用户名: 密码: 验证码:
PAN基预氧丝在碳化过程中的工艺及物化行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在PAN基碳纤维的制备过程中,预氧丝的碳化是决定碳纤维质量的关键工艺之一。针对国产原丝开展预氧丝碳化过程的基础性科学研究,深入了解预氧丝在碳化过程中的物理化学变化,明确结构演变规律,探讨工艺、结构及性能的相互关系,可为高性能碳纤维的制备提供理论指导。本文针对自产原丝,在预氧化碳化中试实验线上开展一系列的预氧化、碳化实验,利用差示扫描量热仪(DSC)、热重分析仪(TG)、傅立叶变换红外光谱仪(FTIR)、元素分析仪(EA)、X射线衍射仪(XRD)、电子顺磁共振波谱仪(EPR)、显微激光拉曼光谱仪(LRS)以及高分辨透射电镜(HRTEM)等测试技术,在确定预氧丝制备工艺并制备出适于碳化的预氧丝的基础上,对预氧丝碳化过程中的热行为、结构遗传与演变规律进行全面深入的研究,并探讨了碳化工艺对碳纤维性能的影响。
     在碳化研究用预氧丝的制备工艺探讨中,通过在线预氧化实验和对预氧丝样品的表征,综合考虑原丝的放热特性、预氧丝氧含量值随温度的变化增量、有机官能团变化、密度、芳构化度、皮芯结构等多种因素和指标,确定了预氧化的起始温度、最高温度、走丝速度、梯度温度分布以及牵伸等工艺参数,制备了可生产出T300水平碳纤维的预氧丝用以碳化研究。
     预氧丝在碳化过程中的热行为研究表明,预氧丝在低温碳化阶段发生放热反应,在高温碳化阶段发生吸热反应。低温碳化放热是结构中的氧元素促进共轭、芳构化及交联等反应的结果,具有进一步稳定纤维结构的作用。预氧丝的预氧化程度、加热气氛以及加热速率都会对低温碳化放热产生影响。高温碳化吸热则是纤维不稳定结构的剧烈裂解反应造成的,与预氧丝的氧含量及预氧化程度密切相关。进一步的研究表明,惰性气氛中对预氧丝的低温碳化处理优于空气中的处理;低温碳化慢速加热使纤维低温放热反应充分进行,有利于纤维高温碳收率的增加;预氧丝结构中的氧元素对于高强碳纤维的制备有重要作用,它既能增加结构稳定性,避免高温剧烈吸热反应发生,又促进了高温裂解反应提前发生,使纤维更易碳化。
     应用FTIR、XRD以及LRS实验技术,进一步明确了预氧丝的结构。从化学结构角度,预氧丝大分子链主要由线形链段连接的多个芳构梯形链段组成,并伴有分子链间和链内的交联,而梯形链段是由芳化极不完全的2~4个芳构杂环组成;从物相结构角度,预氧丝由占绝大多数的非晶、少量线形链段有序区以及少量梯形链段有序区组成,而梯形链段有序结构是碳纤维乱层石墨微晶的雏形。
     通过对低温、中温及高温不同温度碳化纤维的FTIR、EA、XRD、EPR和LRS表征,研究了预氧丝在两段梯度升温碳化过程中的结构演变。根据结构演变特点,可将整个梯度升温碳化过程分为三个阶段。第一个阶段为300~450℃的纤维结构深入稳定化阶段,此阶段交联和芳构化反应发生,造成含氧模式重排、纤维芳构化度和致密性提高。此时纤维仍由线形链段和梯形链段两部分组成,但前者逐渐减少,后者增多。第二阶段为450~750℃的芳环平面长大并向碳基面转变阶段,线形链段在此阶段发生大规模无规裂解,产生大量自由基;裂解后,纤维主要由芳构化结构组成,随温度的提高,芳构平面逐步长大,并向碳基面转变;同时发生的结构重排,使存在于非晶中的微晶有序区尺寸进一步增大。第三阶段为1000~1400℃的乱层石墨微晶形成并长大阶段,此阶段纤维中的非碳元素排出,碳基面迅速长大并发生剧烈重排形成乱层石墨微晶;到1400℃,结晶度近50%,但微晶仍不完善,边缘存在大量缺陷。
     采用HRTEM技术观察了预氧丝和不同碳化温度处理后的碳化纤维研磨碎片的微观组织结构,揭示碳化温度对纤维精细结构的影响。结果表明,不同温度碳化处理的纤维的HRTEM图像各具特点。预氧丝的HRTEM图像是典型的非晶无序点状衬度,反映出预氧丝的非晶结构。低温600℃碳化纤维的皮层HRTEM图像由择优取向的小线段和无序点状衬度共混组成,表明此温度碳化纤维是小尺寸多环平面或碳基面组成的相对有序结构与非晶的共混体,是介于非晶和多晶间的局部有序的过渡态;芯部图像中的小线段没有择优取向。高温1000℃碳化后纤维的皮层HRTEM图像主要由弯折的、沿轴向择优取向的带状条纹组成。带状条纹十几纳米长,由2~5个条纹组成,是乱层堆叠石墨层面衍射产生。其分布不均匀,反映层面堆叠的不规整性。芯部带状条纹形态各异,没有沿轴向择优取向。高温1400℃碳化纤维的皮层HRTEM图像中带状条纹变长变宽,有重叠、交联、缠绕现象,是典型的乱层石墨条带组织。芯部条纹碎小,没有形成明显带状。
     各阶段纤维的HRTEM图像清晰的表明了精细组织结构的演变过程。非晶的预氧丝经中低温碳化后,线形链段裂解,梯形链段缩聚形成尺寸极小的多环平面或碳基面,重排后形成沿轴向取向的相对有序区,分布于非晶间。再经高温1000℃碳化,轴向上相邻的但不在同一平面的多环平面或碳基面呈一定夹角头尾相连形成更长碳平面,垂直轴向方向更多层面堆叠,尺寸较小的乱层石墨微晶形成。更高温1400℃碳化时,乱层石墨微晶可能以三种形式长大。在垂直轴向方向,两个相邻并近似平行的乱层石墨微晶可能合并在一起形成更大微晶;而不相平行的两组微晶层面经结构重排后可能发生部分合并。在轴向方向,相邻的微晶条带头尾相接形成更长的条带,乱层石墨微晶迅速长大。在整个碳化过程中,非晶部分或者发生晶化转变为乱层石墨微晶,或者发生裂解以小分子形式从纤维结构中排出,或者仍然存在于碳纤维乱层石墨微晶的边缘或之间。
