用户名: 密码: 验证码:
冰相中六氯苯的紫外光降解和结冰过程中Fenton试剂对六氯苯的氧化作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年,随着人类生产生活对各种化工原料和各种有机化肥的利用日益增多,使这些有机物对环境的污染程度也明显加大。有机氯农药六氯苯是常见的一种有机氯污染物。虽然近十几年来,有机氯农药已经在农业生产方面全面被禁用,但工业生产和其他工业活动依然产生数量不少的六氯苯。同时有报道称在两极地区已检测到六氯苯,冬季降雪及常年结冰地区也会受到六氯苯的污染;另外,由于有机物在这些地区的雪冰中微生物作用及迁移作用都相对微弱,使得光化学作用在这些环境中表现的尤为重要。因此,本文研究的六氯苯在冰相中的光化学作用及在结冰过程中六氯苯在Fenton试剂作用下的转化就有着重要的意义,对于掌握六氯苯在环境中的转化方式具有重要的参考价值。虽然国内外对冰雪介质中光化学作用的研究已经有了一定的基础,但目前研究方向主要集中在有机污染物的直接光解,以及在H_2O_2, N_O~(2-)和NO_3~-等作用下的间接光解。而在实际的冰雪环境中还存在着其他许多可能会参与光化学作用的组分,如Fe~(2+)、Fe~(3+)、SO42-、PO43-及Fenton试剂。这些组分对有机污染物在冰雪介质中的光化学转化的影响尚未引起人们的关注。
     本实验以六氯苯为研究对象,研究紫外光照射作用下六氯苯在冰相中的光降解规律,考察了两种紫外光源条件下六氯苯的光降解;不同pH值以及不同浓度无机离子(包括SO42-、PO43-、N_O~(2-)、NO_3~-、HCO_3~-、Fe~(2+)和Fe~(3+))、H_2O_2和有机试剂对其降解规律的影响;并对六氯苯的降解产物进行了分析测定,推断了冰相中六氯苯的降解途径;在结冰过程中Fenton试剂对六氯苯的氧化作用研究中,实验初步探究了在六氯苯溶液中加入Fenton试剂后,结冰过程中诸如时间、温度及结冰融冰循环次数对六氯苯转化程度的影响;并在结冰融冰条件下Fenton试剂对六氯苯作用的中间产物进行了测定,分析推断了此过程中水-冰相微界面在六氯苯降解过程中的作用机理。
     在六氯苯的紫外光降解实验中,冰相中的六氯苯在没有光照的情况下,不发生任何降解;在254nm低压汞灯下照射,光照8h降解率达到60%;在UVA340nm紫外灯的照射下六氯苯也没有任何光降解。在254nm紫外低压汞灯的照射下,改变冰相的pH值,发现在强酸和强碱的作用时,冰相中的六氯苯光降解程度最大。加入SO_4~(2-)、PO_4~(3-)、H_2O_2、N_O~(2-)、NO_3~-、HCO_3~-和Fe~(3+),发现不同的无机离子及H_2O_2对冰相中六氯苯的光降解有不同的作用。SO_4~(2-)、PO_4~(3-)对HCB冰相中光降解的表现为促进作用;而H_2O_2、N_O~(2-)、NO_3~-、HCO_3~-和Fe~(3+)对HCB冰相中光降解则为抑制作用。丙酮、甲醇、乙腈、二甲亚砜四种有机试剂对冰相中六氯苯的紫外光降解作用大小依次为:乙腈>丙酮≈甲醇>二甲亚砜。冰相中的HCB直接光解的机理实际上是一系列的脱氯过程。光照1h得到的产物为有苯、氯苯、二氯苯(1,2-二氯苯、1,3-二氯苯、1,4-二氯苯)、三氯苯(1,2,4-三氯苯),而光照48h得到的中间产物中还检测到了五氯苯。
     在研究结冰过程中Fenton试剂对HCB的氧化作用实验中,加入Fenton试剂的HCB溶液在不同温度、和不同的结冰时间,会有不同程度的降解。HCB的溶液中加入Fenton试剂以后进行结冰融冰循环实验,随着循环的次数的增加,HCB浓度在减小。可能由于循环过程的进行使得Fenton试剂不断产生·OH自由基,在冰-水界面上不断的分配,并与HCB发生降解反应。结冰融冰循环实验中HCB的降解产物有五氯酚,可能是由于Fenton试剂除了·OH自由基团外还会产生多种活性基团,如·OOH、H_2O·等,这些基团综合作用下生成了五氯酚。
     通过以上实验研究结果,揭示了冰相中六氯苯的光降解机制,阐明了结冰过程中Fenton试剂对HCB的转化作用,从而对于六氯苯在冰雪环境中预测和评估提供了理论依据。
In recent years, along with the need of human life and production in a variety ofchemical material and organic fertilizer utilization increase day by day, these organicpollution to the environment are also significantly increasing. Hexachlorobenzene(HCB) is an organic chlorine pesticide and organic pollutant. Although in recent years,organic chlorine pesticides in agricultural production are banned overall, the industrialproduction and other industrial activities still have many HCB. At the same time,there are some reports that HCB has been detected in polar regions, in the wintersnowfall area and perennial frozen area; in addition, the microbial action andmigration for the organic pollutants in snow and ice are relatively weak, so that thephotochemical effect are particularly important. Therefore, this paper carried out theresearch on the transformation of photochemical effect of HCB in ice phase andFenton effect during the freezing of HCB is meaningful. Although some research onthe photochemical reaction has been carried out domestic and overseas, the presentresearch mainly concentrated on the organic pollutants by direct photolysis andindirect photolysis of H_2O_2, N_O~(2-)and NO_3~-. But in the actual ice environment stillexist many other components may take part in the photochemical actions, such as Fe~(2+),Fe~(3+), SO_4~(2-), PO_4~(3-)and Fenton reagent. The effects of these fractions on organicpollutants in ice have not been attracted.
