用户名: 密码: 验证码:
碳纳米管改性PbO_2电极制备及降解水中酚类污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电催化氧化技术能有效降解生物难降解有机污染物,并具有二次污染风险小和操作灵活等优点,受到国内外研究者的青睐。电极材料是电催化氧化技术的核心,与电催化氧化过程中有机物降解效果和电流效率密切相关。本文以二氧化铅电极的改性为主要内容,开展了电极电沉积条件优化、改性,以及电催化氧化降解水中酚类污染物效能等方面的研究工作。主要研究内容和结果如下:
     采用热沉积法制备了Ti基PbO_2电极的SnO_2-Sb_2O_3底层,采用电沉积法制备了电极的α-PbO_2中间层和β-PbO_2表面活性层。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、开路电位及电催化氧化实验研究了电沉积条件对α-PbO_2中间层和β-PbO_2表面活性层形貌、结构与性能的影响。确定α-PbO_2中间层的优化条件为:电流密度3mA/cm~2,电沉积温度40℃,电沉积时间1h;β-PbO_2表面活性层的优化条件为:电流密度15mA/cm~2,电沉积温度65℃,电沉积时间1h。
     利用β-PbO_2电极电催化氧化降解水中苯酚,研究了苯酚降解过程中有机物矿化、降解动力学、电流效率和能耗情况,并利用高效液相色谱(HPLC)检测分析了苯酚降解的中间产物,提出苯酚可能的降解路径。循环伏安曲线表明苯酚可以被β-PbO_2电极直接氧化,该氧化过程受吸附过程控制。β-PbO_2电极电催化氧化降解苯酚过程符合一级反应动力学规律。
     通过向β-PbO_2电极的电沉积液中添加碳纳米管(CNT)制备了CNT改性PbO_2电极(CNT-PbO_2)。但CNT的单独添加并不能将CNT掺杂到β-PbO_2电极的膜层中,故在电沉积液中又添加了表面活性剂,在表面活性剂的作用下可成功地将CNT掺杂到β-PbO_2电极的膜层中。对比研究了阴离子表面活性剂十二烷基苯磺酸钠(LAS)和阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)对CNT掺杂效果的影响。SEM和X射线能谱分析(EDS)结果表明,在阴离子表面活性剂的作用下有更多的CNT掺杂到膜层中。在LAS作用下制备的CNT改性PbO_2电极(LAS-CNT-PbO_2)具有更高的电催化活性、电流效率和使用寿命,对4-CP的降解速率和使用寿命分别为传统β-PbO_2电极的2.35和1.87倍。
     利用LAS-CNT-PbO_2电极对水中毒性有机污染物4-氯酚(4-CP)的氧化情况进行了研究。首先,采用循环伏安技术研究了pH值、温度和4-CP浓度对4-CP氧化反应的影响。结果表明:碱性体系有利于4-CP的氧化,随着温度和4-CP浓度的升高,4-CP氧化峰电位负移。然后,研究了LAS-CNT-PbO_2电极电催化氧化降解4-CP过程中,电流密度、4-CP初始浓度、电解质浓度和温度等实际操作条件对4-CP去除率、有机物矿化、降解动力学和电流效率的影响。在LAS-CNT-PbO_2电极电催化氧化4-CP过程中,电流密度越高和4-CP初始浓度越低,有机物的矿化程度越高,但电流效率越低。温度越高,4-CP和TOC去除率越高,电流效率越高。电解质浓度对电催化氧化过程的影响不大。4-CP的降解过程符合一级反应动力学规律。此外,利用HPLC对4-CP降解的中间产物进行了鉴定,推测出4-CP的可能降解路径,并考察了降解液的可生化性与毒性变化,结果表明,降解120min后,4-CP降解液的可生化性明显提高,毒性明显降低。
     向LAS-CNT-PbO_2电极的电沉积液中添加Ce(NO3)3,制备了Ce与CNT复合改性PbO_2电极(Ce-LAS-CNT-PbO_2)。由SEM、EDS和XRD结果可知, Ce与CNT确实被引入到了Ce-LAS-CNT-PbO_2电极中,Ce-LAS-CNT-PbO_2电极具有较β-PbO_2、Ce-PbO_2和LAS-CNT-PbO_2电极更小的晶粒尺寸和更大的活性表面积。由[Fe(CN)6]4–/[Fe(CN)6]3–体系中的循环伏安、羟基自由基产生能力测试、电催化氧化4-CP实验及加速寿命实验结果可知,Ce与CNT的复合掺杂可在LAS-CNT-PbO_2电极的基础上进一步提高了PbO_2电极的电催化活性和使用寿命。比较Ce-LAS-CNT-PbO_2电极和Ce-CNT-SnO_2电极发现,虽然前者的电催化活性低于后者,但前者的使用寿命却远远长于后者。
The electro-catalytic oxidation technology attracts extensive attention becauseof its effectiveness in the degradation of bio-refractory organic pollutants,environmental compatibility and easy implementation. The material of electrode, asthe key of electro-catalytic oxidation, is closely related to the degradation efficiencyof pollutants and the current efficiency of electro-catalytic oxidation process.Therefore, in present work, the lead dioxide electrode was modified, theelectrodeposition conditions of lead dioxide electrode were optimized, and theelectrochemical degradation of phenolic pollutants was studied with the lead dioxideelectrodes. The main research contents and results were summarized as follows:
     The SnO_2-Sb_2O_3interlayer of PbO_2electrode was prepared by thermaldecomposition. The α-PbO_2intermediate layer and β-PbO_2top layer of PbO_2electrode were prepared by electrodeposition. Scanning electronic microscopy(SEM), X-ray diffraction (XRD), open-circuit potential and electrochemicaloxidation of phenol were used to investigate the effect of electrodepositionconditions on the morphology, crystal structure and properties of α-PbO_2intermediate layer and β-PbO_2top layer. The experimental results showed that theα-PbO_2interlayer was prepared under optimum conditions: current density is3mA/cm~2, temperature is40℃and time is1h; β-PbO_2interlayer was prepared underoptimum conditions: current density is15mA/cm~2, temperature is65℃and time is1h.
