用户名: 密码: 验证码:
油菜BN5和BN10基因的诱导表达和病毒抗性鉴定及拟南芥遗传转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是我国重要的油料作物。病毒病是危害油菜的主要病害,芜菁花叶病毒(TuMV)、黄瓜花叶病毒(CMV)、油菜花叶病毒(YOMV)和烟草花叶病毒(TMV)是油菜病毒病的主要毒源。在油菜生产上,种植抗病品种是防治病毒病的有效措施,但目前尚缺乏对病毒病高抗或免疫的油菜品种,并且寄主对病毒病抗性的分子机制研究相对滞后。
     本研究利用基于病害防御反应信号分子诱导处理的油菜叶片制备的UniGene库和对应的油菜cDNA芯片,通过基因表达谱分析和序列分析,结合参阅相关文献,挑选出与抗病抗逆相关的油菜BN5基因和BN1O基因;利用农杆菌介导的泡花法(Floral-dip)将油菜BN5和BN10基因转化到Columbia野生型拟南芥;利用荧光定量PCR检测BN5和BN10基因在油菜不同组织中的表达差异,以及病毒和化学处理对该基因的诱导表达。取得的主要研究结果如下:
     1.YOMV、TuMV和CMV三种病毒在油菜感病品种华杂6号上活化后的病状表现基本一致,表现为花叶、斑驳、疱斑、明脉和皱缩等症状。病毒接种鉴定结果显示,转BN5基因RNAi载体的转基因油菜(pRNAi-BN5)比非转基因对照(苏油1号)对病毒更敏感。在三种油菜病毒中,转基因油菜对CMV最为敏感,接种CMV后发病最重,其次是YOMV和T'uMV。
     2.pRNAi-BN5转基因油菜中BN5基因荧光定量PCR分析表明:BN5基因的表达受到明显抑制,表达量仅为非转基因对照的22%-45%。BN5基因在转基因和非转基因油菜根、茎、叶中均有表达,其中在茎的表达量最高,叶居中,根的表达量最低。油菜接种YoMV、CMV和TuMV,不管是转基因油菜还是非转基因油菜,三种病毒均能诱导BN5基因的上调表达,但不同时间点的表达量和上调表达幅度有所不同。三种病毒中,接种CMV时BN5的诱导表达量最高,且最先达到峰值,但之后迅速下降,降幅大于接种YOMV和TuMV时BN5的表达量。说明BN5基因对CMV的刺激最敏感,可能在油菜抗病毒过程中发挥了重要作用。
     3.BN10基因在油菜根、茎、叶中均有表达,其中在根的表达量最高,茎居中,在叶中的表达量最低。用甲基茉莉酸(MeJA)和草酸(OA)处理油菜叶片,荧光定量PCR分析表明:MeJA诱导处理后BN10基因表达先升后降,在24h表达量最高(为诱导前的2.58倍),之后有所下降,但诱导后的表达量始终高于诱导前,72h时的表达量仍为诱导前的1.13倍。OA诱导处理后,BN10表达量也是先增加后降低,在12h达到最大值(为诱导前的2.5倍),72h下降至最低(仅为诱导前的25%)。研究结果显示,甲基茉莉酸和草酸均能诱导BN10的表达,推断BN10可能在油菜抗逆过程中具有一定的作用。
     4.通过化学法(CaCl2法)将油菜BN5和BN10基因的RNAi载体和过表达载体,即pRNAi-BN5、pG4A-BN5、pRNAi-BN10和pG4A-BN10 4种质粒DNA成功转化农杆菌EHA105。通过除草剂筛选及PCR检测,分别获得含pRNAi-BN5、pG4A-BN5、pRNAi-BN10和pG4A-BN10质粒的T0代转基因拟南芥20株、10株、7株和10株。
Rapeseed (Brassica napus) is one of the most important oilseed crops in China. Virus disease is the main disease in oilseed rape. Turnip mosaic virus(TuMV), Cucumber mosaic virus(CMV), Youcai mosaic virus(YoMV) and Tobacco mosaic virus(TMV) are major virus that infecte oilseed rape. At present, the cultivation of resistant varieties is the best way to resist virus diseases. But we are lacking in highly resistant or immune varieties of rape and the molecular mechanism of resistance to virus is also lagging behind.
