用户名: 密码: 验证码:
苎麻种质资源遗传多样性及分子标记研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苎麻(Boehmeria nivea L.Gaud)是我国最重要的韧皮纤维作物之一,在我国有着悠久的栽培和加工历史,加入WTO后,市场需求和麻纺工业的发展,对优良品种的需求越来越迫切。我国苎麻新品种选育虽然取得了较大的成绩,但如要进一步提高显得相当困难,其主要原因是缺乏有效的种质资源。此外,苎麻育种存在遗传背景复杂,缺少纯合的亲本材料,品种选育困难及育种周期长等问题。
     高代自交无性繁殖系是苎麻杂交育种极其珍贵的亲本材料,对其进行遗传多样性研究,有利于苎麻种质资源的收集、保存、鉴定和合理利用。我国野生种质资源十分丰富,但是很多尚未开发利用。因此,苎麻野生种和栽培种野生类型种质资源的考察、搜集、保存与鉴定,对于提高我国苎麻育种水平、促进苎麻产品的开发应用、研究苎麻的亲缘关系及起源等具有重要意义。
     本研究主要目的在于:(1)进行高代自交无性繁殖系的田间调查和聚类分析,筛选出农艺性状和品质性状均优良的材料,进一步丰富杂交育种亲本资源;(2)明确品质性状和农艺性状的某些内在联系,建立通过田间农艺性状调查来预测部分品质性状的回归方程;(3)建立适合苎麻自交无性繁殖系研究的RAPD、ISSR及SRAP等标记体系;进行苎麻自交无性繁殖系的遗传多样性分析,为亲本选配提供依据。(4)搜集一批苎麻野生种质资源,探索其种内、种间材料的遗传多样性和亲缘关系。
     分子标记能直接从DNA水平反映种质之间的遗传差异,是研究植物遗传多样性的有效工具。主要研究结果如下:
     1.应用SAS System for Windows V8.0统计分析软件,根据7个农艺性状和3个品质性状指标对供试90份自交无性繁殖系进行聚类。在Average Distance值为0.5时,可以将90份材料分为5个群,每个群又可以分为1-2亚组。研究表明在育种中,要选择纤维细度较优的自交无性繁殖系要在ClusterⅣ和ClusterⅤ两个群组种选择;而要选择产量高的育种材料则在ClusterⅡ群组内选择。通过聚类分析发现了纤维细度极优质的4份自交无性繁殖系材料(ClusterⅤ),纤维细度超过2000m/g的22份材料(ClusterⅣ),农艺性状优良,高产潜力大的13份自交无性繁殖系材料(ClusterⅡ)。
     通过田间数据调查分析得知,农艺性状及品质性状之间存在相关关系。建立的农艺性状及品质性状多元一次回归方程如下:y_1=2800.82-1.41x_1-525.18x_2-73.15x_3-3.20x_4+8.56x_5-675.51x_6+2614.28x_7+0.75x_8y_2=13.28+0.07x_1-2.28x_2+1.83x_3-0.37x_4-0.13x_5+13.95x_6-46.78x_7-0.01x_8y_3=4.57+0.01x_1+0.35x_2-0.01x_3-0.02x_4-0.06x_5-0.47x_6+2.04x_7y_1表示纤维细度(m/g);y_2表示断裂强度(g);y_3表示断裂伸长率(%)。x_1-x_8分别表示株高(cm)、茎粗(cm)、功能叶片宽度(cm)、叶片长度(cm)、叶柄长(cm)、叶缘锯齿宽度(cm)、叶缘锯齿深度(cm)和有效分株率(%)。
     2.优化了苎麻RAPD分子标记体系;用32个RAPD引物对40份自交无性繁殖系材料的DNA进行PCR扩增,共扩增出113条带,多态性达到78.76%,Nei's平均遗传距离为0.2317,平均Shannon指数为0.3568。Mantel检测得出的聚类结果和相似系数矩阵之间的相关系数为0.635,表明聚类结果很好的体现了种质之间的遗传关系。利用NTSYs 2.0软件进行主成分分析,累计贡献率为24.81%,第一主成分的贡献率为10.47%,结果表明主成分分析和RAPD聚类结果不是很吻合。
     3.优化了苎麻ISSR分子标记体系;30条ISSR引物对40份自交无性繁殖系材料的DNA模板进行扩增和电泳检测,总条带数为116条,多态性达到78.45%,Nei's平均遗传距离为0.2405,平均Shannon指数为0.3679,每条引物扩增2-10条带不等。按照材料的地理位置,将40份自交无性繁殖系分为6个居群,多态位点百分率(pp)在23.28%-67.24%之间。Nei's遗传距离在0.0964-0.2285之间,Shannon指数在0.1408-0.3310之间。第一、第二、第三主成分的贡献率分别为72.67%、5.36%和2.11%,累计贡献率为80.15%,结果表明主成分分析与采用ISSR进行聚类的结果十分一致。
     4.优化了苎麻SRAP分子标记体系;有72条引物均能扩增出有较高稳定性和重复性、丰富多态性的带型,条带总数为386条,多态性达到72.80%,Nei's平均遗传距离为0.1889,平均Shannon指数为0.2969,每条引物扩增5-11条带不等。根据材料的地理位置,将35份自交无性繁殖系分为6个居群,多态位点百分率(pp)在19.71%-58.81%之间。Nei's遗传距离在0.0794-0.1742之间,Shannon指数在0.1159-0.2699之间。第一、第二和第三主成分的贡献率分别为13.02%、8.47%和6.09%,累计贡献率为27.58%。只有部分聚类结果与采用UPGMA方法聚类得出的结果一致,研究结果表明,RAPD、ISSR和SRAP标记是进行研究苎麻自交无性繁殖系遗传多样性较好的方法。
     5.对2003-2007年采集到的45份荨麻科野生材料进行ITS序列分析,以绿叶种苎麻(B.nivea var.tenacissima)、艾麻(Laportea cuspidata)以及冷水花属3个种的ITS序列作为外类群。所得序列采用Clustal X程序进行对位排列,并经手工校正。利用MEGA3.1软件对序列进行分析。启发式搜索得到了最简约树,其中一棵树树长(tree length)777步,一致性指数(consistency index,CI)为0.6735,保留指数(reserved index,RI)为0.9407。聚类分析表明全部材料可以聚为4类7组,支持采用植物学性状分类的结果,两种不同聚类方法的分析结果基本一致:
     苎麻属(Boehmeria Jacq.)21份材料单独聚为一类,又可以分为3个亚组,第一亚组材料为序叶苎麻(B.clidemioides var.diffusa),其自展支持率(bootstrap values)为89%,主要采集自神农架地区;第二亚组材料为水苎麻(B.macrophylla);余下的7份白叶种苎麻(B.nivea L.)聚为一个亚组,主要包括栽培种及其栽培种野生类型。
     冷水花属(Pilea Lindl.)的3份材料作为外类群单独聚为一类,自展支持率为100%。采自云南丽江和湖北神农架的3份艾麻属(Laportea Gaudich.)材料单独聚为一类。蝎子草属(Girardinia Gaudich.)6份材料聚为一类。水麻属(Debregeasia Gaudich.)3个种共15份野生材料聚为一大类。
     此外,对38份野生材料进行的RAPD和ISSR聚类分析结果基本一致。
Ramie (Boehmeria nivea L. Gaud), one of the most important bast fiber crops, has been cultivated and used in China for a long time. With the development of market demand and fiber textile industry, fiber quality of ramie needs to be improved and elite cultivars are urgently required for ramie production. Because of many biological complexities such as natural heterozygote and cross-incompatibility, the analysis of the genetic relationships among inbred line clones is of interest not only for germplasm conservation but also for breeding purposes.
