用户名: 密码: 验证码:
水产养殖废水氨氮处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水产养殖业在近年来得到了迅猛的发展。大量养殖废水的排放给周边环境造成的巨大的影响,水域环境的恶化,赤潮频发,生态平衡和生物多样性也遭到破坏。养殖水域的水质下降也给我国渔业经济带来了巨大损失。氨氮是水产养殖废水中的主要污染物,也是最难以去除的物质。目前专门针对水产养殖废水的技术还比较少,大都是借鉴传统污水处领的方法。对于海水体系来说,海水中的盐度效应,以及养殖废水中污染结构与常见陆源污水的差异,增加了养殖废水的处理难度。目前研究较多的是泡沫分离、过滤等物理处理技术。这些物理处理设施具有造价和运行费用低等优点,但不能去除溶解性污染物,特别是对氨氮不能有效地去除。
     本文针对淡水养殖和海水养殖两种废水分别系统考察了不同方法对氨氮的去除效果和作用特点。根据考察的结果和处理目的的对处理方法进行了筛选。并较为深入地探讨了每种方法最佳的使用条件。在此基础上进行养殖废水氨氮处理工艺设计,并粗略地估算处理成本,简单地分析了可能产生的经济效益。为水产养殖废水中氨氮的处理提供了一定的参考。本论文研究所得到的实验结果可概括为以下几个方面:
     1.针对淡水养殖废水考察了不同方法对氨氮的去除效果和特点,并根据废水的污染程度及处理目标设计相应的工艺组合。
     (1)固定化活性污泥法对淡水养殖废水中的氨氮有很好的去除作用。通过平均设计因子实验,结果表明其中固定化活性污泥的最佳制备工艺为PVA80g/L、海藻酸钠4g/L、活性碳10 g/L、二氧化硅8g/L、碳酸钙0.5g/L、甲壳素5g/L。污泥/包埋剂为1:4,固定化颗粒粒径为3mm。最佳使用条件为固定化颗粒用量为150 g/L,停留时间4-8h是,温度25-30℃,pH值为7-9,在COD500mg/L范围内,氨氮去除率随着COD负荷升高而升高。
     (2)螺旋藻经过驯化可以以氨氮为氮源生长。随着氨氮浓度的增高,对螺旋藻的抑制作用和毒性也越来越强。螺旋藻用于处理水体中的氨氮,应以浓度在50mg/L以下的水体为宜。用于处理水产养殖废水中的氨氮时使用的最佳条件为pH6-11,温度25-40℃。加入有机物能够促进螺旋藻的生长繁殖,螺旋藻的藻密度与COD负荷呈正相关。藻最佳的使用浓度为91×104个/mL。
     (3)淡水养殖废水经过过滤等预处理后,要使出水的氨氮的浓度达到综合污水排放标准,经过内置固定化活性污泥的曝气池处理一定的时间即可达到要求。当停留时间为5小时的条件下,氨氮出水浓度达到我国污水综合排放二级标准(低于25mg/L),0.547元/ m3;当停留时间为6小时的条件下,氨氮出水浓度达到我国污水综合排放二级标准(低于15mg/L),水处理成本为0.656元/ m3。要使出水氨氮的浓度达到养殖回用的要求,需利用螺旋藻的吸收作用进一步处理。使用螺旋藻处理8h后,氨氮浓度低于0.5mg/L,可以满足循环养殖的要求。若螺旋藻投加密度为废水经过螺旋藻处理后藻密度可达106/ml以上,处理每m3养殖废水可获得经济效益0.34元。
     2.针对海水中体系中除氮微生物较缺乏这一点,通过逐级提高海水比例的方式驯化活性污泥和螺旋藻。结合考察了不同方法对氨氮的去除效果和特点,并根据废水的污染程度及处理目标设计相应的工艺组合。
     (1)通过逐级提高海水比例的方式驯化活性污泥可以使之最终能够基本适应海水环境。应用于海水养殖废水的处理可以有效地去除其中的氨氮。处理的最佳条件为温度25-35℃,pH7-9,停留时间为12-16h。
     (2)臭氧可用于海水养殖废水中低浓度氨氮的去除,可作为深度处理的一种手段。其反应速度快,在1h内就可以完成。缺点是处理成本较高。
     (3)小球藻Chlorella pynenoidos、聚球藻Synechocoocus sp、盐藻Dunallelia salina、三角褐指藻Phaeodactylum tricornutum可以以氨氮作为唯一氮源而生长繁殖,可以有效去除海水养殖废水中氨氮。
     (4)若不计污泥池、藻塘建设、人力投入等费用。如果要达到污水综合排放一级标准,使用活性污泥法处理海水养殖废水的成本为0.713元/m3废水。采用螺旋藻进行深度处理36h后,氨氮浓度达到回用的要求,同时收获的藻折合经济效益约0.30元。采用臭氧进行深度处理,按作用1h计算,成本为8.415元/m3废水。
The industry of aquaculture has been developing rapidly in recently. Great deal of aquaculture waste water was produced and entered the environment with bad effects such as entrophication and red tide. The balance of zoology and diversity of creatures were also destroyed, which lead to economical loss. Ammonia is the most important contamination of aquaculture waste water and it is very difficult to remove from the water. There are rare special technologies of method for aquaculture waste water treatment. For the sea water system, it is more difficult because of the high salinity and complexion of the composition. Physical method such as foam separation and filtration are popular methods for aquaculture waste water treatment. These methods can remove suspended particles effectively but can not reduce the concentration of solvable matters, including ammonia.
     In this study, several method were set to treat aquaculture waste water. Experiments were designed for fresh water and seawater separately. Ammonia removal rate of all the methods and the characters of the course were noted. Appropriate methods were selected according to the treatment result and the aim concentration. After this period, the routine of water treatment craftwork were designed. Cost and benefit were calculated cursorily. All the result refers significative data for further study of aquaculture wastewater treatment. The main results were summarized as follows:
     1. The results of ammonia removal of different methods in freshwater system were examined and craftwork with effective methods were set up.
     (1)Immobilized sludge in fluidized bed has a good ability to remove ammonia from aquaculture wastewater and its result was better than normal sludge. Experiment was designed to improve the properties of immobilized beads. The result showed that the best composition of immobilization reagent was: PVA80g/L、Sodium alga acid 4g/L、activated coal10 g/L、SiO28g/L、CaCO30.5g/L。The value of Sludge/Reagent is 1:4 (w/w),and the best diameter for beads was 3mm。When used to treat aquaculture wastewater, the best condition for work was: with beads delivery 150 g/L, resident time4-8h是,temperature 25-30℃,pH 7-9.
     (2)Spiralina depended on ammonia as necessary nutrient for growth after the process of domestication culture. High concentration ammonia has a toxic effect on Spiralina. The higher the concentration, the stronger the effect is. The appropriate ammonia range is below 50mg/L. The best working condition of Spiralina for ammonia removal is pH6-11,temperature 25-40℃, algae delivery amount 91×104个/mL。
     (3)The ammonia concentration of real aquaculture wastewater treated only by immobilized sludge can reach China discharge water quality Standard. When resident time is 5h, ammonia concentration can reach Class 2 standard(below 25mg/L),and treatment cost was 0.547yuan/ m3. When resident time is 6h, ammonia concentration can reach Class 1 standard(below 15mg/L), and treatment cost was 0.656yuan/ m3. To satisfy the quality requirement for aquaculture reuse, further treatment was needed. After treated by Spiralina for 8h, ammonia concentration is below 0.5mg/L and non-ioned ammonia is no more than 0.02mg. The water could be reused for aquaculture.