     In this research, we selected two genes (named BN5 and BN10) form oilseed rape genome based on UniGene libraries and cDNA microarray induced by disease defense response signaling molecules on leaves. BN5 and BN10 genes were transformed into Arabidopsis thaliana by way of floral-dip mediated by Agrobacterium tumefaciens; The difference in expression of BN5 and BN10 genes in different tissues were detected by fluorescence quantitative PCR(Q-PCR). Viruses and chemical treatment were also analysed. The main results are as following:
     1. The plants of Huaza No.6 which is a hypersensitive variety showd mosaic, mottle, blister spot, clear vein and shrinking symptoms infected by TuMV, CMV and YoMV. Majority of positive transgenic plants of pRNAi-BN5 were more susceptible to the viruses than the non-transgenic ones after inoculated with Cucumber mosaic virus (CMV), TuMV and YoMV viruses. Furthermore, transgenic plants were more susceptible to CMV than to YoMV and TuMV.
     2. Gene expression profiles of transgenic plants transformed with BN5 RNA interference vector were detected by real-time quantitative PCR. The results showed that the expression level of BN5 gene was inhibited. The relative expression of BN5 gene in transgenic plants was only 22%-45% relative to the non-transgenic control. BN5 can be detected in roots, stems and leaves of transgenic plants and non-transgenic ones with the highest expression level in stems and the lowest in roots. TuMV, CMV and YoMV can induce up-regulated expression of BN5 gene in transgenic and non-transgenic plants although their degree is various. The expression of BN5 gene was highest and first reached the peak and then declined rapidly induced by CMV infection than by YoMV and TuMV. This result showed that BN5 gene was hypersensitive to CMV infection. BN5 gene may have important function in resistant to viruses.
     3. BN10 can be detected in roots, stems and leaves in non-transgenic oilseed rape plants with the highest expression level in roots and the lowest in leaves. Methyl jasmonate (MeJA) and oxalic acid (OA) can induce up-regulated expression of BN10 gene in leaves analyzed by quantitative fluorescent PCR. The results suggested that BN10 gene expression up-regulated firstly and then decline induced by mathyl-jasmonate treated. BN10 had the highest expression level at 24h (2.58 times before the induction), downregulated to 72h (1.13 times before the induction). After oxalic acid induced, BN10 gene expression reached the maximum at 12h (2.5 times before the induction), dropped to the lowest at 72h (only 25% before the induction). These data suggested MeJA and OA could induce BN10 gene expression. It can be inferred tha BN10 may play a role in stress resistance pathway.
     4. RNA interference vectors and plant over-expression vectors of BN5 and BN10 genes (namely pRNAi-BN5, pG4A-BN5, pRNAi-BN10 and pG4A-BN10) were transformed into Agrobacterium tumefaciens EHA105 by using CaCl2 treated method.20, 10,7 and 10 of TO generation of transgenic Arabidopsis thaliana plants of four vectors were obtained tested by herbicide screen and PCR test.