     Ramie inbred line clones were very important and rare breeding materials. Over 100 ramie inbred line clones had been obtained since 1980 and these would enhance the effectiveness of the breeding program. The study on the genetic diversity of ramie inbred line clones can benefit the conservation, classification, identification, genetic enhancement and effective utilization of the ramie germplasm resources. China, the native home of ramie, possesses many wild species in the genus Boehmeria, including some rare species with stress resistance and good fiber qualities that can be used for biological engineering, genetics and breeding research. The wild species in the genus Boehmeria are the important genetic resources that are not yet utilized by man. Breeding of the new cultivars with high yield, good quality and resistances to stresses and diseases are becoming more and more important and feasible, for the development of breeding techniques.
     The objectives of this dissertation were:
     1) to select the ramie materials with perfect agronomic and quality traits and then enrich parental lines for hybridization by field investigation and cluster analysis;
     2) to examine the correlations between some quality traits and agronomic traits and set up regression equations, by which some quality traits of ramie may be speculated;
     3) to establish RAPD, ISSR, and SRAP for ramie inbred line clones and do genetic diversity analysis;
     4) to select some ramie wild materials and determine the genetic diversity and relations between interspecies.
     Genetic marker technology designed to detect naturally occurring polymorphisms at the DNA level has become an invaluable and revolutionary tool for both applied and basic studies of ramie. In this study, to optimize genetic marker technology for ramie, 7 agronomic traits and 3 quality traits were analyzed by cluster and path analysis in 90 ramie inbred line clones. Forty ramie core inbred line clones were selected. Then, the genetic diversity of these 40 ramie inbred line clones was studied by morphologic identification and molecular marker, cluster and principal component analysis. The ITS (internal transcribed spacer) analysis and genetic diversity analysis were also done for the 45 wild materials collected in 2003-2007. The following results were obtained:
     1. The 90 ramie inbred line clones were clustered based on 7 agronomic traits and 3 quality traits by SAS System for windows V8.0. The 90 ramie inbred line clones were divided into 5 groups, when Average Distance was 0.5, each group consisted of 1-2 sub-groups. The results suggested that materials with high fiber fineness should be selected from ClusterIV and Cluster V, high yielding materials from Cluster II. The results showed that there were direct or indirect correlative relationships among ramie agronomic and quality traits. In addition, their path relations were established. According to their relations, many regress equations were set up.Eliminating the insignificant factors, regression models were established between agronomic characters and quality characters:y_1=2800.82-1.41x_1-525.18x_2-73.15x_3-3.20x_4+8.56x_5-675.51x_6+2614.28x_7+0.75x_8 y_2= 13.28+0.07x_1-2.28x_2+1.83x_3-0.37x_4-0.13x_5+13.95 x_6-46.78x_7-0.01x_8 y_3=4.57+0.01x_1+0.35x_2-0.01x_3-0.02x_4-0.06x_5-0.47x_6+2.04x_7y1, fiber fineness (m/g); y2, breaking strength (g); y3, breaking elongation ratio (%).x1-x8, plant height (cm); stem diameter (cm); leaf width (cm); leaf length (cm); leafstalklength (cm); leaf sawtooth width (cm); leaf sawtooth depth (cm) and rate of effective tiller(%), respectively.
