用户名: 密码: 验证码:
基于非线性反推理论的锅炉—汽轮机单元协调控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机炉协调控制系统是单元制发电机组的控制中枢,是电站生产自动化系统中最为核心的组成单元。本文针对一典型锅炉-汽轮机单元非线性模型,应用非线性反推法的相关原理和方法研究了锅炉-汽轮机单元协调控制系统的设计和性能评价问题,致力于提高协调控制系统克服对象多变量耦合、非线性和参数不确定性的能力,提高单元制发电机组的运行水平。
     论文的研究内容及取得的主要成果体现在以下四个方面:
     ①基于线性化模型的反推协调控制系统设计:线性化锅炉-汽轮机单元模型,进而分解出核心耦合部分,应用反推法进行控制律设计;为了便于工程实现,通过适当变换,将核心控制器转换成PID形式;利用核心耦合部分与线性化模型的对应关系得到反推协调控制器;在某500MW机组锅炉-汽轮机单元非线性模型上的仿真研究表明,该系统在额定负荷点附近具有良好的解耦能力和给定值跟随性能。
     ②基于非线性模型的反推协调控制系统设计:直接针对非线性锅炉-汽轮机单元模型进行反推法的研究,通过模型的预处理,将原系统分解成两个子系统,通过合理选择虚拟控制变量,逐步构造出偏差信号的李亚普诺夫函数,进而设计出非线性机炉协调控制器,并将其转换成PID控制器形式;在某500MW机组非线性模型上的仿真试验表明,在大范围变工况条件下,该控制策略依然具有良好的负荷跟随性能,能够有效克服输出功率和主蒸汽压力通道的耦合作用。
     ③考虑参数不确定性的非线性自适应反推协调控制系统设计:在非线性反推协调控制系统设计的基础上,将不确定参数对系统调节品质的影响考虑进去,重新构造偏差函数和相应的李亚普诺夫函数,通过逐步反推的方式,得到反推控制律和不确定参数的自适应更新率,并将最终的协调控制律转换成PID形式;在某500MW机组非线性模型上的仿真研究表明,自适应环节的添加有效地抵消了参数不确定性对系统的影响。
     ④反推协调控制系统性能评价:通过时间序列分析方法,对设计出的锅炉-汽轮机单元反推协调控制系统的运行数据建立时间序列模型,从中提取出反馈不变项,用以估计系统的最小方差;然后基于实用型最小方差基准,对论文中依次设计的三个控制系统的性能进行分析和比较。
A boiler-turbine coordinated control system is the control center of a power generation unit, and is the core of a modern power plant. This dissertation studies the design and implementation of the boiler-tubine unit coordinated control system for a classic nonlinear model of boiler-turbine units via nonlinear backstepping control theories and methods, with the motivation to apply advanced control strategies to engineering practice and to improve the adaptability of the coordinated control system to the process multi-variable coupling, nonlinearities and uncertainty of parameters.
     The main contributions of this dissertation are summarized as follows:
     ①The nonlinear model of boiler-turbine units is linearized, and is decomposed to get the core of the control. The controller of the core is designed by using backstepping method, and is changed into PID form for engineering purpose. Then the backstepping coordinated controller is obtained by using the relationship between the core and the whole linearized model. Simulation studies of the backstepping coordinated control system based on the linearized model are done on a 500MW boliler-burbine unit, the results of which demonstrate that this control strategy has good ability to overcome the object coupling.
     ②Retaining all the nonlinear information of the nonlinear model of boiler-turbine units and in accordance with the characteristics of the model and the using conditions of backstepping, the model is pretreated. After pretreatment, the system is divided into two subsystems. Then nonlinear backstepping controllers are designed for the subsystems separately, and the nonlinear backstepping coordinated control law is obtained and changed into PID form for engineering purpose. The designed nonlinear backstepping controller is applied to the 500MW nonlinear model. Simulation results show that this kind of control strategy can well overcome the coupling and nonlinear of the object.