引文
1. 蔡丽.油菜病毒株系鉴定和抗病相关基因研究及转基因飘逸评价.[博士学位论文].武汉:华中农业大学图书馆,2008
    2. 蔡丽,许泽永,陈坤荣,等.芜菁花叶病毒研究进展.中国油料作物学报,2005a,27(1): 104-110
    3.蔡丽,许泽永,陈坤荣,等.油菜花叶病毒Wh株系的鉴定.植物保护学报,2005b,32(4):367-372
    4. 蔡丽,许泽永,陈坤荣,等.芜菁花叶病毒对油菜致病力差异及壳蛋白基因序列分析.植物病理学报,2007,37(2):169-174
    5. 陈坤荣,蔡丽,许泽永,等.油菜品种和资源材料对芜菁花叶病毒的抗性鉴定.中国油料作物学报,2006,28(3):350-353
    6.杜建芳,廖祥儒,侯小康,等.AgNO3和低温处理对小麦细胞GST及GR酶活性的影响.河北大学学报,2001,21(4):402-405
    7.段红英,丁笑生,周延清,等.根癌农杆菌介导油菜CBF1基因转化拟南芥.安徽农业科学,2008,36(14):5775-5776
    8.付绍红,牛应泽,杨洪全,等.表面活性剂silwet-77对floral-dip转化甘蓝型油菜效果的影响.分子植物育种,2004,2(5):661-666
    9.巩振辉,Milner J J,何玉科.拟南芥基因转移新方法-真空渗入法的研究.西北植物学报,1996,16(3):277-283
    10.冀瑞琴.油菜抗菌核病分子机制研究.[博士学位论文].武汉:中国农科院油料作物研究所,2006
    11.孔令娜.一个新的油菜NHX基因电子克隆及序列分析.生物学杂志,2010,27(4):26-30
    12.兰玉菲,郗丽君,张德满,等.植物病毒检测技术.山东农业科学,2006,5:58-62
    13.李爱民,薛林宝,张永泰.黄瓜花叶病毒病防治策略研究进展.长江蔬菜,2004,3:38-41
    14.李加纳,湛利,梁颖.甘蓝型黄籽油菜的研究与思考.见:食物与能源安全战略中的中国油料.北京:中国农业科技出版社,2004,29-39
    15.李丽丽.油菜病毒病.中国农作物病虫害及其防治.北京:农业出版社,1996,869-873
    16.刘化龙,刘双奇,王敬国,等.花粉管通道法转Bar-Bt-1Ab基因到北方优质粳 稻的研究.东北农业大学学报,2008,39(7):5-8
    17.刘胜毅,周必文,潘家荣.油菜对毒素草酸的吸收代谢与抗性机理.植物病理学报,1998,28(1):33-37
    18.卢爱兰,陈正华,孔令洁,等.抗芜著花叶病毒转基因甘蓝型油菜的研究.遗传学报,1996,23(1):77-83
    19.卢其能,杨清,沈春修.马铃薯愈伤组织中色素含量与4个花色苷合成相关基因的表达差异.基因组学与应用生物学,2009,28(4):678-684
    20.戚元成,张世敏,王丽萍,等.谷胱甘肽转移酶基因过量表达能加速盐胁迫下转基因拟南芥的生长.植物生理与分子生物学报,2004,30(5):517-522
    21.任海红,任小俊,王英,等.非组培遗传转化法在农作物上的应用.山西农业科学,2010,38(11):85-88
    22.任秋红,黄军艳,毛晗,等.甘蓝型油菜LOX2基因在MeJA、BTH和核盘菌诱导下的表达.河南农业科学,2010,7:22-25
    23.孙国荣,王建波,曹文钟,等.Na2CO3胁迫下星星草幼苗叶绿体GST活性变化及其与相关指标的关系西北植物学报.2005,25(12):2495-2501
    24.史卫东.油菜开花时间变异分析和拟南芥晚开花突变体鉴定与基因克隆.[博士学位论文].北京:中国农业科学院.2006
    25.田波,张秀华,邱并生,等.一种新的植物病毒防治方法:用卫星RNA防治黄瓜花叶病毒病.科学通报,1986,31(6):478-480
    26.王翠艳,丁东风,于晓菊,等.Floral-dip法在大豆遗传转化中的应用研究.南开大学学报(自然科学版),2010,43(1):34-43
    27.王鸣,文生仓,阎友晖.主要瓜类作物的抗病毒病育种(下).长江蔬菜,1997(3):1-5
    28.王艳杰,申家恒.花粉管通道法转基因技术的细胞胚胎学机理探讨.西北植物学报,2006,26(3):628-634
    29.魏利斌.芝麻EST-SSR开发、遗传图谱构建及棉花脂肪酸代谢相关基因克隆.[博士学位论文].南京:南京农业大学图书馆,2008
    30.肖东来.水稻条纹病毒NS2-NS3蛋白与寄主间的互作.[博士学位论文].福州:福建农林大学图书馆,2010
    31.徐芳,熊爱生,彭日荷,等.植物遗传转化的新方法:Floral Dip.中国蔬菜,2005(3):29-31
    32.徐光硕,饶勇强,陈雁,等.用in planta方法转化甘蓝型油菜.作物学报,2004,30(1):1-5
    33.许红梅,张立军,刘淳.农杆菌蘸花法侵染拟南芥的研究.北方园艺,2010(14): 143-146
    34.严继勇,何玉科,曹家树.一种新的植物基因遗传转化方法——花蕾微量注射法.全国蔬菜遗传育种学术讨论会,2002,379-383
    35.晏立英,许泽永,陈坤荣.油菜花叶病毒武汉株系基因组全序列分析.植物病理学报.2008,38(4):394-400
    36.杨玉婷,陈武,李颖,等.拟南芥抗病基因RPP8转化烟草及其表达分析.作物研究,2009,23(2):125-128
    37.张好富,张宪银.一种不依赖于无菌培养的拟南芥活体转基因种子筛选方法.浙江大学学报,2009,35(4):372-376
    38.张荣意,刘智昕.植物抗病毒基因工程的策略和机制.热带农业科学,2002,22(5):68-73
    39.赵凤云,王晓云,赵彦修,等.转入盐地碱蓬谷胱甘肽转移酶和过氧化氢酶基因增强水稻幼苗对低温胁迫的抗性.植物生理与分子生物学学报,2006,32(2):231-238
    40.赵燕,黄丽华,蒋向,等.荠菜CRABS CLAW的克隆与拟南芥遗传转化.西北植物学报,2009,29(11):2162-2167
    41.庄木,王小武,谢丙炎,等.黄瓜花叶病毒反义2b基因构建及其转基因初步研究.园艺学报,2004,31(6):811-813
    42.周光宇,翁坚,龚蓁蓁.授粉后外源DNA导入植物的技术.中国农业科学,1988,21(3):12-61
    43.周锦,董彩华,刘学群,等.GAPC和AT2G36580在油菜不同组织器官中的表达差异及其与雄性不育的关系.中国油料作物学报,2008,30(2):157-162
    44.周树峰,兰海,郑名敏,等.AtNHXl提高烟草耐盐性的研究.安徽农业科学,2010,38(19):10059-10060,10064
    45.朱常香,宋云枝,张松,等.抗芜菁花叶病毒转基因大白菜的培育.植物病理学报,2001,31(3):257-264
    46.朱水芳,主编.实时荧光聚合酶链式反应技术.北京:中国计量出版社,2003
    47. Adenot X, Elmayan T, Lauressergues D, et al. DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AG07. Current Biology,2006,16(9): 927-932