     2. Based on preliminary test, 32 sets of 150 RAPD primers and 30 out of 85 ISSR primers, which steadily produced well-defined and scorable amplification products, showed polymorphisms in all 40 genotypes. The genomic DNAs of 40 Inbred line clones were amplified by PCR with 32 polymorphic RAPD primers, which produced 113 bands the rate of polymorphism was 78.76%. The number of polymorphic bands each primer produced was from 4 to 11. The Nei's gene diversity was 0.2317, Shannon's Information index was 0.3568, however the dice coefficient between 0.68-0.88. The presence or absence of each RAPD, SRAP and ISSR single fragment was coded by 1 or 0, respectively and was scored for a binary data matrix, which was also used to calculate Dice coefficient. Cluster analysis and dendrogram construction were performed with the SHAN program in NTSYs 2.0 software. The FIND module was used to identify all trees that could result from different choices of tied similarity or dissimilarity values.
     At the level of 0.74 dice coefficient, 40 ramie inbred line clones can be divided into 4 groups. The Mantel examination between cluster analysis and coefficients matrix showed good fit. The results of principal components analysis showed accumulative variance contribution of the first three principal components was 24.81%. The variance contribution of the first principal component was 10.47%. The results of hierarchical cluster analysis were not in accordance with principal components analysis.
     3. The genomic DNAs of 40 inbred line clones were amplified by PCR with 30 polymorphic ISSR primers, which produced 116 bands from 200bp to 2000bp bands were polymorphism. While the polymorphic of ISSR was 78.45% (91 bands out of 116), ranging from 2 (ISSR6) and 10 (ISSR22), with an average of 3.87. Pairwise comparison was made between all the inbred line clones included in this study. The Nei's gene diversity was 0.2405, Shannon's Information index was 0.3679. Based on the appearance of the markers, the genetic relationships were analyzed using UPGMA and the genetic Dice coefficients were calculated. According to the region of origin of ramie inbred line clones (these genotypes included 8 ramie inbred line clones from Brazil and 32 from 5 provinces of China) 6 groups produced. The Nei's gene diversity was between 0.0964 and 0.2285, Shannon's Information index was from 0.1408 to 0.3310. The Mantel examination between cluster analysis and coefficients matrix showed good fit. The results of principal components analysis showed accumulative variance contribution of the first three principal components was 80.15%. The variance contribution of the first principal component was 72.67%. The results of hierarchical cluster analysis were commendably in accordance with principal components analysis.
     4. The genomic DNAs of 35 inbred line clones were amplified by PCR with 72 polymorphic ISSR primers, which produced 386 bands were polymorphism, while the polymorphic of ISSR was 72.80%. The Nei's gene diversity of six group was between 0.0794 and 0.1742, Shannon's Information index was from 0.1159 to 0.2699. The Mantel examination between cluster analysis and coefficients matrix showed good fit. The results of principal components analysis showed accumulative variance contribution of the first three principal components was 27.58%. The variance contribution of the first principal component was 13.02%. The results of hierarchical cluster analysis were not in accordance with principal components analysis.
     SRAP and ISSR marker may have various applications for genetic studies and practical breeding programs in ramie. Among these ramie inbred line clones, we obtained good amplification and easily found polymorphism. So, SRAP and ISSR marker were suitable for the molecular characterization and the investigation of phylogenic relationships in ramie. Furthermore, these researches proved that the use of SRAP and ISSR approach were more efficient to examine the genetic diversity in ramie.
     5. Complete internal transcribed spacer (ITS) sequence and flanking regions from 48 Urticaceae species were PCR-amplified, cloned, sequenced, and their variability compared. Only the ITS1 and ITS2 regions were included in the analysis since sequence data for the 5.8S subunit were not sufficiently variable to warrant additional sequencing. Resulting DNA sequences of the entire ITS region of all samples were multiply aligned using the Clustal X program and MAGA 3.1 program, and these alignments were used for further analysis.
     The partial ITS sequence (542bp to 643bp) of 45 Urticaceae species and four outgroups were performed and the obtained sequences used for phylogenetic analysis. The phylogeny derived from ITS sequences estimated using N-J methods indicated that recovered four well-defined clades and monophyly of the genus Urticaceae. ITS (including ITS1 and ITS2) phylogenetic tree using the maximum parsimony method. The tree has 777 steps with CI=0.6735 and RI=0.9407. The phylogenetic relationships derived from sequences of ITS fragments corroborate the taxonomic classification of Urticaceae based on morphological characters.
     Group I was formed by all the 21 accessions of Boehmeria Jacq., B. clidemioides var. diffusa, B. macrophylla and B. nivea included. Group II consisted of 3 accessions of Pilea Lindl., which was used as outgroup species. Three accessions of Laportea Gaudich. collected from Lijiang, Yunnan and Shennongjia, Hubei clustered in group III. Six Girardinia Gaudich. materials and 15 Debregeasia Gaudich. materials were clustered in group IV and V respectively.
     38 wild materials of Boehmeria Jacq. based on RAPD analysis were in accordance with ISSR analysis.
引文
1.陈荷泉.苎麻不同基因型亲缘关系的RAPD分析.[硕士学位论文].武汉:华中农业大学图书馆,2005
    2.陈洪,朱立煌,许青臣等.RAPD标记构建水稻分子连锁图.植物学报,1995,37(9):677-684
    3.陈瑞祥,刘正书,邹淑玫,杨玲丽.苎麻主要经济性状与产量品质相关遗传力的通径分析.中国麻作,1995,17(1):10-15,19
    4.陈瑞祥,刘正书,邹淑玫.贵州苎麻种质资源遗传潜势分析.贵州农业科学,1994.2:29-33
    5.陈瑞祥,刘正书.苎麻主要农艺性状遗传变异相关性研究.贵州农业科学,1997,25(5):26-30
    6.陈晓蓉,廖志强.苎麻属植物资源的搜集、保存与开发利用.中国麻业科学,2007,29(6):308-312
    7.崔国贤,罗中钦,曾维爱,杨廷良.不同苎麻品种纤维物理性能的差异及相关性的初步研究.中国麻作,2003,25(8):272-274
    8.迪芬巴赫CW,德维克斯勒G S著,黄培堂,俞炜源,陈添弥译.PCR技术实验指南.北京:科学出版社.2002,140-141
    9.傅立国,陈潭清,郎楷永,洪涛,林祁.2000.中国高等植物第4卷.青岛出版社第一版.