     This experiment, took HCB as the research object, and carried out the researchon the photodegradation of HCB in ice phase under the UV irradiation, inspected the effect of two kinds of UV light sources condition for HCB photodegradation; italso research on the influence of different pH values and different concentrations ofinorganic ions (including SO42-, PO43-, N_O~(2-), NO_3~-HCO_3~-, Fe~(2+)and Fe~(3+)), H_2O_2andorganic reagents; and the HCB degradation products were analyzed and determined,inferred the ice phase HCB degradation pathway; in the oxidation of HCB by Fentonreagent in the freezing process experiment, it also carried out preliminary research oneffect of different time, temperature and icing-thawing cycles during freezing ofHCB; it also determined the intermediate products of HCB in icing conditions byFenton reagent, and inferred the effect of water-ice phase interface in actionmechanism of degradation process.
     In HCB photodegradation experiment, there has no degradation for HCB in icephase without any light; and degradation rate reached60%after8h in254nm light;while there has no degradation in340nm lamp. In254nm lamp irradiation,photodegradation rate would be different when changing the ice phase pH; it hasfound that photodegradation rate were maximum in strong acid and strong alkalicondition. When adding SO_4~(2-), PO_4~(3-), H_2O_2, N_O~(2-), NO_3~-, HCO_3~-and Fe~(3+), it found thatdifferent inorganic ions and H_2O_2in ice phase HCB photodegradation have differenteffects. SO_4~(2-), PO_4~(3-)showed stimulative effect for photodegradation of HCB in icephase; while H_2O_2, N_O~(2-), NO_3~-HCO_3~-and Fe~(3+)exhibit inhibition effect forphotodegradation of HCB in ice phase. Four different kinds of organic reagents effecton photodegradation of HCB in ice phase are: methanol> acetone≈acetonitrile>dimethyl sulfoxide. Actually, direct photolysis mechanism of HCB in ice phase is aseries of dechlorination process. There four different products after1h light irradiation:benzene, benzene, dichlorobenzene (1,2-dichlorobenzene,1,3-dichlorobenzene,1,4-dichlorobenzene), trichlorobenzene (1,2,4-trichlorobenzene), and after48h reachedanother intermediate products-pentachlorobenzene.
     In the study of oxidation of HCB by Fenton reagent in freezing processexperiments, adding Fenton reagent HCB solution at different temperature anddifferent freezing time, would have different effect on degradation. Fenton reagentwas added to the HCB solution and carried out icing-thawing cycle experiment. With the cycle times increasing, HCB concentration was decreased. It may be due to thecyclic process made Fenton reagents continuously generated·OH radicals, andwould be distributed in ice-water interface continuously, and HCB degraded. Inicing-thawing circulation experiments, HCB degradation products contained PCP, itmight be the result of Fenton reagent addition·OH radical produced various activegroups, such as·OOH and H_2O· etc, these groups take part in the comprehensivereaction and generated PCP.