     以三个结构演变阶段为基础设计梯度温度实验,系统而全面的研究了低温、中温和高温碳化温度对纤维强度的影响。实验结果表明,400℃以下的低温碳化处理会加剧纤维的皮芯结构,不利于高强碳纤维的制备;而预先进行500℃的低温碳化处理则有利于碳纤维抗拉强度的提高。500~750℃的中温碳化实验表明,碳纤维抗拉强度在750℃达到最大值。高温碳化时,碳纤维的抗拉强度在1200℃以下快速增加,在1200℃以上缓慢增加。正负牵伸碳化对比实验反映出牵伸在碳纤维制备过程中的重要作用,适当的中低温碳化牵伸可以抑制低温阶段的纤维热收缩,保持并完善预氧化阶段建立的取向,有益于碳纤维抗拉强度的提高;而高温阶段负牵伸的大小也会影响碳纤维的抗拉强度。可以通过在线张力值来判断当前所应用的牵伸是否合适。通过大量实验,发现对于自产1K原丝,所施加的牵伸力使纤维的中低温碳化在线张力保持于150cN/dtex,高温碳化在线张力保持于200~300cN/dtex时得到的碳纤维性能较好。
Carbonization of the stabilized fiber is one of the essential processes which determine the quality of the resulting carbon fiber during the preparation of the polyacrylonitrile (PAN) -based carbon fiber. In order to obtain high quality carbon fibers, it is important to carry out deeply study on the carbonization of the stabilized fiber. The researches on the physical and chemical changes, structure evolution, as well as the relation between processing, structure and properties during carbonization can provide academic help for the preparation of the high-quality carbon fiber. In this work, a series of stabilization and carbonization experiments were performed on a pilot line by using home precursor fiber as the raw material fiber. The stabilized fibers which can be used for carbonization study were prepared by exploring the stabilization processing parameters. Then, the thermal behavior and structure evolution of the stabilized fiber during carbonization were investigated in detail. Several technologies, such as differential scanning calorimetry (DSC), thermal gravimetry (TG), Fourier transform infrared spectroscopy (FTIR), elemental analyzer (EA), X-ray diffraction (XRD), electronic spinning resonance spectrom (EPR) and high resolution transmission electron microscopy (HRTEM) were used to systemically characterize the structure and feature of the samples. At the same time, the influences of processing conditions on the changes of the properties of carbon fibers were also discussed.
     The stabilization processing parameters, such as the initial temperature, the highest temperature, the temperature gradient distribution, the running speed and the stretching ratio were confirmed by consider systematically the various stabilization indices and factors, like exothermic property of the PAN fiber, the oxygen content increment of the stabilized fiber with raising stabilization temperature, the density, aromatization extent and skin-core structure of the stabilized fiber, and so on. The stabilized fiber which can produce the T300-level carbon fiber were prepared by using the optimal stabilization processing parameters. These stabilized fiber were carbonized further for carrying out the carbonization study.