    10.高山,许端祥,林碧英,钟开勤.38份瓠瓜种质资源遗传多样性的ISSR分析.植物遗传资源学报,2007,8(4):396-400
    11.郭安平,周鹏,黎小瑛,李宗道,郑学勤.17份苎麻栽培品种的RAPD分析.农业生物技术学报,2003,11(3):318-320
    12.郭安平,周鹏,彭世清,郑学勤.苎麻属植物RAPD反应体系影响因子的研究.热带作物学报,2001,22(2):64-68
    13.郭安平.RAPD分子标记重建我国苎麻属植物亲缘关系的研究.[博士学位论文].长沙:湖南农业大学图书馆,1999
    14.郭运玲,刘恩平,贺立卡,郭安平.苎麻品种黑皮蔸染色体核型分析.热带农业科学,2005,25(5):8-10
    15.郝玉民,郭兰,韩延闯,刁英,杨新笋,胡中立.甘薯品种的SRAP遗传多样性分析.武汉植物学研究,2007,4:406-410
    16.侯渝嘉,李品武.ISSR分子标记在茶树上的应用.西南园艺,2005,33(6):12-13
    17.胡能书,郭清泉.苎麻过氧化物酶同工酶演化的初步研究.湖南师范大学自然科学学报,1991,14(1):73-75
    18.胡能书,朱泽瑞,郭清泉等.苎麻酯酶同工酶亲缘关系的初步研究.湖南师范大自然科学学报,1990,13(1):65-70
    19.黄小英,刘瑛,赖小萍,彭学渊,赖占钧.一种提取野生苎麻总DNA的方法.中国野生植物资源,2002,21(1):56-57
    20.姜树坤,马慧,刘君,何晶,郭志富,陈丽静,钟鸣,张立军,王学英,张丽.利用SRAP标记分析玉米遗传多样性.分子植物育种,2007,5(3):412-416
    21.姜伟,何觉民,陆建农,钟孝威.中国主要棉花栽培群体的遗传多样性分析.农业生物技术学报,2008,16(1):127-133
    22.蒋建雄,张福泉,李宗道,李贵成,周光宇.棉花DNA导入苎麻的RAPD验证.湖南农业大学学报,2000,26(1):34-36
    23.揭雨成,冷鹃.中国苎麻种质资源研究的现状与展望.中国麻作,2000,22(3):14-15
    24.揭雨成,周青文,陈佩度.苎麻不同基因型亲缘关系的RAPD分析.中国麻作,1999,21(1):1-6
    25.揭雨成,周青文,陈佩度.苎麻栽培品种亲缘关系的RAPD分析.作物学报,2002,28(2):254-259
    26.揭雨成等编著,苎麻种质资源描述规范和数据标准,北京:中国农业出版社,2007
    27.冷娟,肖爱平,揭雨成.影响苎麻纤维结构与性能的农艺因素分析.中国纤检,2004,2:31-32
    28.李海生,陈桂珠.海南岛红树植物海桑遗传多样性的ISSR分析.生态学报,2004(8):1657-1663
    29.李建军,郭清泉,陈建荣.21份不同木质素含量的苎麻的RAPD聚类分析.中国麻业,2006,28(3):120-127
    30.李卿.鄂西山区苎麻属野生种质资源收集及其生物学特性鉴定.[硕士学位论文].武汉:华中农业大学图书馆,2007
    31.李先平,何云昆,孙茂林等.马铃薯RAPD分析方法优化初探.西南农业学报,2000,13(1):59-64
    32.李秀萍.不同基因型苎麻纤维品质性状及其相关性研究.[硕士学位论文].武汉:华中农业大学图书馆,2006
    33.李媛媛,沈金雄,王同华,傅廷栋,马朝芝.利用SRAP、SSR和AFLP标记构建甘蓝型油菜遗传连锁图谱.中国农业科学,2007,40(6):1118-1126
    34.刘飞虎,邓明其,郑思乡,梁雪妮,杨瑞芳.苎麻基因资源纤维产量和品质的解剖学估测研究.作物研究,1994a,8(增刊):29-33
    35.刘飞虎,李娟.苎麻基因资源的光合作用及其与产量品质关系的研究.作物研究,1994b,8(增刊):61-66
    36.刘飞虎,梁雪妮,汪怀建,吴小林,潘其辉.气象条件对苎麻产量品质及经济性状的影响.中国农业气象,1999,8:15-17
    37.刘海河,候喜林,张彦平.西瓜ISSR-PCR体系的正交优化研究.果树学报,2004,21(6):615-617
    38.刘建丰,王志德,刘艳华,牟建民.应用SRAP标记研究烟草种质资源的遗传多样性.中国烟草科学,2007,28(5):49-53