    48. Aguilar I, Sanchez F, Martin A M, et al. Nucletide sequence of Chinese rape mosaic virus(Oolseed rape mosaic virus), a crucifer tobamovirus infectious on Arabidopsis thalians. Plant Mol Biol,1996,30(1):191-197
    49. Angell S M, Baulcombe D C. Potato virus X amplicon-mediated silencing of nuclear genes. Plant J,1999,20:237-245
    50. Baker B, Zambryski P, Staskawicz B. Signaling in plant-microbe interaction. Science, 1997,276:736-743
    51. Bateman A. The SGS3 protein involved in PTGS finds a family. BMC Bioinformatics, 2002,3:21
    52. Baulcombe D C, Saunders G R, Bevan m W, et al. Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Letter to nature, 1986,321,446-449
    53. Bechtold N, Ellis J. In plants Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plant. C R Acad Sci Paris Life Sci,1993,316:1194-1199
    54. Beclin C, Vaucheret H. PTGS in plants, a virus resistance mechanism. MS Medecine Sciences,2001,17 (8-9):845-855
    55. Beclin C, Boutet S, Waterhouse P, et al. A branched pathway for transgene-induced RNA silencing in plants. Current Biology,2002,12(8):684-688
    56. Boutet S, Vazquez F, Liu J, et al. Arabidopsis HEN1:a genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Curr Biol,2003,13(10):843-848
    57. Bressan R A, Zhang C Q, Zhang H, et al. Learning from the Arabidopsis experience: The next gene search paradigm. Plant Physiol,2001,127:1354-1360
    58. Butaye K M, Goderis I J, Wouters P F, et al. Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions. Plant J,2004,39(3):440-449
    59. Cai L, Chen K R, Zhang X J, et al. Biological and molecular characterization of a crucifer tobamovirus infecting oilseed rape. Biochemical Genetics,2009,47(7-8): 451-461
    60. Cecchine E, Gong Z H, Geri C, et al. Transgenic Arabidopsis lines expressing gene VI from cauliflower mosaic virus variants exhibit arrange of symptom-like phenotype and accumulate inclulate inclusion bodies. Mol Plant Microbe Interactions,1997, 10(9):1094-1101
    61. Chang S S, Park S K, Kim B C, et al. Stable genetic transformation of A rabidopsis thaliana by Agrobacterium inoculati on in planta. Plant J,1994,5:551-558
    62. Che P, Sonia L, Dan N, et al. Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiology,2006,141:620-637
    63. Chung M H, Chen M K, Pan S M. Floral-spray transformation can efficiently generate Arabidopsis Transgenic Plants. Transgenic Res,2000,9(6):471-476
    64. Clough S J, Bent A F. Floral dip:a simple method for Agraobacterium-meidated transformation of Arabidopsis thaliana. The Plant Journal,1998,16(6):735-743
    65. Curtis I S, Nam H G. Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral dip method-plant development and surfactant are important in optimizing transformation efficiency. Transgenic Res,2001,10:363-371
    66. Dang J L, Jones J D G. Plant pathogen and integrated defense response to infection. Nature,2001,411:826-833
    67. David G G. Gene quantification using real-time quantitative PCR:An emerging technology hits the mainstream. Exp Hematol,2002,30:503-512