     The electrochemical oxidation of phenol in aqueous solution was studied usingβ-PbO_2electrode as anode. The removal, mineralization and degradation kinetics ofphenol were studied and the current efficiency and energy consumption werecalculated during the course of electrolysis. In addition, the intermediates generatedin the degradation of phenol were indentified using high-performance liquidchromatography (HPLC) and a general pathway for the electrochemical degradationof phenol on β-PbO_2anode was proposed. The cyclic voltammetric curves indicatedthat phenol could be directly oxidized on β-PbO_2electrode, and this oxidationprocess was controlled by adsorption process. The phenol degradation on β-PbO_2electrode always followed a pseudo-first-order kinetics.
     Carbon nanotube (CNT) modified PbO_2electrodes (CNT-PbO_2) were fabricatedby adding CNT into the electrodeposition solution. However, CNT couldn’t bedoped into β-PbO_2films when the CNT was added alone. Thus, the surfactants werealso added into electrodeposition solution, and then CNT could be successfully doped into β-PbO_2films under the synergistic effect of surfactants. The influence ofcationic surfactant etyltrimethylammonium bromide (CTAB) and anionic surfactantlauryl benzene sulfonic acid sodium (LAS) on the doping of CNT was compared.The results of SEM and Energy Dispersive X-ray Spectrometer (EDS) showed thatmore CNT could be doped into β-PbO_2film under the synergistic effect of LAS.Polarization curves and cyclic voltammetry were adopted to measure theelectrochemical properties of these PbO_2electrodes. The CNT-PbO_2electrodeprepared with LAS (LAS-CNT-PbO_2) had higher activity, higher current efficiencyand longer lifetime. The degradation rate of4-CP and lifetime of LAS-CNT-PbO_2electrode was2.35and1.87times higher than those of β-PbO_2electrode,respectively.
     The oxidation process of4-chlorophenol (4-CP) was studied onLAS-CNT-PbO_2electrode in detail. First, the cyclic voltammetry technology wasexclusively used to study the effect of pH, temperature and4-CP concentration onthe oxidation of4-CP. The results indicated that4-CP was oxidized more easily inalkaline medium than acidic and neutral mediums, and the oxidation peaks of4-CPshifted toward lower potential values with increasing temperature and4-CPconcentration. Secondly, the effect of operating conditions of initial4-CPconcentration, current density, supporting electrolyte concentration, and temperatureon the removal and mineralization of4-CP, current efficiency, and kinetics were alsoinvestigated during electro-catalytic oxidation of4-CP on LAS-CNT-PbO_2electrode.The experimental results showed that higher mineralization of organic compoundsand lower current efficiency was obtained by higher current density and lower initial4-CP concentration; the higher the temperature, the higher the4-CP and TOCremoval ratios; the concentration of supporting electrolyte is not the significantparameter in this process. The4-CP degradation always followed apseudo-first-order kinetics. HPLC was employed to identify the products resultingfrom the electrochemical degradation of4-CP and the degradation pathways of4-CPwere proposed. Besides, the biodegradability and the toxicity of4-CP degradationsolution were investigated. The results showed that, after120min ofelectro-catalytic oxidation, the biodegradability of degradation solution wasimproved and the toxicity was decreased significantly.
     Ce and CNT co-doped PbO_2(Ce-LAS-CNT-PbO_2) electrode was prepared byadding Ce(NO3)3into the electrodeposition solution of LAS-CNT-PbO_2electrode.The results of SEM, EDS and XRD revealed that Ce and CNT had been introducedinto Ce-LAS-CNT-PbO_2electrode. Compared with β-PbO_2, Ce-PbO_2, andLAS-CNT-PbO_2electrodes, Ce-LAS-CNT-PbO_2electrode had smaller grain size and higher active surface area. The results of cyclic voltammetry tests in[Fe(CN)6]4–/[Fe(CN)6]3–system, determination of hydroxyl radical generation,electro-catalytic oxidation degradation of4-CP and accelerating lifetime testsexhibited that the co-doping of CNT and Ce further improved the electro-catalyticactivity and lifetime of PbO_2electrode based on LAS-CNT-PbO_2electrode. Thecomparison of Ce-LAS-CNT-PbO_2electrode and Ce-CNT-SnO_2electrode indicatedthat the electro-catalytic activity of former was superior to that of latter, but theservice life of latter was far longer.
引文
[1]马光.环境与可持续发展导论[M].北京:科学出版社,2000:76-77.
    [2]陈英旭.环境学[M].北京:中国环境科学出版社,2001:71-73.
    [3] Chen J L, Chiou G C, Wu C C. Electrochemical Oxidation of4-Chlorophenol with Granular Graphite Electrodes[J]. Desalination,2010,264(1-2):92-96.
    [4] Moonsiri M, Rangsuncigit P, Chavadej S, et al. Effects of Pt and Ag on thePhotocatalytic Gegradation of4-Chlorophenol and Its By-Products[J].Chemical Engineering Journal,2004,97(2-3):241-248.
    [5] Uysal A, Turkman A. Biodegradation of4-CP in an Activated SludgeReactor: Effects of Biosurfactant and the Sludge Age[J]. Journal ofHazardous Materials,2007,148(1-2):151-157.
    [6] Wongwisate P, Chavadej S, Gulari E, et al. Effects of Monometallic andBimetallic Au-Ag Supported on Sol-gel TiO2on Photocatalytic Degradationof4-Chlorophenol and Its Intermediates[J]. Desalination,2011,272(1-3):154-163.
    [7]格鲁什科(苏).工业废水中有毒有机化合物手册[M].烃加工出版社.1998:140-141.
    [8] Wei J, Feng Y, Sun X, et al. Effectiveness and Pathways of ElectrochemicalDegradation of Pretilachlor Herbicides[J]. Journal of Hazardous Materials,2011,189(1-2):84-91.
    [9] Elaoud S C, Panizza M, Cerisola G, et al. Electrochemical Degradation ofSinapinic Acid on a BDD Anode[J]. Desalination,2011,272(1-3):148-153.
    [10] Zhu X, Ni J, Lai P. Advanced Treatment of Biologically Pretreated CokingWastewater by Electrochemical Oxidation Using Boron-doped DiamondElectrodes[J]. Water Research,2009,43(17):4347-4355.