    39.刘立军,陈荷泉,蒙祖庆,高世梅,彭定祥.44个苎麻栽培品种亲缘关系的RAPD 分析.云南农业大学学报(增刊,2006a,21:107-112
    40.刘立军,蒙祖庆,邢秀龙,彭定祥.苎麻基因组SRAP扩增体系的优化研究.分子植物育种,2006b,4(5):726-730
    41.刘立军,彭定祥,蒙祖庆.苎麻RAPD反应体系的构建和优化.中国农学通报,2006c,22(6):35-39
    42.刘立军,孙珍夏,彭定祥.苎麻ISSR-PCR体系优化.中国农学通报,2006d,22(7):64-68
    43.刘艳玲,徐立铭,倪学明,赵家荣.睡莲科的系统发育:核糖体DNA ITS区序列证据.植物分类学报,2005,43(1):22-30
    44.刘瑛,刘上信,陈晓蓉,彭学渊,赖占钧.苎麻属野生种质资源的研究与应用.江西棉花,2002,24(3):32-36
    45.刘瑛,彭学渊,赖小萍,赖占钧.利用组织培养法保存野生苎麻资源的初步研究.江西农业学报,2003,15(1):29-32
    46.罗素玉.苎麻品种纤维形态结构与产量、品质相关性的研究.中国麻作,1983(4):24-29
    47.蒙祖庆.苎麻野生种质资源遗传多样性及其亲缘关系分析.[硕士学位论文].武汉:华中农业大学图书馆,2007
    48.缪恒彬,陈发棣,赵宏波.85个大菊品种遗传关系的ISSR分析.园艺学报,2007.34(5):1243-1248
    49.潘其辉,赖占钧,欧阳爱萍.苎麻属野生种光温特性研究初报.中国麻业,2005a,27-31
    50.潘其辉,赖占钧,孙学兵,赖小萍,黄小英.中国苎麻属野生种资源的特性及利用.江西农业学报,2000,12(2):11-16
    51.潘其辉.温度对苎麻属野生种生长发育的影响研究.江西农业学报,2005b,17(3):27-31
    52.潘其辉.苎麻属野生种的光反应类型研究.中国麻业,2004,26(3)):105-109
    53.彭定祥.苎麻自交纯化的选择方法.华中农业大学学报,1993(2):106-111
    54.彭雪梅,张卫明,王蔓丽,陆长梅,顾龚平.罗布麻及其易混品的DNA分子鉴定.植物研究,2007,27(3):302-307
    55.彭云滔,唐绍清,李伯林,刘燕华.野生罗汉果遗传多样性的ISSR分析.生物多样性,2005,13(1):36-42
    56.祁建民,王涛,陈顺辉,周东新,方平平,陶爱芬,梁景霞,吴为人.部分烟草种质遗传多样性与亲缘关系的ISSR标记分析.作物学报,2006,32(3):373-378
    57.钱韦,葛颂等.采用RAPD和ISSR标记探讨中国疣粒野生稻的遗传多样性.植物学报,2000,42(7):741-750.
    58.乔玉山,章镇,房经贵.李种质资源ISSR反应体系的建立.果树学报,2003,20(4):270-274
    59.秦占军,揭雨成,孙志民,许英,王晓飞,陈建芳,邢虎成,佘玮,罗中钦.213份苎麻种质资源农艺性状及品质性状鉴定评价.植物遗传资源学报,2007,8(4):473-476
    60.秦占军,揭雨成,许英,孙志民,王晓飞,陈建芳,邢虎,佘玮,方环明,肖亚男, 罗中钦.苎麻优质种质的鉴定与评价.湖北农业科学,2008,47(1):33-35,46
    61.任羽,张银东,尹俊梅,王得元.辣椒31个优良自交无性繁殖系的亲本类群分析.遗传,2008,30(2):237-245
    62.孙林.苎麻纤维物理性能的研究.化纤与纺织技术,2004,2:20-22
    63.孙学兵,刘上信,邹园秀,陈晓蓉,谌绍铁,彭学渊,刘瑛.赣苎三号纤维产量品质及其数量性状研究.江西棉花,2002,24(6):33-36
    64.孙学兵.苎麻多个数量性状之间的因果关系研究.江西棉花,1998,5:38-41
    65.汪小全,邹喻苹,张大明等.RAPD应用于遗传多样性和系统学研究中的问题.植物学报,1996,38(12):954-962
    66.王成国,谭远友,张尚勇.四季苎麻化学成分与生长期关系研究.中国麻业科学,2007,29(4):212-214
    67.王春桃,余平,周兆德,欧阳铎声,崔国贤,李宗道.苎麻施钾效应得研究.中国农业科学,1996,29(2):67-72
    68.王关林,方宏筠.植物基因工程原理与技术.北京:科学出版社,1998:16l-178.