     2. By raising the seawater ratio in the water gradually, sludge and Spiralina at last got used to the seawater system. he results of ammonia removal of different methods in freshwater system were examined and craftwork with effective methods were set up.
     (1)Sludge got used to mariculture system by raising seawater ratio gradually. And the result showed that it can also reduce the ammonia concentration in mariculture wastewater. The best condition for use is: temperature25-35℃,pH7-9,resident time12-16h。
     (2)Ozone was used to remove the ammonia remained after former treatment process. The reaction of Ozone with ammonia was so fast that it ended in 1h. there is a problem that producing ozone cost too much.
     ( 3 ) Chlorella pynenoidos、Synechocoocus sp、Dunallelia salin and Phaeodactylum tricornutum origined from seawater and were selected to treat ammonia in mariculture wastewater after comparison experiment.
     (4)The ammonia concentration of real aquaculture wastewater treated only by sludge can reach China discharge water quality Standard after a treatment process of 12h. And the treatment cost was 0.713yuan/m3 wastewater. To satisfy the quality requirement for aquaculture reuse, further treatment was needed. After treated by Spiralina for 36h, ammonia concentration could satisfy the requirement for reuse. The algae collected produced a profit of about 0.30yuan/m3 wastewater. Using ozone as a succedent treatment may cost 8.42 yuan/ m3 wastewater.
引文
1. A. Dumas, G. Laliberté, P. Lessard and J. de la Noüe. Biotreatment of fish farm effluents using the cyanobacterium Phormidium bohneri. Aquacultural Engineering, 17(1): 57-68.
    2. A. Shanableh, A. Hijazi. Treatment of simulated aquaculture water using biofilters subjected to aeration/non-aeration cycles. Wat. Sci. Tech., 1998, 38(8-9):223-231.
    3. A.B. Jones, W.C. Dennison, N.P. Preston. Integrated treatment of shrimp effluent by sedimentation, oyster filtration and macroalgal absorption: a laboratory scale study. Aquaculture, 2001, 193:155-178.
    4. Abeysinghe D.H., Shanableh A.and Rigden. Biofilters for water reuse in aquaculture Water. Science and Technology, 1996, 3(11):253-260.
    5. Ali Nejidat. Nitrification and occurrence of salt-tolerant nitrifying bacteria in the Negev desert soils. FEMS Microbiology Ecology, 2005, 52(1): 21-29.
    6. Amanda Wu K Y, Wisecarver K D. Cellimmobilization using PVA crosslinked with boric acid. Biotechnology and Bioengineering, 1992, 39:47-449.
    7. Amir Neori, Michael D. Krom, Steve P. Ellner, Claude E. Boyd, Dan Popper, Ruth Rabinovitch, Patrich J. Davison, Orit Dvir, Daniel Zuber, Michal Ucko, Dror Angel, Hillel Gordin. Seaweed biofilters as regulatuors of water quality in integrated fish-seaweed culture units.Aquaculture, 1996, 141:183-199.
    8. Anthony D. Greiner and Michael B. Timmons Evaluation of the nitrification rates of microbead and trickling filters in an intensive recirculating tilapia production facility. Aquacultural Engineering, 1998, 18(3): 189-200.
    9. Aquaculture, 2003, 218(1-4):397-411.
    10. Armando T. Quitain, Muhammad Faisal, Kilyoon Kang,Hiroyuki Daimon, Koichi Fujie. Low-molecular-weight carboxylic acids produced from hydrothermal treatment associated with moving bed bioreactors in a closed recirculated mariculture system. Aquaculture, 2003,215: 187-202.
    11. Balderston W L, Sieburth J Mc N. Nitrate removal in closed system aquaculture by columnar denitrification. Applied and Environmental Microbiology, 1976, 32: 808-818.
    12. Bergheim A, Tyvold T, Seymour E A. Effluent loading sand sludge removal from land based salmon farming tanks [M]. SpecialPublication, 1991.14-27.
    13. BEVERIDGEMCM. Aquaculture and water quality. Advancesin World Aquaculture [C]. Louisiana: WorldAquacultureSociety, 1991, 3:456-467.
    14. Biological treatment of low-salinity shrimp aquaculture wastewater using sequencing batch reacto. International Biodeterioration & Biodegradation, 2007, 59(1):16-19.
    15. BRAATENB. Pollution on Norwegian fishfarms.1983,Aquaculture Irelang,14(7):122-127.
    16. Brian L. Brazil. Performance and operation of a rotating biological contactor in a tilapia recirculating aquaculture system. Aquacultural Engineering, 2006, 34(3):261-274.
    17. Brown J. Jed, et al., Halophytes for the treatment of saline aquaculture effluent, Aquaculture, 1999, 175: 255~268.
    18. Catherine Lyssenko, Fred Wheaton. Impact of positive ramp short-term operating disturbances on ammonia removal by trickling and submerged-upflow biofilters for intensive recirculating aquaculture. Aquacultural Engineering, 2006,Volume 35(1):26-37.
    19. Christopher Jackson, Nigel Preston, Peter J. Thompson and Michele Burford. Nitrogen budget and effluent nitrogen components at an intensive shrimp farm.
    20. D. E. Brune, G. Schwartz, A. G. Eversole, J. A. Collier and T. E. Schwedle. Intensification of pond aquaculture and high rate photosynthetic systems. Aquacultural Engineering, 2003, 28(1-2):65-86.
    21. D. Soletto, L. Binaghi, A. Lodi, J.C.M. Carvalho and A. Converti. Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture, 2005, 243:217-224.
    22. David Rogers Tilley, Harish Badrinarayanan, Ronald Rosati and Jiho Son. Constructed wetlands as recirculation filters in large-scale shrimp aquaculture .Aquacultural Engineering, 2002,26(2):81-109.
    23. Dennis McIntosh and Kevin Fitzsimmons. Characterization of effluent from an inland, low-salinity shrimp farm: what contribution could this water make if used for irrigation? Aquacultural Engineering, 2003, 27(2):147-156.
    24. Domenico Lanari and Claudio Franci. Biogas production from solid wastes removed from fish farm effluents. Aquatic Living Resources, 11(4): 289-295.
    25. Etsuo K. Simultaneously by polylectrlyte complex- coimmobililzed Nitrosomonas europare and
    26. Eun-Ju Park, Jae-Koan Seo, Mi-Ryung Kim, Il-Hyong Jung,Joong yun Kim, Sung-Koo Kim. Salinity acclimation of immobilized freshwater denitrifier. Aquacultural Engineering, 2001, 24:169-180
    27. F. Ei-Glhary, S. EI-Hawarry, S. Badr, Y. Rashed. Wastewater treatment and reuse for aquaculture. Wat. Sci. Tech., 1995, 32(11):127-136.