     ③Based on the design of nonlinear backstepping coordinated control system, and taking into account the impact of system ajust quality caused by uncertain parameters, the nonlinear adaptive backstepping coordinated controller is designed and changed into PID form. Simulations on the nonlinear model of the 500MW boiler-turbine unit show that the addition of adaptive link effectively offset the impact of uncertain parameters on the system.
     ④Through time series analysis methods, time series models is fitted to the routine operation data of the designed boiler-turbine unit backstepping coordinated control systems. From these models the feedback-invariant forms of the control systems are extracted, which are used for estimating minimum variances. Then based on the benchmark of practical minimum variance, the control performances of the designed three coordinated control systems are evaluated and compared.
引文
[1]中国动力工程学会.火力发电设备技术手册:第三卷自动控制[M].北京:机械工业出版社, 2001.
    [2] de Mello F P. Boiler models for system performance studies[J]. IEEE Transactions on Power Systems, 1991, 6(1): 66-74.
    [3] de Mello F P. Dynamic models for fossil fueled steam units in power system studies[J]. IEEE Transactions on Power Systems, 1991, 6(2): 753-761.
    [4]刘吉臻.协调控制与给水全程控制[M].北京,中国电力出版社, 1995.
    [5]房方.单元机组协调控制系统的先进控制策略研究[D].北京:华北电力大学工学博士学位论文, 2005.
    [6] Prasad G, Irwin G W, Swidenbank E, Hogg B W. Plant-wide predictive control for a thermal power plant based on physical plant model[J]. IEE Proceedings-Control Theory and Applications, 2000, 147(5): 523-537.
    [7] Chen P C, Shamma J S. Gain-scheduled l1-optimal control for boiler-turbine dynamics with actuator saturation[J]. Journal of Process Control, 2004, 14(3): 263-277.
    [8] Tan W, Marquez H J, Chen T W. Multivariable Robust Controller Design for a Boiler System[J]. IEEE Transactions on Control Systems Technology, 2002, 10(5): 735-742.
    [9]刘翔,姜学智,李东海,万静芳,薛亚丽.火电单元机组机炉协调自抗扰控制[J].控制理论与应用, 2001, 18(S1): 149-152.
    [10]于达仁,翁一武,王仲奇.火电单元机组的柔性控制[J].中国电机工程学报, 2002, 22(7): 129-133.
    [11] Fang F, Tan W, Liu J Z. Tuning of coordinated controllers for boiler-turbine units[J].自动化学报, 2005, 31(2): 291-296.
    [12]柴天佑,刘红波,张晶涛,等.基于模糊推理和自适应控制的协调控制系统设计新方法及其应用[J].中国电机工程学报, 2000, 20(4): 14-18.
    [13] Liu H B, Li S Y, Chai T Y. Intelligent decoupling control of power plant main steam pressure and power output[J]. Electrical Power and Energy System, 2003, 25: 809-819.
    [14] Abdennour A. An intelligent supervisory system for drum type boilers during severe disturbances[J]. Electrical Power and Energy Systems, 2002, 22(5): 381-387.
    [15]李益国,沈炯,吕震中.火电单元机组负荷模糊内模控制及其仿真研究[J].中国电机工程学报, 2002, 22(4): 90-93.
    [16] Beheshti M T H, Rezaee M M. A New Hybrid Boiler Master Controller[C]. American Control Conference, Anchorage, AK, 2002: 2070-2075.
    [17]栾秀春,李士勇,吴建军,等.基于模糊状态观测器的单元机组T-S模糊协调控制系统[J].中国电机工程学报, 2006, 26(4): 76-81.
    [18] Garduno-Ramirez R, Lee K Y. Multiobjective optimal power plant operation through coordinate control with pressure set point scheduling[J]. IEEE Transactions on Energy Conversion, 2001, 16(2): 115-122.
    [19]葛友,李春文.反馈线性化方法在锅炉-汽轮机系统控制中的应用[J].清华大学学报(自然科学版), 2001, 41(7): 125-128.