    [11] Velegraki T, Balayiannis G, Diamadopoulos E, et al. ElectrochemicalOxidation of Benzoic Acid in Water Over Boron-Doped Diamond Electrodes:Statistical Analysis of Key Operating Parameters, Kinetic Modeling,Reaction By-Products and Ecotoxicity[J]. Chemical Engineering Journal,2010,160(2):538-548.
    [12]江燕斌,钱宇,黄理纳,等.炼油碱渣废水处理-萃取脱酚实验研究[J].化学工程,2000,28(5):39-41.
    [13] Lima Sofia A C, Raposo Filomena M, Castro Paula M L, et al.Biodegradation of p-Chlorophenol by a Microalgae Consortium[J]. WaterResearch,2004,38(1):97-102.
    [14] Partha S M, Gupta S K. Degradation of4-Chlorophenol in USAB Reactorunder Methanogebic Conditions. Bioresource Technology.2008,99:4169-4177.
    [15]王强.生化法处理工业含酚废水[D].天津:天津大学学位论文.2006:40-43.
    [16] Glaze W H, Kang J W, Chapin D H. The Chemistry of Water TreatmentProcesses Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation[J].Ozone Science and Engineering,1987,9(4):335-352.
    [17]雷乐成,何锋.均相Fenton氧化降解苯酚废水的反应机理探讨[J].化工学报,2003,54(11):1592-1597.
    [18] Kremer M L. Is OH the Active Fenton Intermediate in the Oxidation ofEthanol?[J]. Journal of Inorganic Biochemistry,2000,78(3):255-257.
    [19] Walling C, Kato S. The Oxidation of Alcohols by Fenton’s Reagent: theEffect of Copper Ion[J]. Journal of the Americal Chemical Society,1971,93(17):4275-4281.
    [20] Walling C, Goosen A. Mechanism of the Ferric Ion CatalyzedDecomposition of Hydrogen Peroxide: Effect of Organic Substrates[J].Journal of the Americal Chemical Society,1972,95(5):2987-2991.
    [21] Namkung K C, Burgess A E, Bremner D H, et al. Advanced FentonProcessing of Aqueous Phenol Solutions: A Continuous System StudyIncluding Sonication Effects[J]. Ultrasonics Sonochemistry,2008,15(3):171-176.
    [22]陈寿兵,段日雄,张学才. Fenton试剂处理二硝基重氮酚工业废水的研究[J].安徽理工大学学报,2003,23(1):50-53.
    [23] Liou R M, Chen S H. CuO Impregnated Activated Carbon for Catalytic WetPeroxide Oxidation of Phenol[J]. Journal of Hazardous Materials,2009,172(1):498-506.
    [24]刘杰,于超英,赵培庆,等.催化湿式氧化法降解水中的β-萘酚[J].环境科学,2012,33(11):3826-3832.
    [25] Zhao G H, Lv B Y, Jin Y, et al. p-Chlorophenol Wastewater Treatment byMicrowave-Enhanced Catalytic Wet Peroxide Oxidation[J]. WaterEnvironment Research,2010,82(2):120-127.
    [26] He Z, Xie L, Song S, et al. The Impact of Silver Modification on theCatalytic Activity of Iodine-Doped Titania for p-Chlorophenol Degradationunder Visible-Light Irradiation[J]. Journal Molecular Catalysis A: Chemical,2010,319(1-2):78-84.
    [27] He Z, Xie L, Tu J, et al. Visible Light-Induced Degradation of Phenol overIodine-Doped Titanium Dioxide Modified with Platinum: Role of Platinumand the Reaction Mechanism[J]. The Journal of Physical Chemistry C,2010,114(1):526-532.
    [28]陈琳,雷乐成,杜瑛. UV/Fenton光催化氧化降解4-氯酚废水反应动力学[J].环境科学学报,2004,24(2):225-230.
    [29] Dileo G J, Neff M E, Savage P E. Gasification of Guaiacol and Phenol inSuperctritical Water[J]. Energy Fuels,2007,21(4):2340-2345.
    [30]杨志军,梁鑫淼,吴文忠,等.含酚废水的超临界水氧化研究进展[J].环境污染治理技术与设备,2002,3(11):50-54.
    [31] HoignéJ, Bader H. Rate Constants of Reactions of Ozone with Organic andInorganic Compounds in Water[J]. Water Research,1983,17(2):185-194.
    [32]魏东洋,陆桂英,刘广立,等.六氯苯的O3及UV/O3高级氧化降解试验研[J].环境工程学报,2007,1(7):24-28.
    [33] Corrêa A X R, Tiepo E N, Somensi C A, et al. Use of Ozone-photocatalyticOxidation (O3/UV/TiO2) and Biological Remediation for Treatment ofProduced Water from Petroleum Refineries[J]. Journal of EnvironmentalEngineering (asce),2010,136(1):40-45.
    [34] Anglada á, Urtiaga A, Ortiz I, et al. Boron-doped Diamond AnodicTreatment of Landfill Leachate Evaluation of Operating Variables andFormation of Oxidation By-Products[J]. Water Research,2011,459(2):828-838.
    [35]魏振东,刘代云,廖菊荣,等.苯酚废水的电催化氧化-生物降解工艺研究[J].化学与生物工程,2011,28(5):77-80.
    [36] Zhu X, Ni J, Wei J, et al. Scale-up of BDD Anode System forElectrochemical Oxidation of Phenol Simulated Wastewater in ContinuousMode[J]. Journal of Hazardous Materials,2010,184(1-3):493-498.
    [37] Wang Y H, Chan K Y, Li X Y, et al. Electrochemical Degradation of4-Chlorophenol at Nickel-antimony Doped tin Oxide Electrode[J].Chemosphere,2006,65(7):1087-1093.
    [38] Dabo P, Cyr A, Laplante F, et al. Electrocatalytic Dehydrochlorination ofPentachlorophenol to Phenol or Cyclohexanol[J]. Environmental Science andTechnology,2000,34(7):1265-1268.
    [39] Chiang L C, Chang J E, Wen. C. Indirect Oxidation Effect inElectrochemical Oxidation Treatment of Landfill Leachate [J]. WaterResearch,1995,29(2):671-678.
    [40] Comninellis Ch. Electrocatalysis in the Electrochemical Conversion/Combussion of Organic Pollutants for Waste Water Treatment[J].Electrochimica Acta,1994,39(11-12):1857-1862.