    28. Frances J.,Nowak B.F. and Allan G. L..The effects of nitrite on the short term growth of silver perch. Aquaculture,2000(183):9 -103.
    29. Funge-Smith, Simon J. and Matthew R. P. Briggs. Nutrient budgets in intensive shrimp ponds: implications for sustainability. Aquaculture, 1998, 164(1): 117-133
    30. A. Chacon-Torres, L. G. Ross and M. C. M. Beveridge. The effects of fish behavior on dye dispersion and water exchange in small net cages. Aquaculture, 1988, 73( 1): 283-293
    31. Geneviève Deviller, Catherine Aliaume,Miguel Angel Franco Nava,Claude Casellas, Jean Paul Blancheton. High-rate algal pond treatment for water reuse in an integrated marine fish recirculating system: effect on water quality and sea bass growth.Aquaculture,2004,235:331-344.
    32. Guillard R.R.L,Culture of phytoplankton for feeding marine invertebrates,Culture of Marine Invertebrate Animals. New York: Plenum Press,1975:29-61.
    33. Hisashi N,Tasako H,Kenji T,et al. Treatment of aquariu water by denitrifying photosynthetic bacteria using immob lized polyvinylalcohol beads. Journal of Bioscience an bioengineering, 1999,87(2): 189-193.
    34. In-Soung Chang, Chi-Il Kim and Byeong-Uk Nam.The influence of poly-vinyl-alcohol (PVA) characteristics on the physical stability of encapsulated immobilization media for advanced wastewater treatment Process Biochemistry, 2005,40(9)Volume: 3050-3054.
    35. J. Jed Brown, Edward P. Glenn, Kevin M. Fitzsimmons,Steven E. Smith. Halophytes for the treatment of saline aquaculture Effluent. Aquaculture, 1999, 175:255-268.
    36. J.K. Biswas, D. Sarkar, P. Chakraborty, J.N. Bhakta and B.B. Jana. Density dependent ambient ammonium as the key factor for optimization of stocking density of common carp in small holding tanks. Aquaculture, 2006, 261(3): 952-959.loading on nitrifier activity and nitrification performance for a two-stage biological aerated filter system.
    50. Kim S K, Kong I, Lee B H, etal. Removal of ammonium-N from a recirculation aqua cultural system using an immobilized nitrifier. AquaculturalEngineering, 2000, 21:139-150.
    51. Kuo-Feng Tseng and Kuo-Lin Wu.The ammonia removal cycle for a submerged biofilter used in a recirculating eel culture system. Aquacultural Engineering, 31(1-2): 17-30.
    52. Kwee Siong Tew, Joseph D. Conroy and David A. Culver. Effects of lowered inorganic phosphorus fertilization rates on pond production of percid fingerlings.Aquaculture, 2006, 255:36-446.
    53. land-based aquaculture production systems. Aquacultural Engineering ,2000,22: 33–56.
    54. LIU Fu-jun, HU Weng-ying, LI Quan-yi. Phytosynthetic bacteria (PSB) as a water quality improvement mechanism in saline-alkali wetland ponds. Journal of Environmental Science, 2002,14(3): 339-344.
    55. M. Arauzo Harmful effects of un-ionised ammonia on the zooplankton community in a deep waste treatment pond.Water Research, 2003, 37(5): 1048-1054.
    56. M. E. Azim, M. C. J. Verdegem, H. Khatoon, M. A. Wahab, A. A. van Dam and M. C. M. Beveridge. A comparison of fertilization, feeding and three periphyton substrates for increasing fish production in freshwater pond aquaculture in Bangladesh. Aquaculture, 2003, 212( 1-4):227-243
    57. M. E. Martínez, S. Sánchez, J. M. Jiménez, F. El Yousfi and L. Mu?oz. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology, 2000, 73(3):263-272.
    58. M. H. Wong, Y. H. Cheung, S. F. Leung and P. S. Wong. Roy Arbiv and Jaap van Rijn. Performance of a treatment system for inorganic nitrogen removal in intensive aquaculture systems. Aquacultural Engineering, 1995, 14(2): 189-203.
    59. M.H. Wong, Y.H. Cheung, S.F.Leung, P.S. Wong.Reclamation of polluted reverwater for aquaculture removal of nutrients by microalgae. Wat. Sci. Tech. 1995, 32(3): 271-280.
    60. Maria Antonina B. Catalan-Sakairi, Pi C. Wang and Masatoshi Matsumura. Nitrification performance of marine nitrifiers immobilized in polyester- and macro-porous cellulose carriers. Journal of Fermentation and Bioengineering, 1997, 84(6): 563-571.
    61. Maria Antonina Catalan Sakairi, Kimiaki Yasuda and Masatoshi Matsumura. Nitrogen removal in seawater using nitrifying and denitrifying bacteria immobilized in porous cellulose carrier. Water Science and Technology, 1996, 34(7-8): 267-274.62. Maria Teresa Gutierrez-Wing and Ronald F. Malone. Biological filters in aquaculture: Trends and research directions for freshwater and marine applications. Aquacultural Engineering, 2006, 34, (3): 163-171.
    63. MARTINM, VERANY, GUEL ORGETO. Shrimp rearing: Stocking density, growth, impact on sediment, waste output and their relationships studied through the nitrogen budget in rearing ponds.Aquaculture,1988,164(19):135-149.
    64. Md. Abdul Wahab, Asbjorn Bergheim and Bjorn Braaten. Water quality and partial mass budget in extensive shrimp ponds in Bangladesh. Aquaculture, 2003, 218(1-4): 413-423.
    65. N. F. Y. Tam and Y. S. Wong Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresource Technology, 1997, 57(1): 45-50. 66. Norman Y. S. Woo and Scott P. Kelly. Effects of salinity and nutritional status on growth and metabolism of Spams sarba in a closed seawater system. Aquaculture, 1996, 135(1-3):229-238.
    67. Nugul Intrasungkha,jürg Keller, Linda L. Blackall. Biological Nutrient removal efficiency in treatment of saline wastewater. Wat. Sci. Tech., 1999, 39(6):183-190.
    68. O. Hammouda, A. Gaber and N. Abdelraouf. Microalgae and Wastewater Treatment. Ecotoxicology and Environmental Safety, 1996, 31(3):205-210.
    69. O. R. Zimmo, N. P. van der Steen and H. J. Gijzen. Comparison of ammonia volatilisation rates in algae and duckweed-based waste stabilisation ponds treating domestic wastewater. Water Research, 2003, 37(19): 4587-4594.
    70. Odd-Ivar Lekang, Anne Marie Bomo, Ingfrid Svendsen. Biological lamella sedimentation used for wastewater treatment. Aquacultural Engineering, 2001, 24:115-127.
    71. P. W. Westerman, J. R. Bicudo and A. Kantardjieff. Upflow biological aerated filters for the treatment of flushed swine manure. Bioresource Technology, 2000, 74(3): 181-190.
    72. PAEZ-OSUNAF, SAULR, RUIZAC. Discharge of nutrients from shrimp farming to coastal waters of the Gulf of California.Marine Pollution Bulletin,1999,38(7):585-592.