    [20] Fang F, Liu J Z, Tan W. Nonlinear inversion-based output tracking control of a boiler-turbine unit[J]. Journal of control Theory and Applications, 2005, 3(4): 415-421.
    [21] Huang Z Y; Li D H, Jiang X Z, Sun L M. Gain Scheduled Servo System for Boiler-Turbine Unit[J]. Proceedings of the Csee, 2003, 23(10): 191-198.
    [22] Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic Design of Adaptive Controllers for Feedback Linearizable Systems[J]. IEEE Transactions on Automatic Control, 1991, 36(11): 1241-1253.
    [23] Sontag E D, Sussmann H J. Further comments on the stabilizability of the angular velocity of a rigid body[J]. Systems and Control letters, 1989, 12(3): 213-217.
    [24] Kokotovic P V, Sussmann H J. A Positive real condition for global stabilization of nonlinear systems[J]. Systems and Control letters, 1989, 13(2): 125-133.
    [25] Tsinias J. Sufficient Lyapunov-like conditions for stabilization[J]. Mathematics of Conirol, Signals and Systems, 1989, 2(4): 343-357.
    [26] Marino R, Tomei P. Robust stabllization of feedback linearizable time-varying uncertain nonlinear systems[J]. Automatica, 1993, 29(11): 181-189.
    [27] Krstic M, Kanellakopoulos I, Kokotovic P. Nonlinear and Adaptive Control Design[M]. New York: John Wiley and Sons, 1995.
    [28]李俊民,孙云平,刘赟.非一致目标跟踪的混合自适应迭代学习控制[J].控制理论与应, 2008, 25(1): 100-104.
    [29]陈为胜,李俊民,李靖.非线性时滞系统自适应backstepping输出反馈控制[J].西安电子科技大学学报, 2006, 33(1): 133-137.
    [30] Zhang N N, Jing Y W, Zhou Y C, Yang M Y, Zhang S Y. Backstepping based variable structure controller design for DiffServ Network[C]. American Control Conference, Washington , USA, 2008: 4451-4455.
    [31] Pishkenari, H N, Meghdari A. Adaptive backstepping control of uncertain Lorenz system[C]. 5th International Symposium on Mechatronics and Its Applications, Amman, Jordan, 2008: 1-6.
    [32] Chiang S J, Lin C H. Adaptive Backstepping RFNN Control for Synchronous Reluctance Motor Drive[C]. 37th IEEE on Power Electronics Specialists Conference, Jeju, South Korea, 2006: 1-6.
    [33] Li J; Li Y Z. Adaptive Backstepping Control for Permanent Magnet Synchronous Motor Fed by Three-Level Inverter[C]. 2006 Chinese Control Conference, Harbin, Chinese, 2006: 1506-1511.
    [34] Peng Y F, Lin M H, Chiu C H, Lin C M. Development of Adaptive Intelligent Backstepping Tracking Control for Uncertain Chaotic Systems[C]. 2007 International Conference on Machine Learning and Cybernetics, Hong Kong, 2007: 2037-2043.
    [35] Lin F J, Chou P H, Shen P H. Robust Sugeno type adaptive fuzzy neural network backstepping control for two-axis motion control system[C]. 4th Institution of Engineering and Technology Conference on Power Electronics, Machines and Drives, York, UK, 2008: 411-415.
    [36] Miao J L, Li H D, He H J. The servo controller study of induction motor based on backstepping sliding mode adaptive fuzzy control[C]. 2008 Chinese Control and Decision Conference, Yantai, Chinese, 2008: 2960-2963.
    [37] Min J Q, Xu Z B, Fang Y G. Adaptive Backstepping Control for a Class of Nonaffine Nonlinear Systems Based Neural Networks[C]. 2008 Second International Symposium on Intelligent Information Technology Application, Shanghai, China, 2008: 716-720.
    [38] Xu Z B, Min J Q, Ruan J. Adaptive Backstepping Control and Application for Strict-Feedback Nonlinear Systems with Mismatched Uncertainties[C]. 2008 Pacific-Asia Workshop on Computational Intelligence and Industrial Application, Wuhan, 2008, 2: 426-430.