     Above all, experimental results revealed the photodegradation mechanism ofHCB in ice phase, expounds HCB transformation by Fenton reagents in freezingprocess, which will provide a theoretical basis for the prediction and assessment forHCB in ice environment.
引文
[1] Courtney KD. Hexachlorobenzene (HCB): a review [J]. Environ Res.1979Dec;20(2):225–266.
    [2] MacKay, D., Shiu, W.-Y. Ma, K.-C. Illustrated Handbook of Physical-ChemicalProperties and Environmental Fate for Organic Chemicals [M]. Lewis: Boca Raton,FL.1992.
    [3] Hamilton, D. J. Ambrus, A. Dieterle, R. M. et al. Regulatory limits for pesticideresidues in water (IUPAC Technical report)[J]. Pure Appl. Chem.2003,75,1123-1155.
    [4] Jonathan Barber, Andrew Sweetman, Kevin Jones. Hexachlorobenzene—sources,environ-mental fate and risk characterization [R].Euro Chlor:Science Dossier,2005.
    [5] Jonathan L. Barbera, Andrew J. Sweetmana, Dolf van Wijk. Hexachlorobenzene inthe global environment: Emissions,levels, distribution, trends and processes [J].Science of the Total Environment2005349:1–44.
    [6] Howard PH. Hexachlorobenzene. Handbook of environmental fate and exposurefor organic chemicals, vol. I. Large Production and Priority Pollutants [M]. Chelsea,MI7Lewis Publishers Inc;1991.
    [7] Griffin RA, Chou SFJ. Movement of PCBs and other persistent organiccompounds through soil [J]. Water Sci Technol1981;13:1153–1163.
    [8] Mill T, Haag W. The environmental fate of hexachlorobenzene. In: Morris CR,Cabral JRP, editors. Hexachlorobenzene: Proceedings of an international symposium,77. IARC Sci Publ;1986.61–66. Lyon.
    [9] Brubaker WW, Hites RA. OH reaction kinetics of gas-phase α-andγ-hexachlorocyclohexane and hexachlorobenzene [J]. Environ Sci Technol1998,32:766–769.
    [10] Kwok ESC, Atkinson R. Estimation of hydroxyl radical reaction rate constantsfor gas-phase organic compounds using a structure–reactivity relationship: An update[J]. Atmos Environ1995;29:1685–1695.
    [11] Eisenreich SJ, Looney BB, Thornton JD. Airborne organic contaminants in theGreat Lakes ecosystem [J]. Environ Sci Technol1981;15:30–38.
    [12] Strachan WMJ, Fisk A, Teixeira CF, Burnsiton DA, Norstrom R. PCBs andorganochlorine pesticide concentrations in the waters of the Canadian Archipelagoand other Arctic regions (Abstract).In: Proceedings of the Workshop on persistentorganic pollutants (POPs) in the Arctic: Human health and environmental concerns.AMAP report2000:1.
    [13]宋天泽.北极沿岸地区水体中氢氧稳定同位素组成及水分转化过程研究[J].冰川冻土,2011,33(2):261-266.
    [14] Frank Wania, Donald Mackay and Johnt Hoff. The importance of snowscavenging of polychlorinated biphenyl and polycyclic aromatic hydrocarbon vapors[J].Environmental Science&Technology,1999,33(1):195-197.
    [15]林珂.液体醇_水及其混合物的微观结构和动力力学研究[D].合肥:中国科学技术大学,2010.
    [16]王绍武,冰雪覆盖与气候变化[J].地理研究,1983,2(8):73-86.
    [17] Sadtchenko V, Ewing G E. Interfacial melting of thin ice films: An infrared study[J]. J. Chem. Phys.2002,116(11):4686-4697.
    [18] HHG Jellinek. Liquid-like (transition) layer on ice [J]. Colloid Interface Sci.1967,25:192-205
    [19] Xing Wei, Miranda P. B., Y. R. Shen. Surface vibrational spectroscopic study ofsurface melting of ice [J]. Phys. Rev. Lett.,2001,86:1554-1557.
    [20] Cho H., Shepson P. B., Barrie L. A. et al. NMR investigation of the quasi-brinelayer in ice/brine mixtures [J]. J. Phys. Chem. B,2002,106(43):11226-11232.