    [41] Panizza M, Bocca C, Cerisola G. Electrochemical Oxidation of ToluencePromoted by OH Radicals[J]. Journal of Applied Electrochemistry,1984,14:1-8.
    [42] Thanos J C G, Fritz H P, Wabner D. The Influences of the Electrolyte andthe Physical Conditions on Ozone Production by the Electrolysis of Water[J].Journal of Applied Electrochemistry,1984,14(3):389-399.
    [43] Polcaro A M, Mascia M, Palmas F R. Anodic Oxidation of Aniline forWastewater Treatment[J]. Journal of Applied Electrochemistry,1994,39:1857-1862.
    [44]冯玉杰,崔玉红,孙丽欣,等.电化学废水处理技术及高效电催化电极的研究与进展[J].哈尔滨工业大学学报,2004,36(4):450-455
    [45]冯玉杰,李晓岩,尤宏.电化学技术在环境工程中的应用[M].北京:化学工业出版社,2002.
    [46] Wang Y, Shen Z, Li Y, et al. Electrochemical Properties of the Erbium-Chitosan-Fluorine-Modified PbO2Electrode for the Degradation of2,4-Dichlorophenol in Aqueous Solution[J]. Chemosphere,2010,79(10):987-996.
    [47] Tan C, Xiang B, Li Y J, et al. Preparation and Characteristics of aNano-PbO2Anode for Organic Wastewater Treatment[J]. ChemicalEngineering Journal,2011,166(1):15-21.
    [48]李少婷,张青,汤亚飞,等.电催化氧化处理难降解废水技术研究进展[J].四川环境,2005,24(5):83-87.
    [49] Arapoglou D, Vlyssides A, Israilides C, et al. Detoxification of Methyl-Parathion Pesticide in Aqueous Solutions by Electrochemical Oxidation[J].Journal of Hazardous Materials,2003,98(1-3):191-199.
    [50]李学敏,汪家道,陈大融,等.金刚石薄膜电极处理含氯酚废水的实验研究[J].清华大学学报,2006,46(5):641-644.
    [51] Hmani E, Elaoud S C, Samet Y, et al. Electrochemical Degradation ofWaters Containing O-Toluidine on PbO2and BDD Anodes[J]. Journal ofHazardous Materials,2009,170(2-3):928-933.
    [52] Chattzisymeon E, Fierro S, Karafyllis I, et al. Anodic Oxidation of Phenol onTi/IrO2Electrode: Experimental Studies[J]. Catalysis Today,2011,151(1-2):185-189.
    [53] Chen X, Chen G, Yue P L. Electro-Oxidation of Chlorinated Phenol[J].Environmental Science and Technology,1999,33(9):1453-1457.
    [54] Hu F, Dong Z, Cui X, et al. Improved SnO2-Sb2O4Based Anode Modifiedwith Cr3C2and CNT for Phenol Oxidation[J]. Electrochimica Acta,2011,56(3):1576-1580.
    [55] Yang X, Zou R, Huo F, et al. Preparation and Characterization of Ti/SnO2-Sb2O3-Nb2O5/PbO2Thin Films as Electrode Material for the Degradation ofPhenol[J]. Journal of Hazardous Materials,2009,164(1):367-373.
    [56] Feng Y J, Li X Y. Electro-catalytic Oxidation of Phenol on SeveralMetal-Oxide Electrodes in Aqueous Solution[J]. Water Research,2003,37(10):2399-2407.
    [57]谢天,王斌.二氧化铅电极制备方法综述[J].城都大学学报,2003,22(3):25-30.
    [58]常立民,金鑫童.钛基二氧化铅电极的制备、改性及应用现状[J].电镀与涂饰,2012,31(7):46-49.
    [59]沙红霞.制备方法对二氧化铅电极结构及性能的影响[D].扬州:扬州大学学位论文,2008.
    [60]魏杰,王东田,柳东东.用于处理水质中有机物的粉末多孔二氧化铅电极的制备方法[P].中国专利: CN1015555051.
    [61]单志国.新型PbO2电极处理难降解有机废水的研究[D].合肥:合肥工业大学学位论文,2009.
    [62] Zhou M, He J. Degradation of Cationic Red X-GRL by ElectrochemicalOxidation on Modified PbO2Electrode[J]. Journal of Hazardous Materials,2008,153(1-2):357-363.
    [63] Liu H, Liu Y, Zhang C, et al. Electrocatalytic Oxidation of Nitrophenols inAqueous Solution Using Modified PbO2Electrodes[J]. Journal of ApplliedElectrochemistry,2008,38(1):101-108.
    [64] Andrade L S, Ruotolo L A M, Rocha-Filho R C, et al. On the Performance ofFe and Fe,F Doped Ti-Pt/PbO2Electrodes in the Electrooxidation of the BlueReactive19Dye in Simulated Textile Wastewater[J]. Chemosphere,2007,66(11):2035-2043.
    [65] Fukuda K, Iwakura C, Tamura H. Effect of the Addition of NH4F on AnodicBehaviors of DSA-type Electrodes in H2SO4-(NH4)2SO4Solutions[J].Electrochimica Acta,1978,24(4):367-371.
    [66] Feng J, Johnson D C. Electrocatalysis of Anodic Oxygen-Transfer Reactions:Titanium Substrates for Pure and Doped Lead Dioxide Films[J]. Journal ofthe Electrochemical Society,1991,138(11):3328-3337.
    [67] Gilroy D, Stevens R. The Electrodeposition of Lead Dioxide on Titanium[J].Journal of Applied Electrochemistry,1980,10(4):511-525.
    [68] Amadelli R, Maldotti A, Molinari A, et al. Influence of the Electrode Historyand Effects of the Electrolyte Composition and Temperature on O2Evolutionat-PbO2Anodes in Acid Media[J]. Journal of Electroanalytical Chemistry,2002,534(1):1-12.
    [69] Velicenko A B, Devilliers D. Electrodeposition of Fluorine-Doped LeadDioxide[J]. Journal of Fluorine Chemistry,2007,128(4):269-276.
    [70] Cao J L, Zhao H Y, Cao F H, et al. Electrocatalytic Degradation of4-Chlorophenol on F-Doped PbO2Anodes[J]. Electrochimica Acta,2009,54(9):2595-2602.