    73. Paez-Osunaf.The environmenta limpact of shrimp aquaculture: Aglobal perspective.Environmental Pollution,2001,112(23):229-231.
    74. Paola Gennaro, Marco Guidotti, Enzo Funari, Salvatore Porrello and Mauro Lenzi. Reduction of land based fish-farming impact by phytotreatment pond system in a marginal lagoon area. Aquaculture, 2006, 256:246-254.
    75. Peter A. Wilderer, Hans-Joachim Bungartz, Hilde Lemmer, Michael Wagner, Jurg Keller and Stefan Wuertz. Modern scientific methods and their potential in wastewater science and technology. Water Research, 36(2): 370-393 Kuo-Cheng Chen, Shihn-Chang Lee, Sheng-Chi Chin and Jer-Yiing Houng. Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms Enzyme and Microbial Technology, 1998,23(5): 311-320.
    76. R. Boopathy, C. Bonvillain, Q. Fontenot and M. Kilgen. N. Miladinovic and L.R. Weatherley.
    77. R. Casillas-Hernández, H. Nolasco-Soria, T. García-Galano, O. Carrillo-Farnes and F. Páez-Osuna
    78. Robert J. Toonen and Christopher B. Wee. An experimental comparison of sediment-based biological filtration designs for recirculating aquarium systems. Aquaculture,2005, 250 :244-255.
    79. Roeland Grommen, Lenny Dauw and Willy Verstraete. Elevated salinity selects for a less diverse ammonia-oxidizing population in aquarium biofilters. FEMS Microbiology Ecology, 2005, 52(1): 1-11.
    80. Ruth Gebauer. Mesophilic anaerobic treatment of sludge from saline fish farm effluents with biogas production. Bioresource Technology, 2004, 93:155-167.
    81. S.J. Aitcheson, J. Arnett, K.R. Murray, J. Zhang. Removal of aquaculture therapeutants by carbon adsorption 1. Equilibrium adsorption behaviour of single Components. Aquaculture, 2000,183: 269–284.
    82. Saber A. El-Shafai, Fatma A. El-Gohary, Fayza A. Nasr, N. Peter van der Steen and Huub J. Gijzen. Chronic ammonia toxicity to duckweed-fed tilapia (Oreochromis niloticus). Aquaculture, 2004, 232(1-4):117-127.
    83. Sahdev Singh, James Ebeling and Fredrick Wheaton. Water quality trials in four recirculating aquacultural system configurations. Aquacultural Engineering, 1999,20(2): 75-84 Balaji N. Sastry, Aurelio A. DeLosReyes Jr., Kelly A. Rusch and Ronald F. Malone. Nitrification performance of a bubble-washed bead filter for combined solids removal and biological filtration in a recirculating aquaculture system. Aquacultural Engineering, 19(2): 105-117.
    84. Salvatore Porrello, Giuseppe Ferrari, Mauro Lenzi and Emma Persia. Ammonia variations in phytotreatment ponds of land-based fish farm wastewater. Aquaculture, 2003, 219(1-4):485-494.
    85. Sauthier N, Grasmick A, Blancheton J P. Biological denitrification applied to a marine closed aquaculture system. Water Research, 1998, 32:1932-1938.
    86. Seo J K, Jung H, KimM R, etal. Nitrification performance of nitrifiers immobilized in PVA for a marine recirculating aquarium system. Aquacultural Engineering, 2001, 4: 181-194.
    87. Shan H, Obbard T P. Ammoia removal from prawn aquaculture water using immobilized nitrifying bacteria. Applied Microbial Biotechnology, 2001, 57: 791-798.
    88. Shanableh and A. Hijazi. Treatment of simulated aquaculture water using biofilters subjected to aeration/non-aeration cycles. Water Science and Technology, 1998, 38(8-9): 223-231.
    89. Shiro Itoi, Ayako Niki and Haruo Sugita. Changes in microbial communities associated with the conditioning of filter material in recirculating aquaculture systems of the pufferfish Takifugu rubripes. Aquaculture, 2006, 256: 287-295.
    90. Simonel I. Sandu, Gregory D. Boardman, Barnaby J. Watten and Brian L. Brazil. Factors influencing the nitrification efficiency of fluidized bed filter with a plastic bead medium. Aquacultural Engineering, 2002,26(1):41-59.
    91. Sivan Klas, Noam Mozes and Ori Lahav. Development of a single-sludge denitrification method for nitrate removal from RAS effluents: Lab-scale results vs. model prediction. Aquaculture, 2006, 259:342-353.
    92. Songming Zhu and Shulin Chen. Effects of organic carbon on nitrification rate in fixed film biofilters. Aquacultural Engineering, 2001,25(1): 1-11.
    93. Songming Zhu and Shulin Chen. The impact of temperature on nitrification rate in fixed film biofilters. Aquacultural Engineering, 2003, 26(4):221-237.
    94. Steven T. Summerfelt, John W. Davidson, Thomas B. Waldrop, Scott M. Tsukuda and Julie Bebak-Williams. A partial-reuse system for coldwater aquaculture .Aquacultural Engineering, 2004, 31:157-181.
    95. Steven T. Summerfelt.96. Sung-Koo Kim, Insoo Kong, Byung-Hun Lee, Limseok Kang, Min-Gyu Lee and Kuen Hack Suh. Removal of ammonium-N from a recirculation aquacultural system using an immobilized nitrifier. Aquacultural Engineering, 2000, 21(3): 139-150.
    97. T. Jawahar Abraham, Shubhadeep Ghosh, T.S. Nagesh and Debasis Sasmal. Distribution of bacteria involved in nitrogen and sulphur cycles in shrimp culture systems of West Bengal, India. Aquaculture, 2004, 30:275-288.
    98. T. Redding, S. Todd and A. Midlen. The Treatment of Aquaculture Wastewaters-A Botanical Approach. Journal of Environmental Management, 1997, 50: 283–299.
    99. Terutoyo Yoshida, Masahiro Sakai, Tadatoshi Kitao, et al. The Ecological impact of salmonid farming in coastal waters: A review.Oceanog, MarBiolAnnRev, 1987(25):563~575
    100. TOVARA, MORENOC, MANUELMP. Environmental impacts of intensive aquaculture in marine waters.WatRes, 2000, 34(1):334-342.
    101. Víctor J. Nu?ez, Domenico Voltolina, Mario Nieves, Pablo Pi?a, Alejandra Medina and Martín Guerrero. Nitrogen budget in Scenedesmus obliquus cultures with artificial wastewater. Bioresource Technology, 2001, 78(2):161-164.
    102. W. J. Ng, Kevin Kho, L. M. Ho, S. L. Ong, T. S. Sim, S. H. Tay, C. C. Goh and Leslie Cheong Water quality within a recirculating system for tropical ornamental fish culture. Aquaculture, 1992, 103(2): 123-134.
    103. W. J. Ng, Kevin Kho, S. L. Ong, T. S. Sim and J. M. Ho. Ammonia removal from aquaculture water by means of fluidised technology. Aquaculture, 1997, 139(1-2): 55-62.