    [21] M. Bertin, C. Romanzin, X. Michaut, et al. Adsorption of Organic Isomers onWater Ice Surfaces A Study of Acetic Acid and Methyl Formate [J]. J. Chem. Phys.2011,115:12920–12928
    [22] Cynthia Michelle Bouchez, Adsorption and desorption process of polarmolecules at the water/ice interface [D].Washington D.C.: Georgetown University,1997.
    [23] F Domine, A Cincinelli, E Bonnaud. Adsorption of Phenanthrene on natural snow[J]. Environ. Sci. Technol.2007,41:6033-6038
    [24] M. Matzl, M. Schneebeli. Stereological measurement of the specific surface area ofseasonal snow types [J]. Cold Regions Science and Technology2010.64:1-8
    [25] Harparkash Kaur and Barry Halliwell. Aromatic Hydroxylation of Phenylalanineas an assay for Hydroxyl Radicals [J]. Analytical Biochemistry,1994,220:11-15.
    [26]吴迪.羟基自由基在电催化氧化体系中的形成规律及其在废水处理中的应用研究[D].长春:吉林大学,2007.
    [27]李全莲,武小波.雪冰中持久性有机污染物的研究进展[J].地球与环境,2008,36(1):8-18
    [28] Gulbrand L. Organic micropollutants in precipationin [J]. Amos Environ,1977,11:1007-1014.
    [29] D. A. PEEL. Organochlorine residues in Antarctic snow [J]. Nature,1975,254,324-325.
    [30] Hung H., Kallenborn R., Breivik K., et al. Atmospheric monitoring of organicPollutants in the Arctic under the Arctic Monitoring and Assessment Programme(AMAP):1993-2006[J]. Sci Total Environ,2010,408:2854-2873.
    [31]孙芳,黄云,刘志刚等.鄱阳湖康山和湖口水域鱼、贝类体内有机氯农药残留现状[J].环境科学研究,2010,23(4):467-472.
    [32]王佩华,赵大伟,聂春红等.持久性有机污染物的污染现状与控制对策[J].应用化工,2010,39(11):1761-1765.
    [33]李凡修,黄瑜.六氯苯在TiO2催化下的光降解研究[J].安徽农业科学,2011,39(4):2185-2188.
    [34]钟云,郑正,赵永富等.γ辐照降解沉积物中六氯苯(HCB)的研究[J].环境污染与防治,2008,30(2):20-24.
    [35]魏东洋,陆桂英,刘广立等.UV/O3氧化工艺处理水中六氯苯的研究[J].水处理技术,2007,33(10):38-41.
    [36]陈芳艳,倪建玲,唐玉斌.非均相UV/Fenton氧化法降解水中六氯苯的研究[J].环境工程学报,2008,2(6):765-770.
    [37]陈大伟.有机氯农药废水辐射降解研究[D].长春:东北师范大学,2008.
    [38]尤宏,吴东海,姚杰等.水中硝基苯光降解研究[J].安全与环境学报,2008,8(2):16-19.
    [39]彭菲.冰相中对氯苯酚的光-Fenton效应研究[D].长春:吉林大学,2010.
    [40]高红杰.冰相中典型酚类化合物的分布与释放及其光化学转化[D].长春:吉林大学,2005
    [41] Melnikov S., Carroll J., Gorshkov A., et al. Snow and ice concentrations ofselected persistent pollutants in the Ob–Yenisey River watershed [J]. Sci. TotalEnviron.2003(306):27–37.
    [42]陈华军,尹国杰.Fenton及类Fenton试剂的研究进展[J].洛阳工业高等专科学校学报,2007,17(3):1-4.
    [43]陶长元,丁小红,刘作.Fenton类氧化技术处理有机废水的研究进展[J].化学研究与应用,2007,19(11):1177-1180.
    [44]郭全全.Fenton催化氧化处理农药废水研究[D].西安:长安大学,2011.
    [45]李宏.Fenton高级氧化技术氧化降解多环芳烃类染料废水的研究[D].重庆:重庆大学,2007.
    [46]康春莉,高红杰,郭平等.雪冰中有机污染物的研究进展[J].科学技术与工程,2008,8(2):468-472.
    [47]魏东洋,许振成,贾晓珊. UV/O3降解六氯苯的试验研究[R].持久性有机污染物论坛2008暨第三届持久性有机污染物全国学术研讨会论文集.2008:142-143.
    [48]李田,仇雁翎.水中六六六与五氯苯酚的光催化氧化[J].环境科学,1996,17(1):24.
    [49]王嘉.难降解有机污染物的微波辅助紫外光催化氧化的研究[D].武汉:华中科技大学,2006.