    [71] Amadelli R, Velichenko A B. Lead Dioxide Electrodes for High PotentialAnodic Processes[J]. Journal of the Serbian Chemical Society,2001,66(11-12):835-845.
    [72] Velicenko A B, Girenko D V, Nikolenko N V, et al. Oxygen Evolution onLead Dioxide Modified with Fluorine and Iron[J]. Russian Journal ofElectrochemistry,2000,36(11):1216-1220.
    [73] Velichenko A B. Electrosynthesis and Physicochemical Properties ofFe-doped Lead Dioxide Electrocatalysts[J]. Electrochimica Acta,2000,45(25):4341-4350.
    [74] Andrade L S, Filho R, Bocchi N, et al. Degradation of Phenol Using Co-andCo,F-doped PbO2Anodes in Electrochemical Filter-Press Cells[J]. Journal ofHazardous Materials,2008,153(1-2):252-260.
    [75] Treimer S E, Feng J R, Scholten M D, et al. Comparison of VoltammetricResponses of Toluene and Xylenes at Iron(III)-Doped, Bismuth(V)-Doped,and Undoped-lead Dioxide Film Electrodes in0.50M H2SO4[J]. Journal ofthe Electrochemical Society,2001,148(12): E459-E463.
    [76]邵志刚,衣宝廉,张新革,等.钛基二氧化铅平板电极的镀制[J].电化学,1997,3(3):319-324.
    [77] Yeo I H, Johnson D C. Effect of Groups IIIA and VA Metal Oxides inElectrodeposited β-PbO2Dioxide Electrodes in Acidic Media[J]. Journal ofthe Electrochemical Society,1987,134(8):1973-1977.
    [78] Yeo I H, Kim S, Jacobson R, et al. Electrocatalysis of Anodic OxygenTransfer Reactions: Comparison of Structural Data with ElectrocatalyticPhenomena for Bismuth-Doped Lead Dioxide[J]. Journal of theElectrochemical Society,1989,136(5):1395-1401.
    [79] Ai S Y, Li J Q, Li L P, et al. Electrochemical Deposition and Properties ofNanometer-Structure Ce-doped Lead Dioxide Film Electrode[J]. ChineseJournal of Chemistry,2005,23(1):71-75.
    [80] Liu Y, H. Liu L, Ma J, et al. Investigation on Electrochemical Properties ofCerium Doped Lead Dioxide Anode and Application for Elimination ofNitrophenol[J]. Electrochimica Acta,2011,56(3):1352-1360.
    [81] Kong J T, Shi S Y, Kong L C, et al. Preparation and Characterization ofPbO2Electrodes Doped with Different Rare Earth Oxides[J]. ElectrochimicaActa,2007,53(4):2048-2054.
    [82] Musiani M, Furlanetto F, Guerriero P. Electrochemical Deposition andProperties of PbO2+Co3O4Composites[J]. Journal of ElectroanalyticalChemistry,1997,440(1-2):131-138.
    [83] Zhou M H, Dai Q Z, Lei L C, et al. Long Life Modified Lead Dioxide Anodefor Organic Wastewater Treatment: Electrochemical Characteristics andDegradation Mechanism[J]. Environmental Science and Technology,2005,39(1):363-370.
    [84] Ho C N, Hwang B J. Effect of Hydrophobicity on the Hydrophobic-ModifiedPolytrafluoroethylene/PbO2Electrode towards Oxygen Evolution[J]. Journalof Electroanalytical Chemistry,1994,377(1-2):177-190.
    [85] Tong S P, Zhang T M, Ma C A. Oxygen Evolution Behavior ofPTFE-F-PbO2Electrode in H2SO4Solution[J]. Chinese Journal of ChemicalEngineering,2008,16(6):885-889.
    [86] Wang Y, Shen Z Y, Chen X C. Effects of Experimental Parameters on2,4-Dichlorphenol Degradation over Er-Chitosan-PbO2Electrode[J]. Journalof Hazardous Materials,2010,178(1-3):867-874.
    [87] Song S, Fan J Q, He Z Q, et al. Electrochemical Degradation of Azo Dye C.I.Reactive Red195by Anodic Oxidation on Ti/SnO2-Sb/PbO2Electrodes[J].Electrochimica Acta,2010,55(11):3606-3613.
    [88] Samet Y, Agengui L, Abdelhédi R. Anodic Oxidation of Chlorpyrifos inAqueous Solution at Lead Dioxide Electrodes[J]. Journal of ElectroanalyticalChemistry,2010,650(1):152-158.
    [89] Panizza M, Cerisola G. Applicability of Electrochemical Methods toCarwash Wastewater for Reuse. Part1: Anodic Oxidation with Diamond andLead Dioxide Anodes[J]. Journal of Electroanalytical Chemistry,2010,638(1):28-32.
    [90] Cossu R, Polcaro A M, Lavagnolo M C, et al. Electrochemical Treatment ofLandfill Leachate: Oxidation at Ti/PbO2and Ti/SnO2Anodes[J].Environmental Science and Technology,1998,32(22):3570-3573.
    [91] Szpyrkowicz L, Kaul S N, Neti R N, et al. Influence of Anode Material onElectrochemical Oxidation for the Treatment of Tannery Wastewater[J].Water Research,2005,39(8):1601-1613.
    [92] Chen Q P, Ai S Y, Li S S, et al. Facile Preparation of PbO2Electrode for theElectrochemical Inactivation of Microorganisms[J]. ElectrochemistryCommunications,2009,11(11):2233-2236.
    [93] Iijima S, Ichihashi T. Single Shell Carbon Nanotubes of1nm Diameter[J].Nature,1993,363(9):603-605.
    [94]郑丽.碳纳米管及其复合材料修饰电极的电催化作用[D].西安:西北大学学位论文,2009:2.
    [95] Britton P J, Santhanam K S V, Ajayan P M. Carbon Nanotube Electrode forOxidation of Dopamine[J]. Bioelectrochemistry Bioenergetics,1996,41(1):121-125.
    [96] Davis J J, Riehard J C, Allen H, et al. Protein Electrochemistry at CarbonNanotube Electrodes[J]. Journal of Electroanalytical Chemistry,1997,440(1):279-282.