    69.王华忠,吴则东,王晓武,方智远.利用SRAP与SSR标记分析不同类型甜菜的遗传多样性.植物学报,2008,34(1):37-46
    70.王建营,郑小波.苎麻疫霉群体的RAPD分析.菌物系统,2003,22(2):228-234
    71.王文采.中国苎麻属校订.云南植物研究,1981,3(3):307-328
    72.王文采.中国苎麻属校订(续).云南植物研究,1981,3(4):401-416
    73.吴佳海,牟琼,龙忠富,韩永芬,舒建虹.坡耕地优质高产苎麻指示性初探.耕作与栽培,1998,4:36-36,39
    74.吴敏生,戴景瑞,王守才等.RAPD在玉米品种鉴定和纯度分析中的应用.作物学报,1996,25(4):489-493
    75.肖爱平.苎麻纤维细度与直径的相关性研究.纺织学报,23(3):173-174
    76.肖炳光,杨本超.利用ISSR标记分析烟草种质的遗传多样性.中国农业科学,2007,40(10):2153-2161
    77.谢运海,夏德安,姜静等.利用正交设计水曲柳ISSR-PCR反应体系.分子植物育种,2005,3(3):445-450
    78.徐莉,张富春,陈友强等.红花基因组DNA的提取及RAPD体系的优化. 新疆农业科学,2005,42(2):131-134
    79.许丽,李莹,林凤.DNA分子标记及其在作物遗传育种中的应用.沈阳师范大学学报(自然科学版),2006,24(4):466-469
    80.杨瑞芳.苎麻野生种质资源研究利用现状与展望.湖南农业科学,2006,5:45-47
    81.杨友才,周清明,尹晗琪.烟草RAPD反应体系的建立与优化研究.中国农学通报,2005,21(5):97-100
    82.杨玉玲,马祥庆,张木清.ISSR分子标记及其在树木遗传育种研究中的应用.亚热带农业研究,2006,2(1):19-24
    83.余爱丽,张木清,陈如凯.ISSR分子标记在甘蔗及其近缘属分类上的应用.福建农林大学学报(自然科学版),2002,31(4):484-489
    84.臧巩固.苎麻属三组五种核型研究.中国麻作,1993,1:65-70
    85.曾明,马雅军,郑水庆,许景峰,邸晓辉.中药葛根及其近缘种的rDNA-ITS序列分析.中国药学杂志,2003,38(3)173-175
    86.张波,赵立宁,臧巩固.中国苎麻属组群分化及演化研究.作物学报,1998,24(6):775-781
    87.张波,郑长清,臧巩固,赵立宁.中国苎麻属植物比较形态学研究.中国农业科学,1998,31(2):56-60
    88.张波.中国苎麻野生近缘种植物形态学和细胞学比较研究.[硕士学位论文].长沙:中国农业科学院,1996
    89.周建林,揭雨成,蒋彦波,胡翔,张健.用微卫星DNA标记分析苎麻品种的亲缘关系.作物学报,2004,30(3):289-292
    90.张鹏,张海洋,郭旺珍,郑永战,魏利斌,张天真.以SRAP和EST-SSR标记分析芝麻种质资源的遗传多样性.作物学报,2007,33(10):1696-1702
    91.张福泉,蒋建雄,李宗道,郑思乡,周光宇.棉花DNA导入苎麻引起变异的研究.中国农业科学,2000,33(1):104-106
    92.张迁西,苏生春,肖平.野生苎麻主要病虫害发生与防治技术.江西植保,2006,29(2):66-69
    93.张如莲,傅小霞,漆智平,陈业渊.菠萝17份种质的ISSR分析.中国农学通报,2006,22(6):428-431
    94.赵国平,新关稔,石川隆二,钱三旗,章群,敖杰男.中日当归属药用植物ITS序 列分析.中草药,2006,37(7):1072-1076
    95.钟安华,郑庆福,谭远友,王成国,张尚勇,邹桦.不同收获期的苎麻纤维化学成分分析,中国麻业,2005a,27(3):124-128
    96.钟安华,谭远友,王成国,黄翠蓉,邹桦.苎麻生长期对纤维结构及品质的影响.纺织学报,2005b,26(5):20-22
    97.朱爱国.苎麻主要品质性状的研究.[硕士学位论文].长沙:中国农业科学院,2001.
    98.朱爱国,喻春明,唐守伟,熊和平.苎麻主要品质性状相互关系的研究.中国麻业,2005,27(5):227-230
    99.邹园秀,廖志强,赖占钧.中国苎麻属野生植物的搜集与研究进展.江西农业学报,2008,20(1):17-20
    100.Budak H,Shearman R C,Parmaksiz I and Dweikat I.Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs,SSRs,RAPDs and SRAPs.TheorAppl Genet,2004,109:280-288
    101.Bahattin T.Inter-simple sequence repeat(ISSR) and RAPD variation among wild barley(Hordeum.vulgare subsp,spontaneum) populations from west Turkey.Genet Resour Crop Evol,2003,50:611-614
    102.Chen D H and Ronald P C.A Rapid DNA Minipreparation Method Suitable for AFLP and Other PCR Applications.Plant Mol Biol Rep,1999,17:53-57
    103.Chennaoui H,Marghali S,Marrakchi M and Trifi-Farah N.Phylogenetic relationships in the North African genus Hedysarum as inferred from ITS sequences of nuclear ribosomal DNA.Genet Resour Crop Evol,2007,54:389-397
    104.Dice L R.Measures of the amount of ecologic association between species.Ecology,1945,6:297-302
    105.Doyle J J and Doyle J L.A rapid DNA isolation procedure for small quantities of fresh leaf tissue.Phytochem Bull.1987,19:11-15
    106.Datson P M,Murray B G and Steiner K E.Climate and the evolution of annual/perennial life-histories in Nemesia(Scrophulariaceae).Plant Syst Evol,2008,270:39-57
    107.Fernandez M E,Figueiras A M,and Benito C.The use of ISSR and RAPD marker for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theor Appl Genet, 2002, 104 : 845-851
    108.Fabio M, Maria T G, Michela S, Manuela F. The intergenic spacer region of the rDNA in Olea europaea L. Tree Genet Geno, 2008,4: 293-298
    109.Fang D Q, Roose M L, dentification of closely related citrus cultivars with inter- simple sequence repeat markers. Theor Appl Genet, 1997, 95: 408-471
    1 lO.Fufa H, Baenziger P S, Beecher B S, Dweikat I, Graybosch R A and Eskridge K M. Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars. Euphytica, 2005, 145: 133-146
    111.Garcia A, Barbosa L, Geraldi A, Souza I and Souza A. Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred line clones. Genet Mol Biol, 2004, 27: 579-588
    112.Gilbert J E, Levis R V et al. Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theor Appl Genet, 1999, 98: 1125-1131
    113.Guo D L and Luo Z R. Genetic relationships of some PCNA persimmons (Diospyros kaki Thunb.) from China and Japan revealed by SRAP analysis. Genet Resour Crop Evol, 2006,53: 1597-1603
    114.Golovnina K A, Glushkov S A, Blinov A G, Mayorov V I. Adkison L Rand Goncharov N P. Molecular phylogeny of the genus Triticum L. Plant Syst Evol, 2007, 264: 195-216
    115.Gottieb L D. Gelelectroresis: new approach to the study of evolution. Bioscience, 1971,21:934-944
    116.Hadrys H, Balik M. and Schiewater B. Application of random amplified polymorphic DNA(RAPD)in molecular ecology. Mole Ecol, 1992, 1: 55-63