    104. Water Science and Technology, 1999,39(7): 227-234 Nugual Intrasungkha, Jurg Keller, Linda L. Biological nutrient removal efficiency in treatment of saline wastewater.Water Science and Technology, 1999, 39(6): 183 ~ 190
    105. Yang Yi and C. Kwei Lin. Effects of biomass of caged Nile tilapia (Oreochromis niloticus) and aeration on the growth and yields in an integrated cage-cum-pond system. Aquaculture, 2001,195: 253-267.
    106. Ying-Feng Lin, Shuh-Ren Jing, Der-Yuan Lee, Yih-Feng Chang, Yi-Ming Chen and Kai-Chung Shih. Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate .Environmental Pollution, 2005, 134(3): 411-421.
    107. Yong-Chin Lin and Jiann-Chu Chen. Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 2001, 259(1): 109-119
    108. Yoram Barak, Eddie Cytryn, Iliya Gelfand, Michael Krom,Jaap van Rijn. Phosphorus removalin a marine prototype,recirculating aquaculture system. Aquaculture 2003, 2204:313–326.
    109. Yossi Tal, Joy E. M. Watts, Susan B. Schreier, Kevin R. Sowers and Harold J. Schreier. Characterization of the microbial community and nitrogen transformation processes associated with moving bed bioreactors in a closed recirculated mariculture system .Aquaculture, 2003, 215(1-4): 187-202.
    110. Zongjia J. Cheng, Ronald W. Hardy and James L. Usry. Plant protein ingredients with lysine supplementation reduce dietary protein level in rainbow trout (Oncorhynchus mykiss) diets, and reduce ammonia nitrogen and soluble phosphorus excretion. Aquaculture, 2003, 218(1-4):553-565.
    111. 丁升艳,陈安国,阎祥洲. 沸石净化养殖水体的研究进展. 家畜生态,2004,25(4):183-186.
    112. 丁天宝 ,裴银美. 利用大菱鲆养殖循环水养殖刺参模式介绍. 中国水产,2005,(1):57-59.
    113. 万琼, 叶正芳, 魏东洋, 周旭辉. 固定化生物流化床处理尿素厂废水的中试研究. 给水排水,2006,32(8):44-47.
    114. 严国安, 李益健. 固定化小球藻净化污水的初步研究. 环境科学研究, 1994,7(1): 39-42.
    115. 乔顺风. 水体氨氮转化形式与调控利用的研究. 饲料工业, 2005,26(12):44-46.
    116. 于兰桂, 王丙玲, 孙培光, 边洪村, 高恒庆. 臭氧化消毒技术在海水消毒中的应用. 黄渤海海洋, 1995,13(3):47-54.
    117. 付颖丽,雄鹰,刘袖洞,于炜婷,王一力,虞星炬,马小军. 海藻酸钠/壳聚糖微胶囊固定化大肠杆菌的研究. 生物工程学报, 2002,18(2):239-241.
    118. 任海波,汝少国,赵书云,Haruo Saida. 养殖废水固定化微生物脱氮技术研究进展. 海洋科学,2004,28(4): 66-69.
    119. 何宝云.西菲利复合型活菌生物净水剂在海水养殖中的应用何效果,中国水产,2001(4):90
    120. 何洁,刘长发,王海,赵冰海。3 种载体生物滤器对养殖废水处理效果,中国水产科学,2003, 10(3):242~245
    121. 何洁,马悦欣,李洲,杨凤,温磊,杜柏松,雷衍之. 自净式工业化养鱼水质及净化能力的研究. 大连水产学院学报, 2003,18(2):84-89.
    122. 侯红娟,王洪洋,周琪. 进水COD浓度及C/N值对脱氮效果的影响. 中国给水排水, 2005, 21(12): 19-23.
    123. 冯亚非. 天然高分子絮凝剂壳聚糖及其衍生物在水质净化工艺中的应用. 甘肃高师学报. 2001, 6(5):61-64.
    124. 冯本秀,赖子尼, 陈俊彬, 张坤泉, 余煜棉. 固定化硝化细菌去除水体中氨氮的研究. 广东工业大学学报, 2006,23(2):29-33.
    125. 刘晃. 循环水养殖系统的水处理技术. 渔业现代化,2005,(1):30-32.
    126. 刘正. 污水生化处理微生物活性助剂的研究. 化工给排水设计. 1998,2:29-32.
    127. 刘正. 高浓度含盐废水生物处理技术. 化工环保, 2004(24) : 209- 211.
    128. 刘正雁,台湾的水产养殖业动态,厦门科技,1999(6):24
    129. 刘永,曹广斌,蒋树义. 工厂化水体臭氧催化氧化法降解氨氮的水化学评价初报. 黑龙江水产,2004,(6):35-37.
    130. 刘海涛,武金凤. 沸石在水产养殖中的作用. 饲料博览,1995,32-33(3):32-33.
    131. 刘瑜。海水养殖水体模块净化技术,中国水产,2002(9):68~69
    132. 刘维俊, 韩庆萍, 陈邦林. 壳聚糖复合混凝剂及性能测试. 蒙自师范高等专科学校学报, 1999,1(6): 36-40.
    133. 刘芳,白植庆. 一种工业化水产养殖的水质处理装置. 渔业现代化,2002,(3):26-28.
    134. 刘远金,张新明,李华兴,王 文,张方荣. 天然沸石对鱼塘水及生活污水的氮磷去除效应. 农业环境保护. 2002,21(4):331-333.
    135. 刘长发,晏再生,张俊新,何洁,郗洪军. 养殖水处理技术的研究进展. 大连水产学院学报, 2005,20(2):142-148.
    136. 刘长松,周春生。生物转盘特性与数学模式的研究,环境科学与技术,1994(2):10~14
    137. 刘鹰,王玲玲。集约化水产养殖污水处理技术及应用,淡水渔业,1999,29(4):22~24
    138. 单宝田,王修林,赵中华,胡海燕. 海水工厂化养殖废水处理技术进展.海洋科学, 2002, 26(10): 36-38.
    139. 史成颖,唐欣昀,甘旭华,赵良侠. 有机碳氮源对钝顶螺旋藻生长及叶绿素a含量的影响. 安徽大学学报(自然科学版), 2005,29(5):92-96.
    140. 叶荫云. 天然沸石粉及其在水产养殖中应用. 内陆水产. 1995, 1:22-22.
    141. 吕晓猛,纪树兰, 刘秀荣, 谭立扬. 固定化细胞珠体的改性研究. 北京工业大学学报, 1997,23(1):87-91.
    142. 吴为中,王占生。不同生物接触氧化法的净化效果及其生物膜特性的比较,2000(9):44~50
    143. 吴伟,余晓丽。固定化微生物对养殖水体中 NH4+-N 和 NO2--N 的转化作用,应用与环境生物学报,2001,7(2):158~162
    144. 周晓见,黄文章,白希尧. 臭氧活化水养殖尼罗罗非鱼的实验研究. 大连海事大学学报, 2002,28(2):63-65.
    145. 唐洪杰,王修林,祝陈坚,李雁宾,张传松. 两种海洋微藻硝酸还原酶活性测定方法的比较研究. 中国海洋大学学报, 2006,36(6): 981-986.
    146. 商树田. 螺旋藻的生长环境. 16-17.