    [39] Chy M I, Uddin N. Nonlinear Controller Based High Speed Control of IPMSM[C]. 2006 International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh, 2006: 477–480.
    [40] Lin F J, Teng L T, Shieh P H. Adaptive Backstepping Control System for Magnetic Levitation Apparatus Using Recurrent Neural Network[C]. 33rd Annual Conference of the IEEE on Industrial Electronics Society, 2007: 671–676.
    [41] Lin C H, Chen A J, Tsai Y S. Adaptive Backstepping Control for Synchronous Reluctance Motor Drive Using RNN Uncertainty Observer[C]. 2007 Power Electronics Specialists Conference, Orlando, USA, 2007: 542–547.
    [42] Hsu C F, Lin C M, Lee T T. Wavelet Adaptive Backstepping Control for a Class of Nonlinear Systems[J]. IEEE Transactions on Neural Networks, 2006, 17(5):1175-1183.
    [43]付俊,赵军.基于扩展自适应Backstepping设计的TCSC非线性控制的新方法[J].控制理论与应用, 2006, 23(3): 355-361.
    [44] Ji Z C, Shen Y X. Backstepping Position Control for Induction Motor based on Neural Network[C]. 1ST IEEE Conference on Industrial Electronics and Applications, Singapore, 2006: 1-5.
    [45] Maleknia A R, Rahimi K, Zarchi H A, Soltani J. Robust Backstepping Control of Permanent Magnet Linear Synchronous Motor in Extended Region Using Artificial Neural Network[C]. 2008 IEEE International Conference on Industrial Technology, Chengdu, China, 2008: 1-5.
    [46] Zhou Y X, Wu Y X, Hu Y M. Robust Backstepping Sliding Mode Control of a Class of Uncertain MIMO Nonlinear Systems[C]. 2007 IEEE International Conference on Control and Automation, Guangzhou, China, 2007: 1916–1921.
    [47] Tian D P, Wu Y J, Liu Y M. A parallel controller design and simulation for industry robot[C]. Asia Simulation Conference - 7th International Conference on System Simulation and Scientific Computing, Chengdu, China, 2008: 936-939.
    [48]毕卫萍,赵晓莉,穆学刚,马新文.一类非线性时滞系统的鲁棒H∞控制[J].河南师范大学学报(自然科学版), 2008, 36(1): 19-22.
    [49]孙丽颖,赵军. TCSC的自适应鲁棒H∞控制[J].东北大学学报(自然科学版), 2008, 29(1): 13-16.
    [50]刘艳军,王伟,王向东.一类不确定非线性纯反馈系统的自适应鲁棒模糊控制[J].控制与决策, 2007, 22(6): 697-701, 706.
    [51]刘忠,梁晓庚,陈旿.一种智能反步控制方法及其应用[J].西北工业大学学报, 2007, 25(1): 132-136.
    [52] Benayache R, Chrifi-Alaoui L, Bussy P, Castelain J M. Nonlinear sliding mode control with backstepping approach for a nonlinear three tank system[C]. 16th Mediterranean Conference on Control and Automation, Ajaccio, France, 2008: 658-663.
    [53]管成,朱善安.基于Backstepping的电液伺服系统多级自适应滑模控制[J].仪器仪表学报, 2005, 26(6): 569-573.
    [54] Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear Design of Adaptive Controllers for Linear Systems[J]. IEEE Transactions on Automatic Control, 1994, 39(4): 738-752.
    [55] Richard A H, Darren S, Qu Z H. Design and Evaluation of Robust Nonlinear Missile Autopilots From a Performance Perspective[C]. American Control Conference, Seattle, USA, 1995: 189-193.
    [56] Steinberg M L, Page A B. Nonlinear Adaptive Flight Control with a Backstepping Design Approach[C]. American Institute of Aeronautics and Astronautics Guidance, Navigation, and Control Corf and Exhibit, Boston, USA, 1998: 729-738.