    117.He D H, Lin Z X, Zhang X L, Nie Y C, Guo X P, Zhang Y X and Li W. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum x Gossypium barbadense. Euphytica, 2007, 153: 181-197
    118.Jacobson A and Hedren M. Phylogenetic relationships in Alisma (Alismataceae) based on RAPDs, and sequence data from ITS and trn L. Plant Syst Evol, 2007, 265: 27-44 119.Singh A, Devarumath R M, RamaRao S, Singh V P and Raina S N. Assessment of genetic diversity, and phylogenetic relationships based on ribosomal DNA repeat unit length variation and Internal Transcribed Spacer (ITS) sequences in chickpea (Cicer arietinum) cultivars and its wild species. Genet Resour Crop Evol, 2008, 55: 65-79
    120.Joshi S P, Gupta V S, Aggarwal R K. Genetic diversity and phylogenetic relationship in the genus Oryza. Theor Appl Genet, 2000, 100: 1311-1320
    121.Wang B, Peng D X, Liu L J, Sun Z X, Zhang N and Gao S M. An efficient adventitious shoot regeneration system for ramie (Boehmeria nivea Gaud) using thidiazuron. Bota Stud, 2007, 48(2): 173-180
    122.Kantety R V, Zeng X P and Bennetzen J L. Assessment of genetic diversity in dent and popcorn (Zea mays L) inbred line clones using inter-simple sequence repeat(ISSR) amplification. Mole Breed, 1995, 1: 365-373
    123.Keizo Y, Chitose H, Shinya K, Hitofumi I, Ayako I, Akira K, Akira S and Dan E. Sequence analyses of the ITS regions and the matK gene for determining phylogenetic relationships of Diospyros kaki (persimmon) with other wild Diospyros (Ebenaceae) species. Tree Genet Geno, 2008, 4: 149-158
    124.Kojima T, Nagaoka T. Genetic Linkage map of ISSR and RAPD markers in Einkom wheat in rellation to that of RFLP markers. Theor Appl Genet, 1998, 96: 37-45
    125.Kumar S, Tamura K, Nei M. MEGA 3.0. Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics, 2004, 5: 150-163
    126.Lim W, Mudge K W, and Weston L A. Utilization of RAPD markers to assess genetic diversity of wild populations of North American Ginseng (Panax quinquefolius). Planta Med, 2007,73: 71-76
    127.Lin Z X , Zhang X L , Nie Y C, He D H and Wu M Q. Construction of a linkage map for cotton based on SRAP. Chinese Science Bulletin, 2003, 48: 2063-2067
    128.Liu F H, Liang X N, Zhang N G, Huang Y S and Zhang S W. Effect of growth regulators on yield and fiber quality in ramie (Boemheria nivea L. Gaud), China grass. Field Crops Res, 2001, 69: 41-46
    129.Liu F H, Li Z J, Liu, Q Y, He H, Liang X N and Lai Z J. Introduction to the wild resources of the genus Boehmeria Jacq. in China. Genet Resour Crop Evol, 2003, 50: 793-797
    130.Liu L J, Peng D X and Wang B. Genetic Relation Analysis On Ramie (Boehmeria nivea (L.) Gaud.) Inbred line clones By SRAP Markers. Agricultural Sciences In China, 2008, 7(8): 944-949
    131.Loarce Y, Gallego R and FerrerE. A comparative analysis of genetic relationships between rye cultivars using RFLP and RAPD markers. Euphytica, 1996, 88: 107-115
    132.Li G, Gao M, Yang B and Quiros C F. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Genet, 2003, 107: 168-180
    133.Lewontin R. The apportionment of human diversity. Evolutionary Biology, 1972, 6: 381-398
    134.Li G and Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103: 455-461
    135.Mantel N. The detecion of disease clustering a generalized regression approach. Cancer Res, 1967, 27: 209-220
    136.Marotti I, Bonetti A, Minelli M, Catizone P and Dinelli G. Characterization of some Italian common bean (Phaseolus vulgaris L.) landraces by RAPD, semi-random and ISSR molecular markers. Genet Resour Crop Evol, 2007, 54: 175-188
    137.Nagaoka T, Ogihara Y. Applicability of inter-simple sequence repeat markers in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl genet, 1997, 94: 597-602
    138.Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978(89): 583-590
    139.Nei M, and Li W. Mathematical model for studying genetic variation in terms of restriction edonucleases. Proc Natl Acad Sci USA, 1979, 79: 5269-5273
    140.Nie Z L, Wen J and Sun H. Phylogeny and biogeography of Sassafras (Lauraceae) disjunct between eastern Asia and eastern North America. Plant Syst Evol. 2007, 267: 191-203
    141.Pan J S, Wang G, Li X Z, He H L, Wu A Z and Cai R. Construction of a genetic map with SRAP markers and localization of the gene responsible for the first-flower-node trait in cucumber( Cucumis sativus L ). Prog Natl Sci, 2005, 15(5): 407-413
    142.Pedro R, Pablo V, Rosa A M, Mafia E C and Amando O. Variability among maize (Zea mays L.) inbred line clones for seed longevity. Genet Resour Crop Evol, 2006, 53: 771-777