     The investigation on the thermal behavior of the stabilized fiber during carbonization shows that the exothermal reactions happen when the stailized fiber was carbonized at low temperature, while endothermal reactions appear at high-termperature carbonization stage. The heat liberation at low-temperature carbonization stage is the result of conjugation reaction, aromatization reaction and cross-linking reaction which are facilitated by the oxygen element of the stabilized fiber. These exothermic reactions further stabilize the strcutre of the stabilized fiber. Additionally, the stabilization extent of the stabilized fiber, the heat treatment atmosphere and the heating rate all have effects on the exotherm of the fiber. The endothermal peak and endothermic quantity during high-temperature carbonization, which are reduced by the pyrolysis of the unstable structure, are closely related to the oxygen content and stabilization extent of the stabilized fiber. The further studies indicate that the heating treatment in oxygen-free atomosphere is better than that in air; the heating treatment at low velocity during low-temperature carbonization is beneficial to the increasing of the yield of the carbon fiber; the oxygen element in stabilized fiber is important to the preparation of the high-quality carbon fiber, because it not only can increase the stability of the structure and avoid the hard endothermic reactions, but also can facilitate the pyrolysis reaction to start as early as possible.
     The structure of the stabilized fiber was further studied by FTIR, XRD and LRS. From the view of the chemical structure, the macromolecules of the stabilized fiber are composed of some aromatized ladder segments which are connected by linear segments, accompanying the intro- and inter-molecular cross-linking; the aromatized ladder segment is composed of 2-4 aromatization cycles. From the view of the phase structure, the stabilized fiber is constitutive of the most amorphous structure, a few linear segments order regions and a few aromatized ladder segments order regions.