    [57] Steinberg M L. A Comparison of Intelligent, Adaptive, and Nonlinear Flight Control Laws[C]. American Institute of Aeronautics and Astronautics Guidance, Navigation, and Control Conf and Exhibit, Portland, USA, 1999: 488-498.
    [58] Lee T Y, Kim Y D. Nonlinear Adaptive Flight Control Using Backstepping and Neural Networks Controller[J]. Journal of Guidance Control and Dynamics, 2001, 24(4): 675-682.
    [59] Krstic M, Fontaine D, Kokotovic P V, Padunao J D. Useful Nonlinearities and Global Stabilization of Bifurcations in a Model of Jet Engine Surge and Stall[J]. IEEE Transactions on Automatic Control, 1998, 43(12): 1739-1745.
    [60] Krstic M, Tsiotras P.Inverse Optimal Stabilization of a Rigid Spacecraft[J]. IEEE Transactions on Automatic Control, 1999, 44(5): 1042-1049.
    [61] Kim K S, Kim Y D. Robust Backstepping Control for Slew Maneuver Using Nonlinear Tracking Function[J]. IEEE Transactions on Automatic Control, 2003, 11(6): 822-829.
    [62]黄兴李,朱纪洪,贾培发.基于Backstepping方法的非线性控制技术及其应用[J].航天控制, 2008, 26(3): 35-38.
    [63]刘忠,梁晓庚,贾晓洪,曹秉刚.基于四元数的导弹反步控制及全方位算法应用[J].系统仿真学报, 2006, 18(10): 2734-2737.
    [64]王家军,王建中,马国进. Backstepping在永磁同步电动机系统中的应用[J].微特电机, 2008, 36(2): 54-56.
    [65]王冰,季海波.动态不确定发电机系统的小增益控制[J].电机与控制学报, 2007, 11(6): 648-654.
    [66]季海波,陈欢,王冰,奚宏生.双轴励磁同步发电机非线性鲁棒自适应控制[J].电机与控制学报, 2005, 9(1): 20-24.
    [67]高延峰,张华,彭俊裴,毛志伟.轮式移动焊接机器人弯曲焊缝跟踪控制[J].机器人, 2007, 29(5): 439-442, 450.
    [68]陈卫东,唐得志,王海涛,王洪瑞.基于Backstepping的机器人鲁棒跟踪控制[J].系统仿真学报, 2004, 16(4): 837-838, 841.
    [69]刘震,罗成,祝晓才.引入乘客动力学的1/2车辆液压主动悬挂系统建模与控制[J].信息与控制, 2006, 35(6): 775-780.
    [70]林永屹,杜佳璐,牛杰.基于Backstepping的船舶航向自适应鲁棒[J].船舶工程, 2007, 29(1): 24-27.
    [71]姜晓红.基于非线性Backstepping的船舶航向控制器设计[D].大连:大连海事大学工学硕士学位论文, 2003.
    [72] Bolek W, Sasiadek J, Wisniewski T. Adaptive backStepping control of a power plant station model[C]. International Federation of Automatic Control 15th Triennial World Congress, Barcelona, Spain, 2002: 1650-1655.
    [73]王印松,田瑞丽,白洁,王颖.基于backstepping方法的单元机组协调系统非线性控制[J].华北电力大学学报, 2006, 33(5): 45-47, 55.
    [74] McDonald J P, Kwatney H G, Spare J H. A nonlinear model for reheat boiler-turbine-generator systems, Parts I and II[C]. Joint Automatic Control Conference, St. Louis, USA, 1971: 219-236.
    [75] Astrom K J, Eklund K A. Simplified non-Linear model of a drum boiler-turbine unit[J]. International Journal of Control, 1972, 16(1): 145-169.
    [76] Cheres E. Small and medium size drum boiler models suitable for long term dynamic response[J]. IEEE Transactions on Energy Conversion, 1990, 5(4): 686-692.
    [77] Cheres E, Palmor Z J, Tuch J. Drum type boiler following control configuration[J]. IEEE Transactions on Energy Conversion, 1994, 9(1): 199-205.