    147. 姜作真,李国江,宋京辉,曹希强. 工厂化养鱼地下海水资源利用的探讨. 渔业现代化,2005,(2):5-7.
    148. 姜礼燔,宗网华,朱大白. 养殖水体氯化处理的毒副作用及含氯药物应用评价. 水产科技情报, 2001,28(3):127-129.
    149. 姜礼燔,樊俊峰,宗网华. 新型高铁酸锶复合剂在水产养殖业中的应用. 内陆水产, 2003, (7): 40-41.
    150. 姜礼燔,沈克光. 新型消毒剂——复合高铁酸锶及其在水产养殖业中的应用. 中国水产,2003,(7):101-102.
    151. 孙卫红,操家顺,江溢。A/O 生物转盘工艺处理氨氮废水,上海环境科学,Vol. 20 No.8,2001(20):390~406
    152. 季民,杨洁,孙丽娜,刘卫华,张楠. 水中微量有机物的活性炭深度净化技术研究. 中国公共卫生,2005,21(3):291-292.
    153. 安鑫龙,张秀文,徐春霞. 受污染海水养殖水域环境的生物修复技术. 北京水产, 2005,(4):42-43.
    154. 宋协法,宋伟华,田树川,朱小伟,黄锦玲。集约化养殖水处理系统研究,浙江海洋学院学报,Vol. 22 No.1,2003(3):35~39
    155. 宋吟玲,田永静,樊颖果. 硝化细菌固定化细胞的研究. 苏州城建环保学院学报.1999, 12(4):45-48.
    156. 宋德敏,薛正锐,陈庆生,王秉心。海水工厂化养鱼水处理系统工程的研究,海洋水产研究,Vol. 23 No.2,2002(6):49~52
    157. 宋德敬,薛正锐,张明华,杨菁.王秉心. 三种不同模式的工厂化循环水养殖设施. 渔业现代化, 2005,(2):28-30,18.
    158. 尤珊,郑必胜,郭祀远. 光照对螺旋藻生长和形态的影响. 微生物学杂志,2002,22(6):58-59.
    159. 尹长松 , 孙育平 . 藻类固定化技术在水产养殖废水处理中的应用前景 , 内陆水产,2002(7):40~41
    160. 崔毅 , 陈碧鹃 , 陈聚法 . 黄渤海海水养殖自身污染的评估 . 应用生态学报 ,2005, 16(1):180-185
    161. 张丽华. 日光温室养殖螺旋藻的温度光照条件及调控技术. 贵州气象, 2002,26(2):30-32.
    162. 张寒冰,黄凤莲,周艳红,夏北成,陈桂珠.生物膜法处理养殖废水的研究. 生态环境,2005, 14(1): 26-29。
    163. 张文香,王志敏,张卫国. 海水鱼类工厂化养殖的现状与发展趋势. 水产科学, 2005, 24(5): 50-52.
    164. 张明华, 杨菁, 王秉心, 宋德敬. 工厂化海水养鱼循环系统的工艺流程研究. 海洋水产研究, 2004,25(4):65-70.
    165. 张萍, 古伟宏, 朱淑琴, 孟燕春, 张胜琴. 聚合硫酸铁在废水处理中的应用. 黑龙江省环境报,1999,23(1):58-59.
    166. 徐宾铎,杜守恩,朱杰,林旭生,陈志成。海水工厂化养鱼排污水处理的实验研究与工程设计,海洋湖沼通报,2001(3):70~77
    167. 慕峰,臧维玲.养殖用水净化处理技术及其应用. 水产科技情报, 2005,32(3):117-120.
    168. 操家顺,王世和,黄林楠。含氨废水水处理工艺试验研究,水资源保护,1999(12):27~28
    169. 文湘华,占新民,王建龙,钱易. 含盐废水的生物处理研究进展.环境科学,1999 (3): 104-106.
    170. 方圣琼,胡雪峰,巫和昕. 水产养殖废水处理技术及应用.环境污染治理技术与设备, 2004,5(9):51-55.
    171. 方茜,韦朝海,张朝升,张可方,荣宏伟. 序批式生物膜反应器的除磷特性及影响因素. 华南理工大学学报(自然科学版),2006,34(5):20-25.
    172. 曹广斌,蒋树义,刘永,韩世成,陈中祥. 双层浮球生物滤器设计及其水产养殖水处理性能试验. 水产学报, 2005,29(4):578-583.
    173. 曾文炉,丛威,蔡昭铃,欧阳藩. 螺旋藻的营养方式及光合作用影响因素.植物学通报 2002,19(1):70~77
    174. 朱学宝,谭洪新,罗国芝。封闭循环工厂化水产养殖水质净化系统的技术构成,内陆水产,2002(10):24~25.
    175. 朱福庆,冯守明,孙广明,李宝华,李秀梅.孙晓旺,杨建军,段汝煦,刘宗豹,刘学刚. 利用臭氧处理水培育中华绒螯蟹苗的试验. 天津农学院学报,2000,7(1):1-7.
    176. 李健,刘得月,刘淇等。北方地区对虾工厂化养殖技术研究,渔业现代化,2003(1):11~12.
    177. 李国学. 螺旋藻对不同 COD 浓度养虾用水氮磷去除特点及其机理分析. 农业环境与发展,1995,12(2):34-37.
    178. 李娟娟,马文林,赵孟彬,陈春山,金小静,王国栋. 水产养殖废物厌氧水解液反硝化性能研究. 环境工程,2003,21(4):78-80.
    179. 李娟娟,马文林,赵孟彬等。水产养殖废物厌氧水解液反硝化性能研究,环境工程,Vol. 21 No.4,2003(8):78~80
    180. 李峰, 吕锡武. 序批式反应器(SBR)处理氨氮废水的初步研究. 江苏环境科技, 1999, 15(2): 14-17.
    181. 李峰,吕锡武,严伟. 聚乙烯醇作为固定化细胞包埋剂的研究. 中国给水排水, 2000, 16(12): 14-17.
    182. 李建文,孙镛. 一种新型二氧化氯消毒剂的杀菌性能研究. 山东师范大学学报(自然科学版),2002,17(4):40-42.
    183. 李正明,左国新,谢盛训, 虞寿枢. 养鱼工厂水处理技术, 渔业机械仪器, 1994,21(112):4-8.
    184. 李清禄,陈强,王寿昆. 絮凝剂与复合菌综合处理养殖水体污染研究. 应用生态学报,2002,13(2):194-198.
    185. 李玲玲. 鱼类养殖的水再循环系统.渔业机械仪器,1995,(4):19.
    186. 李祥木。虾池废水对近岸养殖的影响与防治。中国渔业经济,2002(6):40~42
    187. 李秋芬 , 袁有宪。海水养殖环境生物修复技术研究展望 , 中国水产科学 ,Vol. 7 No.2,2000(6):90~92
    188. 李谷,黄正,龙华,范玮,刘红艳。养殖水体氨氮去除的固定化微生物技术,大连水产学院学报, Vol. 16 No.4,2001(12):262~268
    189. 杨宇峰,姜胜,王晖,聂湘平,Ik Kyo Chung. 中国海水养殖发展状况与养殖海域赤潮生态防治.海洋科学,2004,28(7):71-75.