     The study on the structure evolution of the stabilized fiber during two-step carbonization by FTIR, EA, XRD, EPR and LRS indicates that the total carbonization process can be divided into three stages. The first is the further stability stage of the fiber structure at 300~450℃. At this stage, the exothermal reactions like cross-linking reaction and aromatization reaction happen, which can improve the stability of the fiber structure and result in the increase of the aromatization extent and compactability. The structure of the fiber still consists of linear segments and ladder polymer segments; but the former gradually reduces and the latter increases. The second stage is at 450~750℃, during which the aromatization plane grows and converts to the carbon basal plane. The linear segments pyrolyzes inregularly in large scale to produce much free radicals. The pyrolysis reaction happens in short time and produce a great deal of free radicals. After pyrolysis, the fiber is mainly compose of the ladder aromatization structures which convert gradually into carbon basal planes with raise of the temperature. The third stage is at 100-1400℃, during which turbo graphite micro-cystal forms and grows. The non-carbon elements are taken off from the fiber and the turbo graphite structure form resulted from the growth of the carbon basal planes. Till 1400℃, the crystallinity of the carbon fiber is nearly up to 50%. However, there are mass structure defects lying in the edge of the graphite planes or between graphite planes, indicating that the graphite crystalline region is not perfect.
     The microstructure of the stabilized fiber and the carbonized fiber at different temperature were observed and the effects of the carbonization temperature on the fine structure of the fiber were explored. The experimental results show that the HRTEM images of the stabilized fiber present typical amorphous disorder maze-like clusters, which reflects the amorphous structure of the fiber. After carbonized at 600℃, the HRTEM images of the skin of the fiber are the complex of the line section with preferred orientation and amorphous. The line section is produced by the diffraction of the tiny poly-cyclic plane or the carbon basal plane. However, the line section in the core of the fiber is without preferred orientation. There are some bend ribbon-like fringes appearing in the HRTEM image of the skin of the carbonized fiber after treated at 1000℃. The ribbon-like fringes are more than 10 nm in length and include 2-5 fringes in width, producing by the diffraction of the turbo graphite micro-crystall planes. Whereas, the ribbon-like fringes in the core of the fiber is anisotropic, without preferred orientation. The ribbon-like fringes become longer and wider with the increase of treatment temperature from 1000℃to 1400℃. There are the overlap, cross-linking and intertwist between ribbon-like fringes. The fringes in the core of the fiber are tiny, without forming the ribbon.
     The formation process of the turbo graphite ribbon structure during carbonization is reflected by the HRTEM images. After the amorphous stabilized fiber was carbonized at medium-temperatuer carbonization temperature, the ladder segments condense into the poly-cyclic planes or carbon basal plane. Their reorganization bring the formation of the relative order region with axial orientation. After carbonized at 1000℃, the adjacent poly-cyclic planes or carbon basal plane connect together head-to-head to form longer carbon planes in the axial direction and more planes stack in the radial direction. So, the turbo graphite micro-cystals form. When the fiber was carbonized at 140Q℃, the crystal regions grow by three styles, which can be speculated from the morphorlogy of the ribbon-like fringes in the HRTEM images. One is two adjacent and parallel crystal regions combine together after reorganization in the direction of the axis; The second is the adjacent but unparallel crystal regions combine partially. And the third is the adjacent crystal ribbons connect together head-to-head to form longer ribbon in the radial direction, which brings the quick growth of the crystal region.
     The tensile strength of the carbon fiber can be greatly improved by adjusting the carbonization gradient temperature. The temperature gradient experiments were carried out in the three stages of structure evolution, respectively. The experimental results shows that the pre-carbonization treatment at 500℃is benefit to the improvement of the quality of the carbon fiber. However, the pre-treatment at 400℃is harmful to the preparation of the carbon fiber because the cross-linking reaction lows the the order of the fiber structure and aggravate the skin-core structure. In the experimatal range from 500℃to 700℃, the increase of the temperature can improve the tensile strength of the carbon fiber. In the high-temperature carbonization stage, the formation speed, quantity and crystal size of the turbo graphite structure quickly increase with raising temperature below 1200℃and then slowly grow above 1200℃. Accordingly, the tensile strength of the carbon fiber increase quickly at first below 1200℃and then slowly above 1200℃. The proper stretching ratio during low-temperature carbonization can restrain the thermal shrinkage, which can retain and perfect the orientation of the ladder polymer. The appropriate relax also effect on the strength of the carbon fiber. The on-line tension values can be used to judge whether the current stretching ratio applied is proper. The high-quality carbon fiber can be obtained when the on-line tension at pre-carbonization stage lies 150 cN/dtex or so, while the on-line tension at high-temperature carbonization stage lies 200-300 cN/dtex.