    143.Prevost A, wilkinson J. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet, 1998, 98: 107-112
    144.Resetnik I, Liber Z, Satovic Z, CigieP and NikolieT. Molecular phylogeny and systematics of the Lilium carniolicum group (Liliaceae) based on nuclear ITS sequences. Plant Syst Evol, 2007, 265: 45-58
    145.Ren Y,Wang D, Zhang Y D, Li Y, Wang H M et al. Optimization of SRAP-PCR in Hot Pepper(Caps ic urn annuum L). Mole Plant Breed, 2004, 5(2): 689-693
    146.Ribaut J, Hoisington D. Marker-assisted selection: new tools and strategies. Trends Plant Sci, 1998,3:236-239
    147.Rohlf F J. NTSYS-pc : Numerical Taxonomy and Multivariate Analysis System. Version 2.1 Exeter Publications, New York, 2000, USA
    148.Roy A, Bandyopadhyay A, Mahapatra A K, Ghosh S K, Singh N K, Bansal KC, Koundal K R and Mohapatra T. Evaluation of genetic diversity in jute (Corchorus species) using STMS, ISSR and RAPD markers. Plant Breed, 2006, 125: 292-297
    149.Sarwat M, Das S, and Srivastava P S. Analysis of genetic diversity through AFLP, SAMPL, ISSR and RAPD markers in Tribulus terrestris, a medicinal herb. Plant Cell Rep, 2008, 27: 519-528
    150.Soller M and Beckmann J S. Genetic polymorphism in varietal identification and genetic improvement. Theor Appl Genet, 1983, 67: 25-33
    151.Souframanien J and Gopalakrishna T. A comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers. Theor Appl Genet, 2004, 109: 1687-1693
    152.Sun S J, Gao W, Lin S Q, Zhu J, Xie B G and Lin Z B. Analysis of genetic diversity in Ganoderma population with a novel molecular marker SRAP. Applied Genetics and Molecular Biotechnology, 2006, 72: 537-543
    153.Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research , 1997, 25: 4876-4882
    154.Treuren V R, Soest L J and Hintum T. Marker assisted rationnalization of genetic resource collections a case study in flax using AFLPs. Theor Appl Genet, 2001, 103: 144-152
    155.Tsutsumi C, Yukawa T, Lee N S, Lee C S, Kato M. Phylogeny and comparative seed morphology of epiphytic and terrestrial species of Liparis (Orchidaceae) in Japan . J Plant Res, 2007, 120: 405-412
    156.Vaughan J Gand Denford K E. An acrylamide gel electrophoretic study of the seed proteins of Brassica, Sinapsis species with special reference to their taxonomic value. J Exp Bot, 1968, 19:724-732
    157.Wang Q D, Zhang T, and Wang J B. Phylogenetic relationships and hybrid origin of Potamogeton species(Potamogetonaceae) distributed in China: insights from the nuclear ribosomal internal transcribed spacer sequence (ITS). Plant Syst Evol, 2007, 267: 65-78
    158.Welsh J M, Acclelland. Fingerprinting genomes using PCR with arbitrary Primers. Nucleic Acids Res, 1990, 18: 7213-7218
    159.Williams J G, Kubelik A R, Livak K J et al. DNA polymorphism amplified by arbitrary are useful as genetic makers. Nucleic Acids Res. 1990, 18: 6531-6535
    160.Wiesner I and Wiesenerova D. Effect of resolving medium and staining procedure on inter-simple-sequence-repeat (ISSR) patterns in cultivated flax germplasm. Genet Resour Crop Evol, 2003, 50: 849-853
    161 .Yang W P, Oliveira A C et al. Comparison of DNA marker technologies in characterizing plant genome diversity: variability in Chinese sorghums. Crop Sci. 1996,36: 1669-1676
    162. Yap I V and Nelson R J. Winboot: a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. IRRI Discuss. 1996, Pap Ser 14
    163.Yeh F, Yang R C, Boyle T. POPGENE A User-friendly Shareware for Population Genetic Analysis. 1997, Molecular and Biotechnology Center, University of Alberta, Edmonton
    164.Zhang W J, Qu L J, Gao W, Gu H Y, Chen Z L and Chen J K. The phylogenetic relationships among the possible donors of B-genome of common wheat based on internal transcribed spacer (ITS)sequences. Acta Phytotaxonomica Sinica, 1999, 37 (5): 417-424
    165.Zhou J L, JieY C, Jiang Y B, Zhong Y L, Liu Y H and Zhang J. Development of simple sequence repeats (SSR) markers of ramie and comparison of SSR and inter-SSR marker systems. Prog Nat Sci, 2005, 15: 136-142
    166.Zhang J L Zhang C Q , Gao L M , Yang J B and Li H T . Natural hybridization origin of Rhododendron agastum(Ericaceae) in Yunnan, China: inferred from morphologicaland molecular evidence. J Plant Res, 2007, 120: 457-463
    167.Zietkiewicz E, Rafalske A, Labuda D. Genome Fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 1994, 20: 176-183
    168.Zhou J L. Jie Y C. Jiang Y B. Zhong Y L. Liu Y H and Zhang J. Development of simple sequence repeats (SSR) markers of ramie and comparison of SSR and inter-SSR marker systems. Prog Nat Sci, 2005, 15: 136-142

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700