    68. Dixon D P, Lapthom A, Edwards R. Plant glutathione transferases. Genome Biol, 2002,3(3):3004.1-3004.10
    69. Droog F, Hooykaas P, Vanderzaal B J.2,4-dichlorophenoxyacetic acid and related chlorinated compounds inhibit two auxin-regulated type-III tobacco glutathione-s-transferases. Plant Physiol,1995,107 (4):1139-1146
    70. Edwards R, Dixon D P, Walbot V. Plant glutathione S-transferases:enzymes with multiple functions in sickness and in health. Trends in Plant Science,2000,5(5): 193-198
    71. Evans I R, MacNeil B H. Virus diseases of rutabagas (turnips). Ontario Ministry Agric Food Factsheet,1983,61-76
    72. Ezaki B, Katsuhara M, Kawamura M, et al. Different mechanisms of four Aluminum(Al) resistant transgenes for altoxicity in Arabidopsis thaliana. Plant Physiol,2001,127:918-927
    73. Feldmann K A, Marks M D. Agrobacterium-mediated transformation of germinating seeds of A rabidopsis thaliana:a non-tissueculture approach. MOL Gen Genet,1987, 208:1-9
    74. Fujita M, Hossian M Z. Modulation of pumpkin glutathione-s-transferases by aldehydes and related compounds. Plant Cell Physiol,2003,44(5):481-490
    75. Fuji, S. Incidence of viruses in Alstroemeria plants cultivated in Japan and characterization of Broad bean wilt virus-2, Cucumber mosaic virus and Youcai mosaic virus. Journal of General Plant Pathology,2007,73(3):216-221
    76. Glick E, Zrachya A, Levy Y, et al. Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(1):157-161
    77. Gundlach H, Muller M J, Kutchan T M, et al. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA,1992,89:2389-2393
    78. Guzman P, Ecker J. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell,1990,2:513-523
    79. Hadi M Z, Kemper E, Wendeler E, et al. Simple and versatile selection of Arabidopsis transformants. Plant Cell Reports,2002,21:130-135
    80. Hossain M Z, Fujita M. Purification of aphi-type glutathione-s-transferase from pumpkin Flowers, and molecular cloning of its cDNA. Biosci Biotechnol Biochem, 2002,66(10):2068-2076
    81. Hughes S L, Hunter P J, Sharpe A G, et al. Genetic mapping of the novel Turnip mosaic virus resistance gene TuRB03 in Brassica napus. Theor Appl Genet,2003, 107(7):1169-1173
    82. Itzhaki H, Woodson W R. Characterization of an ethylene-responsive glutathione-s-transferases gene cluster in carnation. Plant Mol Biol,1993,22:43-48
    83. Jepson I, Holtd C, Roussel V, et al. Transgenic plant analysis as a tool for the study of maize glutathione-s-transferases. Dordrecht, Netherlands:Kluwer Academic Publishers,1997,313-323
    84. Jing F M, Xi L H, Dong X, et al. Cloning and Characterization of the BcTuR3 Gene Related to Resistance to Turnip Mosaic Virus (TuMV) from Non-heading Chinese Cabbage. Plant Mol Biol Rep,2010,28(40):588-596
    85. Kenneth J L, Thomas D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods,2001,25:402-408
    86. Kiyosue T, Yamaguchi S K, Shinozaki K. Characterization of two cDNAs (ERD11 and ERD13) for dehydration inducible genes that encode putative glutathione-s-transferases in Arabidopsis Thaliana. FEBS,1993,6:189-192
