., Bartlett J., Evans B., Sweijd N. A.,2002. Identification of south hemisphere abalone (Haliotis) species by PCR-RFLP analysis of mitochondrial DNA [J]. Journal of Shellfish Research,21 (1):219-226.
    [38]Jiang L., Wu W. L., Huang P. C.,1995. The mitochondrial DNA of Taiwan abalone Haliotis diversicolor Reeve,1846 (Gastropoda:Archaeogastropoda:Haliotidae). Molucular Marine Biology and Biotechnology.4(4):353-364.
    [39]Lee Y. H., Vacquier V. D.1995. Evolution and systematics in Haliotidae (Mollusca:Gastropoda): inference from DNA sequence of sperm lysine [J]. Marine Biology,124:267-278.
    [40]Naganuma T., Hisadome K., Shiraishi K., Kojima H.1998. Molecular distinction of two resemblant abalone, Haliotis discus discus and Haliotis discus hannai by 18S rDNA sequences [J]. J. Mar. Biotechnol.,6:59-61.
    [41]杨建敏,郑小东,王如才,等.3种鲍16S rRNA基因片段序列的初步研究[J].青岛海洋大学学报,2003,33(1):036-040.
    [42]柯才焕,陈晓佳,周时强,等.几种养殖鲍同工酶生化遗传的比较研究[J].台湾海峡,2003,22(2):173-178.
    [43]王鹭骁,王志勇,柯才焕,等.不同地理种群杂色鲍的同工酶分析[J].厦门大学学报,2005,44(1):98-101.
    [44]莽克强,徐乃正,方荣祥.聚丙烯酰胺凝胶电泳[M].北京:科学出版社,1975,26-47.
    [45]朱蓝菲.鱼类同工酶和蛋白质的聚丙稀酰胺梯度凝胶电泳法[J].水生生物学报,1992,16(2):183-185.
    [46]HARRIS H., HOPKINSON D. A.1976. Handbook of Enzyme Electrophoresis in Human Genetics [M]. Amsterdam, Oxford:North Holland Pulishing Com,66-162.
    [47]曾呈奎,相建海.海洋生物技术[M].济南:山东科技出版社,1998.269-282.
    [48]王中仁.植物等位酶分析[M].北京:科学出版社,1996.77-119.
    [49]SHAKLE J. B., ALL ENDORF F. W., MORIZOT D. C., et al.1990. Genetic nomenclature for proteincoding loci in fish [J].Trans Amer Fish Soci,119:2-15.
    [50]Nei M.1987. Molecular evolutionary genetics [M]. New York:Columbia University Press,-512.
    [51]Hara M, Kikuchi S.1992. Genetic variability and population structure in the abalone. Haliotis discus hannai [J]. Bulletin of Tohoku National Fisheries Research Institute,54(2):107-114.
    [52]喻子牛,孔晓瑜,杨锐,等.魁蚶等位基因酶遗传变异的研究[J].青岛海洋大学学报,1998,28(1):51-58.
    [53]杨锐,喻子牛,陈再忠,等.山东沿海褶牡蛎与太平洋牡蛎等位基因酶的遗传变异[J].水产学报,2000,24(2):130-133.
    [54]李广丽,杜晓东,叶富良.合浦珠母贝同工酶的电泳分析[J].中国水产科学,2001,8(2):17-22.
    [55]Singh S. M., Green R. H.1984. Excess of allozyme homozygosity in marine mollusks and its possible biological significance [J]. Malacologica.25 (2):569-581.
    [56]Kijima, A., Ikeda. M., Fujio, Y.,1992. Genetic characteristics of the artificial seed populations of abalone [J]. Fish. Genet. Breed. Sci.18:53-63 (in Japanese).
    [57]Smith P. J., Conroy A. M.,1992. Loss of genetic variation in hatchery-produced abalone, Haliotis iris. New Zealand [J]. Journal of Marine and Freshwater research,26:81-85.
    [58]Mgaya, Y. D., Gosling, E. M., Mercer, J. P., Donlon, J.1995. Genetic variation at three polymorphic loci in wild and hatchery stocks of the abalone Haliotis tuberculata Linnaeus [J]. Aquaculture,136: 71-80.
    [59]Allendorf, F. W.,1986. Genetic drift and the loss of alleles versus heterozygosity [J]. Zoo. biol.,5: 181-190.
    [60]Hedgecock, D., Sly, F.,1990. Genetic drift and effective sizes of hatchery-propagated stocks of the Pacific oyster Crassostrea gigas [J]. Aquaculture,88:21-38.
    [61]LI. Zhong-bao.2005. The Genetic Diversity and Differentiation of H. ovina Populations by Allozyme Analysis [A].13th International Congress on Genes, Gene Families and Isozymes-ICGGFI. MEDIMOND,201-207.
    [62]Fujino K, Sasaki K, Okumura S.1984. Probable involvementof thermostability variations of enzymes in the mechanisms of occurrence of deficient abalone [J]. Nippon Suisan Gakkaishi,50(4):597-601.
    [63]Alvarez, G., Zapata, C., Amaro, R., Guerra, A.1989. Multilocus heterozygosity at protein loci and fitness in the European oyster, Ostrea edulis L [J]. Heredity,63,357-372.
    [64]Danzman, R. G, Ferguson M. M., Allendorf. F. W.1989. Genetic variability and components of fitness in hatchery strains of rainbow trout [J]. Journal of fish biology,35(A):313-319.
    [65]Conod, N., Bartlett, J. P., Evans, B. S. and Elliott, N. G.2002. Comparison of mitochondrial and nuclear DNA analyses of population structure in the blacklip abalone Haliotis rubra Leach [J]. Marine and Freshwater Research,53:711-718.
    [66]Lizhongbao, Appleyard.S.A, Elliott N.G.2006. Population structure of Haliotis rubra from South Australia inferred from nuclear and mtDNA analyses [J]. Acta oceanologica sinica,25(4):99-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700