    [78] Chawdry P K, Hogg B W. Identification of boiler models[J]. IEE Proceedings-Control Theory and Applications, 1989, 136(5): 261-271.
    [79] Bell R D, ?str?m K J. Drum-boiler dynamics[J]. Automatica, 2000, 36(3): 363-378.
    [80] Bell R D, ?str?m K J. Simplified models of boiler-turbine units[R]. Report TFRT-3191, Dept. of Automatic Control, Lund Institute of Technology, Sweden, 1987.
    [81] Bell R D, ?str?m K J. Dynamic models for boiler-turbine-alternator units: data logs and parameter estimation for a 160 MW unit[R]. Report TFRT-3192, Dept. of Automatic Control, Lund Institute of Technology, Sweden, 1987.
    [82] Prasad G, Swidenbank E, Hogg B W. A novel performance monitoring strategy for economical thermal power plant operation[J]. IEEE Transactions on Energy Conversion, 1999, 14(3): 802-809.
    [83]钱钟韩.汽鼓锅炉-汽轮机联合系统在汽压调节方面的动态特性[J].高等学校自然科学学报, 1964(1).
    [84]高镗年.热工控制对象动力学[M].北京:水利电力出版社, 1986.
    [85]章臣樾.锅炉动态特性及其数学模型[M].北京:水利电力出版社, 1987.
    [86]范永胜,程芳真,眭喆,吕崇德. 600MW超临界直流锅炉的动态特性研究[J].清华大学学报(自然科学版), 2000, 40(10): 104-107.
    [87]郑建学,陈听宽,陈学俊.超临界压力锅炉蒸发受热面动态数学模型及压力响应特性[J].工程热物理学报, 1997, 18(4): 489-492.
    [88]王勤辉,骆仲泱,方梦祥,李绚天,程乐鸣,倪明江,岑可法.循环流化床锅炉总体数学模型及其与工业试验比较的研究[J].工程热物理学报, 1998, 19(2): 251-255.
    [89]吕崇德,范永胜,蔡瑞忠.我国电站仿真技术进展与建模理论研究[J].中国工程科学, 1999, 1(1): 99-103.
    [90]曾德良.基于速率优化的智能协调控制系统的研究和应用[D].保定:华北电力大学博士学位论文, 1999.
    [91]曾德良,刘吉臻.汽包锅炉的动态模型结构与负荷/压力增量预测模型[J].中国电机工程学报, 2000, 20(12): 75-79.
    [92]曾德良,赵征,陈彦桥,刘吉臻. 500MW机组锅炉模型及试验分析[J].中国电机工程学报, 2003, 23(5): 149-152.
    [93]田亮,曾德良,刘吉臻,赵征.简化的330MW机组非线性动态模型[J].中国电机工程学报, 2004, 24(8): 180-184.
    [94]田亮,曾德良,刘鑫屏,刘吉臻. 500MW机组简化的非线性动态模型[J].动力工程, 2004, 24(4): 522-525.
    [95] Ogata K.现代控制工程(第三版)[M].北京:电子工业出版社, 2000.
    [96] Fossen T I, Strand J P. Nonlinear Ship Control[C]. Tutorial Session at International Federation of Automatic Control on Control Applications in Marine Systems, Fukuoka, Japan, 1998: 1-75.
    [97]魏乐,韩璞,于希宁.汽-汽换热器系统的多变量鲁棒PID控制[J].动力工程, 2005, 25(2): 226-230.
    [98]胡跃明.非线性控制系统理论与应用[M].北京:国防工业出版社, 2002.
    [99] Astrom K J. Computer control of a paper machine– an application of linear stochastic control theory[J]. IBM Journal of Research, 1967: 389-405.
    [100] DeVries W R, Wu S M. Evaluation of process control effectiveness and diagnosis of variation in paper basis weight via multivariate time-series analysis[J]. IEEE Transactions on Automat Control, 1978, 23(4): 702-708.