引文
[1]王茂章,贺福.碳纤维的制造、性质及其应用.北京:科学出版社,1984.
    [2]罗益锋.世纪之交的世界碳纤维展望.新型炭材料,1997,12(4):5-12.
    [3]张旺玺.聚丙烯腈基碳纤维.上海:东华大学出版社,2004.
    [4]贺福,赵建国,王润娥.碳纤维工业的长足发展.高科技纤维与应用,2000,25(4):9-13.
    [5]Chand S.Review carbon fibers for composites.Journal of Materials Science,2000,35(6):1303-1313.
    [6]贺福,王茂章.碳纤维及其复合材料.北京:科学出版社,1997.
    [7]贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    [8]唐纳特 JB,班萨尔 RC.碳纤维.北京:科学出版社,1989.
    [9]赵稼祥.大丝束碳纤维及其应用.纤维复合材料,1999,16(4):52-55.
    [10]赵稼祥,王曼霞.复合材料用高性能炭纤维的发展和应用.新型炭材料,2000,15(1):68-75.
    [11]罗益锋.巡视国外高科技纤维动向.高科技纤维与应用,2006,31(4):1-15.
    [12]张家杰.国内外碳纤维生产现状及发展趋势.化工技术经济,2005,23(4):12-19.
    [13]贺福,杨永岗.创新是发展我国碳纤维工业的必由之路.材料导报,2000,14(11):3-4.
    [14]Rahaman MSA,Ismail AF,Mustafa A.A review of heat treatment on polyacrylonitrile fiber.Polymer Degradation and Stability.2007,92:1421-1432.
    [15]Zhang W,Liu J,Wu Gang.Evolution of structure and properties of PAN precursors during their conversion to carbon fibers.Carbon,2003,41:2805-2812.
    [16]Ji M,Wang C,Bai Y,Yu M,Wang Y.Structural evolution of polyacrylonitrile precursor fibers during preoxidation and carbonization.Polymer Bulletin,2007,59:527-536.
    [17]崔传生.丙烯腈/衣康酸铵共聚物的制备及其溶液性质的研究.博士学位论文,山东大学,2006.
    [18]刘国昌,徐淑琼.聚丙烯腈基碳纤维及其应用.机械制造与自动化,2004,33(4):41-43.
    [19]王茂章.聚丙烯腈基炭纤维.新型炭材料,1998,13(4):79.
    [20]Gupta DC,Agrawal JP.Effect of comonomers on thermal degradation of polyacrylonitrile.Journal of Applied Polymer Science,1989,38(2):265-270.
    [21] Edie DD. The effect of processing on the structure and properties of carbon fibers. Carbon, 1998, 36(4): 345-362.
    [22] Jain MK, Abhiraman AS. Conversion of acrylonitrile-based precursor fibers to carbon fibers Part1 A review of the physical and morphological aspects. Journal of Materials Science, 1987, 22(1): 278-300.
    [23] Balasubramanian M, Jain MK, Bhattacharya SK. Conversion of acrylonitrile-based precursors to carbon fibers: Part 3 Thermooxidative stabilization and continuous, low temperature carbonization. Jouranal of Materials Science, 1987, 22(11): 3864-3872.
    [24] Ko T, Day T, Perng J, Lin M. The characterization of PAN-based carbon fibers developed by two-stage continuous carbonization. Carbon, 1993, 31(5): 765-771.