    87. Kumakura N, Takeda A, Fujioka Y, et al. SGS3 and RDR6 interact and colocalize in cytoplasmic SGS3/RDR6-bodies,2009,583(8):1261-1266
    88. Lecoq H, Moury B, Desbiez C, et al. Durable virus resistance in plants through conventional approaches:a challenge. Virus Res,2004,100:31-39
    89. Liu S, Wang H, Zhang J, et al. In vitro mutation and selection of doubled-haploid Brassica napus lines with improved resistance to Sclerotinia Sclerotiorum. Plant Cell Reports,2005,24:133-144
    90. Liu X F, Li J Y. Characterization of an ultra-violet inducible gene that encodes glutathione-s-transferase in Arabidopsis Thaliana.Yi Chuan Xue Bao,2002,29 (5): 458-600
    91. Mitrovic S M, Pflugmacher S, Jame K J, et al. Anatoxin-a elicits an increase in peroxidase and glutathione-s-transferase activity in aquatic plants. Aquat Toxicol, 2004,68(2):185-192
    92. Moons A. OsGSTu3 and Osgtu4, eneoding tau class glutathione-S-transferases, are heavy meta-and hypoxic stressinduced and differentially salt stress-responsive in rice roots. FEBS Lett,2003,553:427-432
    93. Mourrain P, Beclin C, Elmayan T. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell,2000,101(5): 533-452
    94. Muangsan N, Beclin C, Vaucheret H, et al. Geminivirus V1GS of endogenous genes requires SGS2/SDE1 and SGS3 and defines a new branch in the genetic pathway for silencing in plants. Plant Journal,2004,38(6):1004-1014
    95. Mucharromah E K, Kuc J. Oxalate and phosphate induce systemic resistance against disease caused by fungi bacteria and viruses in cucumber. Crop Protection,1991, 10(4):265-270
    96. Nichols K W, Heck G R, Fernandez D E. Simplified selection of transgenic Arabidopsis thaliana seed in liquid culture. Biotechniques,1997,22:62-63
    97. Ohshima K, Yamaguchi Y, Hirota R, et al. Molecular evolution of Turnip mosaic virus:evidence of host adaptation, genetic recombination and geographical spead. J Gen Virol,2002,83(6):1511-1521
    98. Pascal S, Gullner G, Komives T, et al. Selective induction of glutathione-S-transferase subunits in wheat plants exposed to the herbicide acifluorfen. Z Naturforsch,2000,55(1-2):37-39
    99. Peragine A, Yoshikawa M, Wu G. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev,2004,18(19):2368-2379
    100.Pozueta-romero J, Houlne G, Canas L, et al. Enhance dregeneration of tomato and pepper seed lingex plants for-mediated transformation. Plant Cell Tissue and Organ Culture,2001,67:173-180
    101.Rejane L, G, Henrik U S. Oxalate production by Sclerotinia Sclerotiorum deregulates guard cells during infection. Plant Physiology,2004,136:3703-3711
    102.Riechers D E, Zhang Q, XU F, et al. Tissues pecific expression and localization of safener induced glutathione-s-transferase proteins in Triticum Tauschii. Planta,2003, 217(5):831-840
    103.Robertson D, Muangsan N. Host factors involved in begomovirus induced gene silencing and symptom development. Phytopathology,2003,93 (6):109
    104.Rosanna M Z, Colleen S Z, Asya S, et al. Genetic dissection of histidine biosynthesis in Arabidopsis thaliana. Plant Physiology,2007,144:890-903