    [101] Harris T J. Assessment of control loop performance[J]. Canadian journal of chemical engineering, 1989, 67(10): 856-861.
    [102] Desborough L, Harris T. Performance assessment measure for univariate feedback control[J]. Canadian journal of chemical engineering, 1992, 70(6): 1186-1197.
    [103] Desborough L, Harris T. Performance assessment measure for univariate feed-forward/ feedback control[J]. Canadian journal of chemical engineering, 1993, 71(4): 605-616.
    [104] Huang B, Sirish L S, Miller R. Feedforward Plus Feedback controller performance assessment of MIMO systems[J]. IEEE Transactions on control systems technology, 2000, 3(8): 580-587.
    [105] Ko B, Edgar T F. Performance assessment of cascade loops[J]. American Institute of Chemical Engineers Journal, 2000, 46(2): 281-291.
    [106] Harris T, Boudreau F, MacGregor J. Performance assessment of multivariable feedback controllers[J]. Automatica, 1996, 32(11): 1505-1518.
    [107] Harris T J, Yu W. Controller assessment for a class of non-linear systems[J]. Journal of process control, 2007, 17(7): 607-619
    [108] Bezergianni S, Georgakis C. Controller performance assessment based on minimum an open-loop output variance[J]. Control Engineering Practice, 2000, 8(7): 791-797.
    [109] Yuan Q L, Lernox B. A new framework for controller performance assessment[C]. 2007 IEEE International Conference on Control and Automation, Guangzhou, China, 2007: 2679-2684.
    [110] Yuan Q, Lennox B. Control performance assessment for multivariable systems based on a modified relative variance technique[J]. Journal of Process Control, 2008, 19(3): 489-497.
    [111] Jofriet P J, Bialkowski W L. Process knowledge: The key to on-line monitoring of process variability and control loop performance[C]. Control Systems Conference, Halifax, Canada, 1996: 187-193.
    [112] Harris T J, Seppala C T, Jofriet P J, Surgenor B W. Plant-wide feedback control performance assessment using an expert system framework[J]. Control Engineering Practice, 1996, 4(9): 1297-1303.
    [113] Thornhill N F, Octtinger M, Fedenczuk P. Refinery-wide control loop performance assessment[J], Journal of Process Control, 1999, 9(2): 109-124.
    [114] Huang B., Shah S L, Kwok E, Jim J. Performance assessment of multivariate control loops on a paper machine headbox[J]. Canadian journal of chemical engineering, 1997, 75(1): 134-142.
    [115] Jelali M. An overview of control performance assessment technology and industrial applications[J]. Control Engineering Practice, 2005, 14(5): 441-446.
    [116] Kadali R, Huang B. Controller performance analysis with LQG benchmark obtained under closed loop conditions[J]. ISA Transactions, 2002, 41(4): 521-537.
    [117] Kadali R, Huang B. Multivariate control performance assessment without interactor matrix[C]. International Federation of Automatic Control Advanced Control of Chemical Process, Hong Kong, 2003: 61-66.
    [118] Huang B, Shah S L. Performance Assessment of Control Loops[M]. Berlin: Springer, 1999.
    [119] Schafer J, Cinar A. Multivariable MPC system performance assessment, monitoring, and diagnosis[J]. Journal of process control, 2004, 14(2): 113-129.
    [120]杨政厚.控制系统性能评价方法研究[D].北京:华北电力大学工学硕士学位论文, 2008.
    [121] Dugard L, Goodwin G C, Akamatsu K, Hashimoto T, et al. The role of interactor matrix in multivariable stochastic adaptive control[J]. Automatica, 1984, 20(5): 701-709.
    [122] Mutoh Y, Ortega R. Interactor structure estimation for adaptive control of discrete-time multivariable nondecouplable systems[J]. Automatica, 1993, 29(3): 635-647.
    [123] Harris T J, MacGregor J F. Design of multivariable linear-quadratic controllers using transfer functions[J]. American Institute of Chemical Engineers Journal, 1987, 33(9): 1481-1495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700