    [25] Ko T, Day T, Lin M. The Effect of Precarbonization on Mechanical Properties of Final Polyacrylonitrile-based carbon fibers. Journal of Materials Science Letter, 1993, 12(3): 343-345.
    [26] Yu M, Wang C, Bai Y, Wang Y, Zhu B. Evolution of tension during the thermal stabilization of polyacrylonitrile fibers under different parameters. Journal of Applied Polymer Science, 2006, 102(6): 5500-5506.
    [27] Walsh PJ. Carbon fibers. ASM Handbook: Composites. ASM International, 2001, 21: 35-41.
    [28] Fitzer E, Heym M. Carbon fibers: the outlook. Chemistry and Industry, 1976, 21(16): 663-676.
    
    [29] Watt W. Pyrolysis of Polyacrylontrile. Nature, 1969, 222: 265-266.
    [30] Watt W, Johnson DJ, Parker E. Pyrolysis and structure development in the conversion of PAN fibres to carbon fibres. Proceedings of the 2nd international conference on carbon fibres, their place in modern technology. London: the Plastics Institute, 1974: 1-14.
    [31] Watt W, Green J. The pyrolysis of polyacrylonitrile. Proceedings of the 1st international conference on carbon fibres, their composites and applications. London: the Plastics Institute, 1971: 23-31.
    [32] Bromley J. Gas evolution processes during the formation of carbon fibers. Proceedings of the 1st international conference on carbon fibers, their composites and applications. London: the Plastics Institute, 1971: 3-9.
    [33] Fiedler AK, Fitzer E, Rozploch F. PAN pyrolysis studies by Gas- and ESR-analysis. Carbon, 1973, 11(4): 426-428.
    [34]Houtz RC.Orlon acrylic fiber:chemistry and properties.Textile Research Journal,1950,20(11):786-801.
    [35]Burlant WJ,Parsons J L.Pyrolysis of polyacrylonitrile.Journal of Polymer Science,1956,22(101):249-256.
    [36]Lacombe EM.Color formation in polyacrylonitrile.Journal of Polymer Science,1957,24(105):152-154.
    [37]Grassie N,Hay JN,Mcneilli C.Coloration in acrylonitrile and methacrylonitrile polymers.Journal of Polymer Science,1958,31(122):205-206.
    [38]Grassie N,Hay J.Thermal coloration and insolubilization in Polyacrylonitirle.Journal of Polymer Science,1962,56(2):189-202.
    [39]Standage AE,Prescott R.Structure of oxidized polyacrylonitrile.Nature,1969,211:688-689.
    [40]Friedlander HN,Peebles LH,Brandrup J,Kirby JR.On the chromophore of polyacrylonitrile.Ⅵ.Mechanism of color formation in polyacrylonitrile.Macromolecules,1968,1(1):79-89.
    [41]Watt W,Johnson W.Mechanism of oxidization of polyacrylonitrile fibres.Nature,1975,257:210-212.
    [42]Clarke AJ,Bailey JE.Oxidation of acrylic fibers for carbon fiber formation.Nature,1973,243:146-150.
    [43]Noh I,Yu H.Kinetics and statistics of structural changes in polyacrylonitrile.Journal of Polymer Science.Part B:Polymer Letters,1966,4(1):721-723.
    [44]Watt W.Nitrogen evolution during the pyrolysis of polyacrylonitrile.Natrue Physical Science,1972,235:10-11.
    [45]Grassie N,Moguehan R.Pyrolysis of polyacrylonitrile and related polymers—Ⅵacrylonitrile copolymers containing carboxylic acid and amide structures.European Polymer Journal,1972,8(2):257-269.
    [46]Clarke AJ,Bailey JB.The role of oxidation in carbon fibre formation from polyacrylonitrile.Proceedings of the 2nd international conference on carbon fibers:their place in modern technology.London:the Plastics Institute.1974:1-4.