    [50]秦艳.紫外光光解HNO2(NO2-)诱导的溴苯降解机理研究[D].上海:复旦大学,2009.
    [51]陈容,孟春霞,张慧玲.硝酸盐及亚硝酸盐对三唑磷在海水中光降解的影响[J].海洋湖沼通报,2010,3:121-125.
    [52]唐晓剑.固态冰相中苯酚的光转化规律[D].长春:吉林大学,2009.
    [53]季跃飞,曾超,孟翠.阿替洛尔在硝酸根溶液中的光降解研究[J].环境科学,2012,33(2):481-487.
    [54]刘钰,杨曦,高颖.扑热息痛在硝酸根溶液中的光解研究[J].环境科学,2007,28(6):1274-1279.
    [55] Schwack W, Andlauer W, Armbruster W. Photochemistry of parathion in theplant cuticle environment: model reactions in the12-hydroxystearate[J]. Pestic Sci,1994,40:279-284.
    [56]龙江平,秦大河.雪冰中痕量有机物的环境气候变化记录研究进展[J].冰川冻土,1997,19(2):186-192.
    [57]万金忠.增溶剂强化电动力学修复六氯苯污染沉积物[D].武汉:华中科技大学,2008.
    [58] Lee L. S., Rao P.S.C. Impact of several water-miscible organic solvents onsorption of benzoic acid by soil [J]. Environ. Sci. Technol.30,1996,1533–1539.
    [59] Stark, J. G.; Wallace, H. G. Chemistry Data Book,2nd ed.(John Murray: NewYork,1984)[M].1984.
    [60]宋钦华,储高升,林维真.丙酮三重态与含芳香氨基酸肽的物理化学过程[J].高等学校化学学报,2000,21(12):1880-1883.
    [61]林志峰.海水中石油的光化学降解研究[D].青岛:中国海洋大学,2008.
    [62]陈艳丽,陈德展.甲醇光解离的反应机理研究[J].山东师范大学学报(自然科学版),2007,22(2):75-78.
    [63]崔文权,刘利,芮玉兰.紫外光分解甲醇蒸汽的研究[J].环境科学与技术,2007,30(8):44-47.
    [64]杨君豪.乙腈的利用[J].江苏化工,1993,21(4):1-4.
    [65] Jack R. Plimmer, Ute I. Klingebiel. Photolysis of Hexachlorobenzene [J]. J.Agric. Food Chem.,1976,24(4):721-723.
    [66] Masaji Koshioa, Hiroe Iizuka, Jun Kanazawa et al. Photodegradation ofHexachlorobenzene in hexane under xenon lamp irradiation[J]. J. Pesticide Sci.,1987,12:477-482.
    [67]魏东洋,贾晓珊,陆桂英.水中六氯苯的高级氧化降解机理及其动力学探讨[J].环境科学,2008,29(5):1277-1283.
    [68]胡胜.新型脉冲电源研制及其处理六氯苯废水的研究[J].武汉:华中科技大学,2011.
    [69]谢银德,陈锋,何建军,等. Photo-Fenton反应研究进展[J].感光科学与光化学,2000,18(4):357-365.
    [70] Cooper H. Langford, John H. Carey. The charge transfer photochemistry of thehexaaquoiron(Ⅲ) ion, the chloropentaaquoiron(Ⅲ) ion, and the μ-dihydroxo dimerexplored with tert-butyl alcohol scavenging[J]. Can. J. Chem.,1975(53):2431-2435.
    [71] Benkelberg HJ., Warneck P.. Photodecomposition of iron(Ⅲ) hydroxo andsulfato complexes in aqueous solution-wavelength dependence of OH and SO4-quantum yields[J]. J. Phys. Chem.,1995,99(14):5214-5221.
    [72] Umer Shafique, Jamil Anwar, Munawar Ali Munawar. Chemistry of ice:Migration of ions and gases by directional freezing of water [J]. Arabian Journal ofChemistry,2011,1-7.
    [73]杨晓芳,王东升,孙中溪.ATR-FTIR在研究环境固液微界面吸附过程中的应用[J].化学进展,2010,22(6):1185-1194.
    [74]胡春,曲久辉,刘会娟.水固液微界面氧化还原反应过程与污染物控制研究[J].环境科学学报,2009,29(1):28-33
    [75]崔英杰.Fenton技术降解非水相有机污染物的实验研究[D].青岛:中国海洋大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700