    105.Roxas V P, Lodhi S A, Garrett D K, et al. Stress tolerance in transgenic tobaceo seedlings at ovrexpression glutathione S-transferase/glutathione peroxidase. Plant and Cell Physiology,2000,41(11):1229-1234
    106.Rusholme R L. The genetic control of resistance to turnip mosaic virus (TuMV) in Brassica. PhD Thesis, University of East Anglia, Norwich,2000
    107.Ryals J A, Neuenschwander U H, Willits G M, et al. Systemic acquired resistance. Plant Cell,1996,8:1809-1819
    108.Sanford J C, Johnson S A. The concept of pathogen-derived resistance. Theoret Biol, 1985,113:395-405
    109.Sharma Y K, Davis K R. Ozone induced expression of stress related genes in Arabidopsis thaliana. Plant Physiol,1994,105(4):1089-1096
    110.Singh R P. Potatovirus Y detection:sensitivity of RT-PCR depends on the size of fragment amplified. Can J Plant Pathol,1997,19:149-155
    111.Soranzo N, Sari-Gorla M, Mizzi L, et al. Organisation and structural evolution of the rice glutathiones-transferase gene fanlily. Mol Genet Genomies,2004,271(5): 511-521
    112.Stephen H. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature,2000,408:796-815
    113.Takahashi H, Miller J, Nozaki Y, et al. RCY I, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J,2002, 32(5):655-670
    114.Takahashi Y, Nagata T. Par B:An Auxin-regulated gene encoding glutathione-s-transferase. Proc Natl Acad Sci USA,1992,89:56-59
    115.Thomma B P H T, Eggermont K, Penninckx L A M A, et al. Separate jasmonate-dependent and salicylate-dependent defense-response pathway in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA,1998,95:1507-1511
    116.Tomlinson J A. Epideme biology and control of virus disease of vegetables. Annals of Applied Biology,1987,110:661-681
    117.Tsuchiya T, Takesawat K, Anzaki H, et al. Genomic structure and differential expression of two tandem arranged GSTZ Genes in Rice. Gene,2004,335:141-149
    118.Vazquez F, Vaucheret H, Rajagopalan R, et al. Endogenous trans-acting siRNAs regulate the accumulation of arabidopsis mRNAs. Mol Cell,2004,16(1):69-79
    119. Walsh J A, Sharpe A G, Jenner C E, et al. Characterisation of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TuRB01. Theor Appl Genet,1999,99:1149-1154
    120.Xu F, Lagudahe E S, Moose S P, et al. Tandemly duplicated safener induced glutathione-S-ransferase genes from Triticum tauschii contribute to genome and organ specific expression in Hexaploid Wheat. Plant Physiol,2002,130:362-373
    121.Xu Z, Barnett O W. Identification of a cucumber, mosaic virus strain from naturally infected peanut in China. Plant Disease,1983,68:386-389
    122.Yu T, Liy S, Chen X F, et al. Transgenic tobacco plants overexpressing cotton glutathione-s-transferase (GST) Show enhanced resistance to Methyl Viologen. J Plant Physiol,2003,160 (11):1305-1311
    123.Zhang D P, Trudeau V L. The XS domain of a plant specific SGS3 protein adopts a unique RNA recognition motif (RRM) fold. Cell Cycle,2008,7 (14):2268-2270
    124.Zhu H, Hong J, Ye R, et al. Sequence analysis shows that ribgrass mosaic virus Shanghai isolate (RMV-Sh) is closely related to Youcai mosaic virus. Arch Virol, 2001,146(6):1231-1238

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700