    190. 杨宇峰,姜胜,王朝晖等。中国海水养殖发展状况与养殖海域赤潮生态防治。海洋科学,28 (7):21-25.
    191. 杨春燕,刘丽,冯晓昕,张烨. 固定化硝化细菌去除废水中氨氮的效果观察. 解放军预防医学杂志, 2006,24(3):192-193.
    192. 杨海波,于媛,张欣华,李英敏. 小球藻固定化培养的初步研究. 水产科学. 2001,20(5):4-7.
    193. 林伟 , 陈马马 . 微藻 与 细菌相 互 关系研究 在海水 养殖中的 重 要意义 , 海洋科学,1998(4):34~37
    194. 林继辉, 许忠能, 林小涛, 周小壮, 于赫男, 廖志洪, 潘本兴. 养虾废水生物处理过程中营养负荷的动态变化.生态科学, 2003,22(2):133-137.
    195. 林继辉,徐忠能,林小涛等。养虾废水生物处理过程中营养负荷的动态变,Vol. 22No.2,2003(6):133~137
    196. 林荣根,胶州湾海水养殖业对环境的影响及其对策,海洋科学,1996(4):67
    197. 林青山, 刘超, 傅柳松. 固定化细胞技术在废水处理中的应用. 上海环境科学,2000, 19(10): 469-472.
    198. 梁程超, 宫春光, 陈少鹏, 赵海鹰. 循环水养殖的原理. 北京水产,2003,(5):49-51.
    199. 梁程超。养殖水处理原理探原,渔业现代化,2003(4):29~31
    200. 武周虎 , 王志霞 . 两段接触氧化法处理含海水城市污水研究 . 中国给水排水 , 2003,19(13):91-92.
    201. 殷之奕,俞永正,康新畦.臭氧在水产养殖中的应用.水产科技情报,2000,27(3):133-135.
    202. 毛玉泽,杨红生,王如才. 大型藻类在综合海水养殖系统中的生物修复作用. 中国水产科学,2005,12(2):225-231.
    203. 汝少国, 李永琪, 白逢伟, 朱红凌. 崂山啤酒厂、海藻养殖化工厂污水对扁藻的生长效应. 海洋环境科学, 1994,13(4): 56-62.
    204. 江伟,江远清。生物转盘处理水产养殖废水的氨氮研究,北京水产,2002(3):12~13
    205. 江玉, 叶海斌, 展云鹏, 王颖, 赵增云. 养殖生态环境的优化措施. 齐鲁渔业, 2000,17(5): 38-39.
    206. 江远清, 江伟. 生物转盘处理水产养殖废水的氨氮研究. 渔业致富指南,2002,(8):40-42.
    207. 沈明卫,陈志银,苗香雯,R.Mercks. 利用水葫芦净化养鳖废水的问题研究. 农业环境保护,2002,21(4):337-339.
    208. 沈萍萍,王朝晖,齐雨藻,谢隆处,王 艳. 光密度法测定微藻生物量. 暨南大学学报(自然科学版), 2001,22(3):115-119.
    209. 沙珍霞,石晓勇,张学成等.钝顶螺旋藻营养生理的研究 B 钝顶螺旋藻对无机氮的吸收利用.海洋水平研究,2000,21(3):1-22.210.
    211. 泮进明,邵志鹏,苗香雯,崔绍荣. 循环流水鱼草共生生态系统的鱼草配比试验研究. 生态学报, 2004,24(2):389-392.
    212. 王园园, 泮进明, 谢可军, 苗香雯, 崔绍荣. 工厂化水产养殖废水处理的研究与展望. 中国农机化,2004,(5):54-56.
    213. 泮进明,苗香雯,崔绍荣,张颖萍. 工厂化水产养殖污水处理的植物性滤器研究及应用. 水利渔业, 2003,23(5):43-45.
    214. 王娟,范迪. 工厂化海水养殖废水处理技术. 海洋科学, 2004, 28(8):72-75.
    215. 王娟, 范迪. 海水浓度对生物接触氧化法处理废水的影响. 海洋科学,2004,28(3):9-11.
    216. 王岩, 齐振雄。不同单养和混合海水实验围隔的磷氮收支,汕头大学学报,Vol. 13 No.2,1998:71~75.
    217. 王浩卿. 聚合硫酸铁混凝剂在低浊度水净化处理中的应用试验. 工业水处理, 1994,14(3):12-14.
    218. 王 翠 红 , 李 日 强 , 辛 晓 芸 . 钝 顶 螺 旋 藻 处 理 氨 氮 废 水 的 研 究 . 上 海 环 境 科学,2002,21(12):728-731,754.
    219. 王翠红,辛晓芸,徐建红,任智泉,许建平.固定化藻细胞去除氨氮的研究.河南科学, 1999,17:103-107.
    220. 王静 张雨山. 大生活用海水生化处理技术研究进展. 海洋技术,2002,21(4):51-53.
    221. 王静,张雨山, 徐梅生. 海水盐度对完全混合活性污泥法氨氮去除率的影响研究. 工业水处理,2000,20(4):18-19.
    222. 王静,张雨山. 完全混合活性污泥法处理含海水污水时基质降解与需氧量之间的关系. 海洋技术. 2002,21(4):54-56.
    223. 田华, 赵琪, 郭敏, 张义明. 影响螺旋藻生物量的因素研究进展. 贵州工业大学学报(自然科学版), 2005,34(3):28-32.
    224. 石黎军,华元渝.水处理技术在暗纹东方鲀温室养殖中的应用.水产养殖, 2003,24(1):17-18.
    225. 纪树兰, 吕晓猛, 张增, 刘秀荣, 谭立扬. 固定化细胞降解含表面活性剂废水的研究. 北京工业大学学报, 1995,21(4):116-121.
    226. 线薇薇,朱鑫华。海水养殖业的发展及前景,中国水产,2000(2):18~19
    227. 罗华明,程岩雄,李利卫. 养殖水体中亚硝酸盐等含量过高形成的原因及处理办法. 科学养鱼,2005,(5):54.
    228. 罗家传, 刘俊峰. 用废水种植草莓. 农业研究,32.
    229. 罗琳,舒廷飞,温琰茂。水产养殖对近海生态环境德影响, 2002,21(3):28~30
    230. 翟晓萌 , 李道棠 . 海藻酸钠固定化包埋微生物处理有机微污染源水 . 环境科学,2000,(6):80-84.
    231. 耿亚红,李夜光,胡鸿钧,李修岭,苗凤萍. 一种生活在污水中的螺旋藻新品系的分离和培养. 武汉植物学研究,2004,22(4):329~333.
    232. 胡一兵,刘辉平,胡军. 几种水体污染因子对钝顶螺旋藻生长的影响. 湖北民族学院学报(自然科学版), 2001,19(4):16-18.
    233. 胡家震, 陈东辉, 陈亮. 壳聚糖在水处理中的应用. 中国纺织大学学报, 2000, 26(5): 124-128.
    234. 舒廷飞,罗琳,温琰茂。海水养殖对近岸生态环境的影响,海洋环境科学, 2002,21(2):74~79.