    [97] Yang D, Zhu L, Jiang X. Electrochemical Reaction Mechanism andDetermination of Sudan I at a Multi Wall Carbon Nanotubes ModifiedGlassy Carbon Electrode[J]. Journal of Electroanalytical Chemistry,2010,640(1-2):17-22.
    [98] Vural T, Kuralay F, Bayram C, et al. Preparation and Physical/Electrochemical Characterization of Carbon Nanotube-Chitosan ModifiedPencil Graphite Electrode[J]. Applied Surface Science,2010,257(2):622-627.
    [99] Hu F P, Cui X W, Chen W X. Pulse Electro-Codeposition of Ti/SnO2-Sb2O4-CNT Electrode for Phenol Oxidation[J]. Electrochemical and Solid-StateLetters,2010,13(9): F20-F23.
    [100] Zhao Y D, Zhang W D, Chen H, et al. Anodic Oxidation of Hydrazine atCarbon Nanotube Powder Microelectrode and Its Detection[J]. Talanta,2002,58(3):529-534.
    [101] Lu T L, Tsai Y C. Electrocatalytic Oxidation of Acetylsalicylic Acid atMultiwalled Carbon Nanotube-Alumina-Coated Silica NanocompositeModified Glassy Carbon Electrodes[J]. Sensors Actuators B: Chemical,2010,148(2):590-594.
    [102] Yang H P, Zhu Y F, Chen D C, et al. Electrochemical Biosensing Platformsusing Poly-Cyclodextrin and Carbon Nanotube Composite[J]. Biosensors andBioeletronics,2010,26(1):295-298.
    [103] Feng Y J, Cui Y, Logan B, et al. Performance of Gd-doped Ti-BasedSb-SnO2Anodes for Electrochemical Destruction of Phenol[J]. Chemosphere,2008,70(9):1629-1636.
    [104] Feng Y J., Cui Y H, Liu J, et al. Factors Affecting the Electro-CatalyticCharacteristics of Eu Doped SnO2/Sb Electrode[J]. Journal of HazardousMaterials,2010,178(1-3):29-34.
    [105] Ai S, Gao M, Zhang W, et al. Preparation of Ce-PbO2Modified Electrodeand Its Application in Detection of Anilines[J]. Talanta,2004,62(3):445-450.
    [106] Gherardini L, Michaud P A, Panizza M, et al. Electrochemical Oxidation of4-Chlorophenol for Wastewater Treatment[J]. Journal of the ElectrochemicalSociety,2001,148(6): D78-D82.
    [107]丁海洋.稀土掺杂钛基SnO2电极降解苯酚的电极过程研究[J].哈尔冰:哈尔滨工业大学学位论文,2007:37-40.
    [108]国家环保局.水和废水检测分析方法[M].中国环境科学出版社,2002:460-463.
    [109] Costa C R, Montilla F, Morall n E, et al. Electrochemical Oxidation ofSynthetic Tannery Wastewater in Chloride-Free Aqueous Media[J]. Journalof Hazardous Materials,2010,180(1-3):429-435.
    [110] Ueda M, Watanabe A, Kameyama T, et al. Performance Characteristics of aNew Type of Lead Dioxide-Coated Titanium Anode[J]. Journal of AppliedElectrochemistry,1995,25(9):817-822.
    [111] Devilliers D, Dinh M T, MahéE, et al. Cr(III) Oxidation with Lead Dioxide-Based Anodes[J]. Electrochimica Acta,2003,48(28):4301-4309.
    [112]孙凤梅,潘建跃,罗启富.含铂中间层二氧化铅阳极的制备及其性能[J].材料保护,2006,39(1):53-54.
    [113]王雅琼.含Sb-SnO2中间层的钛基金属氧化物电极的结构与性能研究[D].南京:南京理工大学学位论文,2008:36-47.
    [114] Ma H, Zhang X, Ma Q, et al. Electrochemical Catalytic Treatment of PhenolWastewater[J]. Journal of Hazardous Materials,2009;165(1-3):475-480.
    [115] Wu Z, Zhou M. Partial Degradation of Phenol by Advanced ElectrochemicalOxidation Process[J]. Environmental Science and Technology,2001,35(13):2698-2703.
    [116]张海波.稀土改性二氧化铅电极制备及电催化降解硝基苯的研究[J].环境化学,2005,24(1):57-58.
    [117]钟耀.电催化氧化苯胺模拟废水实验研究[D].兰州:西北师范大学学位论文,2009:78-80.
    [118]宋曰海.不锈钢基不溶性催化电极的制备及其难降解有机废水的电催化降解作用[D].北京:北京化工大学学位论文,2009:39-40.
    [119] Belhadj Tahar N, Savall A. Electropolymerization of Phenol on a VitreousCarbon Electrode in Acidic Aqueous Solution at Different Temperatures[J].Journal of Applied Eletrochemistry,2011,41(8):983-989.
    [120] Belhadj Tahar N, Savall A. Mechanistic Aspects of Phenol ElectrochemicalDegradation by Oxidation on a Ta/PbO2Anode[J]. Journal of theElectrochemical Society,1998,145(10):3427-3434.
    [121] Iniesta J, Michaud P A, Panizza M, et al. Electrochemical Oxidation ofPhenol at Boron-Doped Diamond Electrode[J]. Electrochimica Acta,2001,46(23):3573-3578.
    [122] Zhi J F, Wang H B, Nakashima T, et al. Electrochemical Incineration ofOrganic Pollutants on Boron-Doped Diamond Electrode. Evidence for DirectElectrochemical Oxidation Pathway[J]. The Journal of Physical Chemistry B,2003,107(48):13389-13395.
    [123] Pimentel M, Oturan N, Dezotti M, et al. Phenol Degradation by AdvancedElectrochemical Oxidation Process Electro-Fenton Using a Carbon FeltCathode[J]. Applied Catalysis B: Environmental,2008,83(1-2):140-149.
    [124] Enache T A, Oliveria-Brett A M. Phenol and para-Substituted PhenolsElectrochemical Oxidation Pathways[J], Journal of ElectroanalyticalChemistry,2011,655(1):9-16.
    [125] Li X, Cui Y, Feng Y, et al. Reaction Pathways and Mechanisms of theElectrochemical Degradation of Phenol on Different Electrodes[J]. WaterResearch,2005,39(10):1972-1981.
    [126] Chen X, Yao P, Wang D, et al. Antimony and Cerium Co-Doped Tin OxideElectrodes for Pollutant Degradation[J]. Chemical Engineering Journal,2009,147(2-3):412-415.
    [127] Tong S P, Ma C N, Feng H. A Novel PbO2Electrode Preparation and ItsApplication in Organic Degradation[J]. Electrochimica Acta,2008,53(6):3002-3006.
    [128] Quiroz M A, Reyna S, Martínez-Huitle C A, et al. Electrocatalytic Oxidationof p-Nitrophenol from Aqueous Solutions at Pb/PbO2Anodes[J]. AppliedCatalysis B: Environmental,2005,59(3-4):259-266.
    [129] Amadelli R, Samiolo L, Velichenko A B, et al. Composite PbO2-TiO2Materials Deposited from Colloidal Electrolyte: Electrosynthesis, andPhysicochemical Properties[J]. Electrochimica Acta,2009,54(22):5239-5245.
    [130] Hovestad A, Janssen L J J. Electrochemical Codeposition of Inert Particles ina Metallic Matrix[J]. Journal of Applied Electrochemistry,1995,25(6):519-527.
    [131] Shang N G, Papakonstantinou P, Mcmullan M, et al. Catalyst-Free EfficientGrowth, Orientation and Biosensing Properties of Multilayer GraphemeNanoflake Films with Sharp Edge Planes[J]. Advanced Functional Materials,2008,18(21):3506-3514.
    [132] Kwon B G, Ryu S, Yoon J. Determination of Hydroxyl Radical RateConstants in a Continuous Flow System Using Competition Kinetics[J].Journal of Industrial Engineering Chemistry,2009,15(6):809-812.
    [133] Ishibashi K, Fujishima A, Watanabe T, et al. Detection of Active OxidativeSpecies in TiO2Photocatalysis Using the Fluorescence Technique[J].Electrochemistry Communications,2000,2(3):207-210.
    [134]丁海洋,冯玉杰,吕江维,等.钛基二氧化锡电极电解过程中羟基自由基检测及电催化机理[J].分析化学研究报告,2007,35(10):1395-1399.
    [135] Nasr B, Abdellatif G. Electrochemical Oxidation of2,4,6-Trinitrophenol onBoron-Doped Diamond Anodes[J]. Journal of the Electrochemical Society,2005,152(6): D113-D116.
    [136] Canizares P, Lobato J, Paz R, et al. Electrochemical Oxidation of PhenolicWastes with Boron-Doped Diamond Anodes[J]. Water Research,2005,39(12):2687-2703.
    [137] Flox C, Arias C, Brillas E, et al. Electrochemical Incineration of Cresols: AComparative Study between PbO2and Boron-Doped Diamond Anodes[J].Chemosphere,2009,74(10):1340-1347.
    [138] Un U T, Altay U, Koparal A S, et al. Complete Treatment of Olive MillWastewaters by Electrooxidation[J]. Chemical Engineering Journal,2008,139(3):445-452.
    [139] Ye Z G, Meng H M, Sun D B. New Degradation Mechanism of Ti/IrO2+MnO2Anode for Oxygen Evolution in0.5M H2SO4Solution[J].Electrochimica Acta,2008,53(18):5639-5643.
    [140] Wang J, Li X, Guo L, et al. Effect of Surface Morphology of Lead DioxideParticles on Their Ozone Generating Performance[J]. Applied SurfaceScience,2008,254(20):6666-6670.
    [141] Thanos J C G, Wabner D W. Structural Changes of the Texture of β-leadDioxide-Titanium Anodes during the Oxygen/Ozone Electrosynthesis inNeutral and Acid Electrolytes[J] Journal of Electroanalytical Chemistry,1985,182(1):37-49.
    [142] Gilroy D. The Breakdown of PbO2-Ti Anodes[J]. Journal of AppliedEletrochemistry,1982,12(2):171-183.
    [143] Wang H, Bian Z Y, Sun D Z. Degradation Mechanism of4-Chlorophenolwith Electrogenerated Hydrogen Peroxide on Pd/C Gas-DiffusionElectrode[J]. Water Scence and Technology,2011,63(3):484-490.
    [144] Gaya U I, Abdullah A H, Zainal Z, et al. Photocatalytic Treatment of4-Chlorophenol in Aqueous ZnO Suspensions: Intermediates, Influence ofDosage and Inorganic Anions[J]. Journal of Hazardous Materials2009,168(1):57-63.
    [145] Benitez F J, Beltran-Heredia J, Acero J L, et al. Controbution of FreeRadicals to Chlorophenols Decomposition by Several Advanced OxidationProcesses[J]. Chemosphere,2000,41(8):1271-1277.
    [146] Coteiro R D, De Andrade A R. Electrochemical Oxidation of4-Chlorophenoland Its By-Products Using Ti/Ru0.3M0.7O2(M=Ti or Sn) Anodes: PreparationRoute Versus Degradation Efficiency[J]. Journal of AppliedElectrochemistry,2007,37(6):691-698.
    [147] Rodrigo M A, Michaud P A, Duo I, et al. Oxidation of4-Chlorophenol atBoron-Doped Diamond Electrode for Wastewater Treatment[J]. Journal ofthe Electrochemical Society,2001,148(5): D60-D64.
    [148] Iniesta J, Michaud P A, Panizza M, et al. Electrochemical Oxidation of3-Methylpyridine at a Boron-Doped Diamond Dlectrode: Application toElectroorganic Synthesis and Wastewater Treatment[J]. ElectrochemistryCommunications,2001,3(7):346-351.
    [149] Pavlov D, Monahov B. Mechanism of the Elementary ElectrochemicalProcesses Taking Place during Oxygen Evolution on the Lead DioxideElectrode[J]. Journal of the Electrochemical Society,1996,143(11):3616-3629.
    [150] Pavlov D. The Lead-Acid Battery Lead Dioxide Active Mass: A Gel-CrystalSystem with Proton and Electron Conductivity[J]. Journal of theElectrochemical Society,1992,139(11):3075-3080.