    235. 葛文准, 荣旻辉. 固定化微生物法处理氨氮废水.上海环境科学, 1995,14(4):10-13, 45.
    236. 葛晓虹,张振家,王毅军. 固定化包埋硝化菌去除源水中氨氮研究.中国给水排水, 2006, 22(3):51-54.
    237. 董俊德,吴伯堂,黄羽庭. 微藻在污水中的除磷脱氮作用. 热带海洋. 1999, 18(1):52-58.
    238. 董双林,潘克厚。海水养殖对近岸生态环境影响德研究进展,青岛海洋大学学报,2000, 30(4):575~582.
    239. 董双林 , 王芳 , 王俊等 . 海湾扇贝对海水池塘浮游生物和水质的影响 [J]. 海洋科学,1999,21(6):138-143.
    240. 蒋培森,蒋加伦,孙希达,陈昌东. 延长光照时间和海水驯养钝顶螺旋藻的研究. 杭州师范学院学报, 2000,(6):81-84.
    241. 薛恒平,薛彦青。微生态制剂在水产养殖中的应用,中国饲料,1997(15);30~32
    242. 薛艳, 黄勇, 潘杨. 废水生物脱氮除磷工艺的进展与评述. 工业用水与废水, 2006,37(3): 11-15.
    243. 褚孟进, 柴国宝. 飞速发展中的沸石粉饲料. 今日科技,1994,(5):38.
    244. 解庆林 李艳红 朱义年 王敦球 游少鸿 张学洪. 高盐度污水生物处理技术研究. 环境工程,2004,22(2):15-17.
    245. 谢冰,徐华,徐亚同. 硝化细菌的固定化研究. 上海环境科学. 2003,22(1):19-23.
    246. 谢航,邱宏端,林娟,陈朝洋. 假丝酵母菌降解养殖水体氨氮的特性研究. 农业工程学报, 2005,21(8):142-145.
    247. 谭佑铭 , 罗启芳 . 固定化反硝化菌去除水中硝酸盐氮的研究 . 环境与健康杂志,2001,18(6):371-373.
    248. 谭洪新,朱学宝.闭合循环养殖系统中构建藻皮净化装置的初步研究,上海水产大学学报.2001.10(3).-276-278
    249. 谭烨辉 , 李江 文 , 雷衍之 . 养 鲍 自污染 水净化处 理的初步研 究 . 热带 海洋 , 1999,18(2):20-26.
    250. 赵亚乾, 黄晓晖, 李康敏, 方志健. 固定化活性污泥球形颗粒的制备及其性能实验. 华南建设学院西院学报, 1997,5(1):54-59.
    251. 赵庆,袁林江,王磊,王君莉,高榕. 碳源浓度对 SBR 法同步脱氮除磷的影响试验研究. 西北大学学报(自然科学版), 2006,36(4):599-602.
    252. 赵耕毛,刘兆普,陈铭达,寇伟锋. 海水养殖废水灌溉条件下山东滨海盐土溶质迁移及其平衡研究. 水土保持学报,2005,19(3):80-82,109.
    253. 邴旭文. 海水鱼饲养中的臭氧杀菌. 科学养鱼,1998,(2):26-27.
    254. 郑瑞东,李田, 刘鹰. 泡沫分离法在工厂化养殖废水处理中的应用研究. 渔业现代化, 2005,(2):33-35.
    255. 郑耀通. 固定化细胞处理有机废水的研究. 污染防治技术, 1995, 8(3):132-136.
    256. 闵航, 郑耀通, 钱泽, 陈美慈. 聚乙烯醇包埋厌氧活性污处理废水的最优化条件研究. 环境科学, 1994,15(5):10-14.
    257. 阮文权,陈坚. 同步硝化与反硝化(SND)好氧颗粒污泥脱氮过程同步研究. 安全与环境学报. 2003, 3(5):3-7.
    258. 陆开形,蒋霞敏,高红建. 微生物制剂在养殖废水净化中的开发应用. 中国水产. 2004,11:91-92
    259. 陆 斌 , 葛 景 信 , 张 芳 西 . 水 产 养 殖 污 水 的 净 化 与 回 用 研 究 . 华 东 工 业 大 学 学报,1997,19(1):54-58.
    260. 陈天, 王士新. 利用壳聚糖为絮凝剂回收工业废水中蛋白质、染料以及重金属离子. 江苏环境科技,1996,(1): 45-46.
    261. 陈必链,庄惠如,王明兹等.培养方法对钝顶螺旋藻生长的影响.福建师范大学学报(自然版),2001,17 (1):72-74.
    262. 陈必链,江贤章,王娟,王明兹,陈小兰. 光生物反应器中螺旋藻培养条件的优化. 植物资源与环境学报,2005,14(2):19-22.
    263. 陈敏,刘中柱,卞祖良. 高密度水产养殖自控生态型大棚的水质净化技术.农业工程学报, 2002, 18(6): 95-97.
    264. 陈海敏,陈声明. 工厂化水产养殖废水菌藻联合处理模式研究. 浙江树人大学学报, 2002, 2(4): 64-67.
    265. 陈淑吟 孙国铭 吉红九. 臭氧水处理在水产养殖中的应用研究. 水产养殖,2001,2:28-30. 陈艺娟,王廷哲,黄建平,杨湘霞,何继宝. 生物处理技术对生活污水净化效果的研究. 中国公共卫生, 2002,18(9):1083-1084.
    266. 雷霁霖。全国海水工厂化养殖与管理专题研修培训班研修战果报告,现代渔业信息,Vol.12 No.10,1997(10):7~10
    267. 韩家波,木云雷,王丽梅。海水养殖与近海水域污染研究进展,水产科学,1999,18(4):40~43
    268. 高志刚, 唐建清, 沈美芳, 潘建林. 螺旋藻在水产养殖中的应用. 水产养殖, 2001, (4):40-39.
    269. 高景峰,彭永臻,王淑莹. 有机碳源对低碳氮比生活污水好氧脱氮的影响. 安全与环境学报,2005,5(6):11-15.
    270. 高红梅,王明学. 固定化微生物技术及其在养殖水体中的应用. 饲料工业, 2005, 26(8): 16-18.
    271. 黄新苹,朱校斌,刘建国,王新亭,徐维海,康兴伦. 几种海藻富集 N,P 净化水质的研究. 海洋科学, 2004,28(12):39-42.
    272. 黄朝芳, 郑宗林.浅议水产养殖中的饲料损失.科学养鱼,2001(2):41.
    273. 黄树茂 , 吴志勇 , 黄云飞 , 蒲宁。养殖用海水直接升温炉的研制报告 , 齐鲁渔业1997,14(4)):57-60.
    274. 黄正, 范玮, 李谷, 刘红艳. 固定化硝化细菌去除养殖废水中氨氮的研究. 华中科技大学学报, 2002,31(1):18-20.
    275. 黄滨,关长涛,林德芳. 复合纳米材料用于工厂化养殖水处理的探究. 中国水产, 2005(1): 75-77.
    276. 黄霞,蒋宇红,俞馨. 几种固定化细胞载体的比较. 环境科学, 1993, 14: 11-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700