    [151] Monahov B, Palov D. Hydrated Structures in the Anodic Layer Formed onLead Electrodes in H2SO4Solution[J],1993,23(12):1244-1250.
    [152] Kuramitz H, Nakata Y, Kawasaki M, et al. Electrochemical Oxidation ofBisphenol A. Application to the Removal of Bisphenol A Using a CarbonFiber Electrode[J]. Chemosphere,2001,45(1):37-43.
    [153] Boudenne J L, Cerclier O, Bianco P. Voltammetric Studies of the Behaviorof Carbon Black during Phenol Oxidation on Ti/Pt Electrodes[J]. Journal ofthe Electrochemical Society,1998,145(8):2763-2768.
    [154] Belhadj Tahar N, Savall A. Electrochemical Removal of Phenol in AlkalineSolution. Contribution of the Anodic Polymerization on Different ElectrodeMaterials[J]. Electrochimica Acta,2009,54(21):4809-4816.
    [155] Martinez-Huitle C A, Brillas E. Decontamination of Wastewaters ContainingSynthetic Organic Dyes by Electrochemical Methods: A General Review[J].Applied Catalysis B: Environmental,2009,87(3-4):105-145.
    [156] Lucas M S, Peres J A. Decolorization of the Azo Dye Reactive Black5byFenton and Photo-Fenton Oxidation[J]. Dyes Pigment,2006,7(3):236-244.
    [157] Murphy O J, Hitchens G D, Kaba L, et al. Direct Electrochemical Oxidationof Organics for Wastewater Treatment[J]. Water Research,1992,26(4):443-451.
    [158] Palma-Goyes R E, Guzmán-Duque F L, Pen, et al. ElectrochemicalDegradation of Crystal Violet with BDD Electrodes: Effect ofElectrochemical Parameters and Identification of Organic By-Products[J].Chemosphere,2010,81(1):26-32.
    [159] Choi J Y, Lee Y J, Shin J, et al. Anodic Oxidation of1,4-Dioxane on Boron-Doped Diamond Electrodes for Wastewater Treatment[J]. Journal ofHazardous Materials,2010,179(1-3):762-768.
    [160] Chen X, Chen G. Anodic Oxidation of Orange II on Ti/BDD Electrode:Variable Effects[J]. Sep. Purify. Technol.,2006,48(1):45-49.
    [161] Fernandes A, Mor o A, Magrinho M, et al. Electrochemical Degradation ofC. I. Acid Orange7[J]. Dyes Pigments,2004,61(3):287-296.
    [162] Murrgananthan M, Yoshihara S, Rakuma T, et al. ElectrochemicalDegradation of17β-Estradiol (E2) at Boron-Doped Diamond (Si/BDD) ThinFilm Electrode[J]. Electrochimica Acta,2007,52(9):3242-3249.
    [163] Michaud P A, Mahe E, Haenni W, et al. Preparation of Peroxodisulfuric AcidUsing Boron-Doped Diamond Thin Film Electrodes[J]. Electrochemical andSolid-State Letters,2000,3(2):77-79.
    [164] Kapalka A, Fóti G, Comninellis Ch. The Importance of Electrode Material inEnvironmental Electrochemistry Formation and Reactivity of Free HydroxylRadicals on Boron-Doped Diamond Electrodes[J]. Electrochimica Acta,2009,54(7):2018-2023.
    [165] zcan A, ahin Y, Koparal A S, et al. Propham Mineralization in AqueousMedium by Anodic Oxidation Using Boron-Doped Diamond Anode:Influence of Experimental Parameters on Degradation Kinetics andMineralization Efficiency[J]. Water Research,2008,42(12):2889-2898.
    [166] Panizza M, Cerisola G. Removal of Colour and COD from WastewaterContaining Acid Blue22by Electrochemical Oxidation[J]. Journal ofHazardous Materials,2008,153(1-2):83-88.
    [167] Bensalah N, Quiroz Alfaro M A, Martínez-Huitle C A. ElectrochemicalTreatment of Synthetic Wastewaters Containing Alphazurine A Dye[J].Chemical Engineering Journal,2009,149(1-3):348-352.
    [168]庞雅宁,赵国华,刘磊,等.金刚石膜电极电化学氧化提高废水可生化性的研究[J].中国环境科学,2009,29(12):1255-1259.
    [169] Wang H, Wang J L. The Cooperative Electrochemical Oxidation ofChlorophenols in Anode-Cathode Compartments[J]. Journal of HazardousMaterials,2008,154(1-3):44-50.
    [170] Johnson S K, Houk L L, Feng J, et al. Electrochemical Incineration of4-Chlorophenol and the Identification of Products and Intermediates by MassSpectrometry[J]. Environmental Science and Technology,1999,33(15):2638-3644.
    [171] Boye B, Dieng M M, Brillas E. Degradation of Herbicide4-Chlorophenoxyacetic Acid by Advanced Electrochemical OxidationMethods[J]. Environmental Science and Technology,2002,36(13):3030-3035.
    [172] Du Ch M, Yan J H, Cheron B G. Degradation of4-Chlorophenol Using aGas-Liquid Gliding Arc Discharge Plasma Reactor[J]. Plasma Chemistry andPlasma Processing,2007,27(5):635-646.
    [173]卢玲,沈英娃.酚类、烷基苯类、硝基苯类化合物和环境水样对剑尾鱼和稀有驹鲫的急性毒性[J].环境科学研究,2002,15(4):57-59.
    [174]刘红玲,样本校,于红霞,等.苯酚及其氯代物对大型溞的毒性和微观机理探讨[J].环境污染与防治,2007,29(1):33-36.
    [175]邢军.苯、氯苯、苯酚、4-氯酚对斑马鱼、孔雀鱼、剑尾鱼的急性毒性[J].生态环境学报,2011,20(11):1720-1724.
    [176]许文武,孟菁,胡威,等.5种酚类化合物对3种水生生物的毒性作用[J].环境化学,2011,30(10):1751-1757.
    [177]顾云兰.酚类化合物对蝌蚪急性毒性的定量构效关系研究[J].科技通报,2012,28(1):25-29.
    [178] Casellato U, Cattarin S, Musiani M. Preparation of Porous PbO2Electrodesby Electrochemical Deposition of Composites[J]. Electrochimica Acta,2003,48(27):3991-3998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700