    [47]Morita K,Murata Y,Ishitani A,Murayama K,Ono T,Nakajima A.Characterization of commercially available PAN-based carbon fibers.Pure and Applied Chemistry,1986,58(3):455-468.
    [48]刘杰,李佳,王雷.预氧化温度对聚丙烯腈纤维皮芯结构形成的影响.北京化工大学学报,2006,33(1):41-45.
    [49]吕春祥,吴刚平,吕永根,李开喜,李永红,梁晓怿,贺福,凌立成.聚丙烯腈原丝预氧化工艺的研究.新型炭材料,2003,18(3):186-190.
    [50]徐海萍,孙彦平,陈新谋.PAN基预氧化纤维表面超微结构的STM研究.新型炭材料,2005,20(4):312-316.
    [51]Ko T,Ting H,Lin C.The microstructure of stabilized fibers.Journal of Applied Polymer Science.1988,35(4):863-874.
    [52]Ogawa H,Saito K.Oxidation behavior of polyacrylonitrile fibers evaluated by new stabilizsation index.Carbon,1995,33(6):783-788.
    [53]Gupta AK,Paliwal DK,Bajaj P.Acrylic precursors for carbon fibers.Journal of Macromolecular Science-Reviews in Macromolecular Chemisty and Physics,1991,C31(1):1-89.
    [54]Saito K,Ogawa H.Process for producing carbon fibers.US Patent,1978:4069297.
    [55]井敏,王成国,朱波,王延相,丁海燕.PAN原丝预氧化工艺与氧元素含量相关性研究.航空材料学报,2006,26(5):56-60.
    [56]Uchida T,Shinoyama I,Ito Y,Nukuda K,The structural changes in the formation of carbon fibers from polyacrylonitrile precursors.In Proceedings of the 10th Biennial Conference on Carbon.Pennsylvania,The American Carbon Committee and Lehigh University,1971:31-32.
    [57]Yu M,Bai Y,Wang C,Xu Y,Guo P.A new method for the evaluation of stabilization index of polyacrylonitrile fibers.Materials Letters,2007,61:2292-2294.
    [58]于晓强,庄光山,丁洪太,蔡华甦.聚丙烯腈基碳纤维预氧化过程中环构化机理.山东工业大学学报,1995,25(4):301-305.
    [59]张旺玺,刘杰.丙烯腈/衣康酸在DMSO/H_2O中的共聚物结构模拟.合成技术及应用,2004,19(1):6-9.
    [60]王强,朱波,高学平,王成国.浅析聚丙烯腈基碳纤维焦油形成的原因.合成纤维工业,2005,28(3):37-39.
    [61]Wang Y,Wang Q.Evaluation of carbonization tar in making high performance polyacrylonitrile-based carbon fibers.Journal of Applied Polymer Science,2007,104:1255-1259.
    [62]王强,朱波,高学平,王成国.混酸处理对预氧化聚丙烯腈纤维结构和性能的影响.高分子材料科学与工程.2006,22(4):162-168.
    [63]Watt W,Johnson W.The pyrolysis of polyacrylonitrile fiber.Polymer Preprints.1968,9:1245-1254.
    [64]Hay J.Thermal reactions of polyacrylonitrile.Journal of Polymer Science Part A-1:Polymer Chemistry,1968,6(8):2127-2135.
    [65]Mathur RB,Bahl OP,Mittal J.A new approach to thermal stabilization of PAN fibers.Carbon,1992,30(4):657-663.
    [66]Ko T.The influence of pyrolysis on physical properties and microstrucuture of modified PAN fiber during carbonization.Journal of Applied Polymer Science,1991,43(3):589-600.
    [67]Mathur RB,Bahl OP,Mittal J,Nagpal KC.Structure of thermally stabilized PAN fibers.Carbon,1991,29(7):1059-1061.
    [68]李丽娅,黄启忠,张红波,葛毅成.聚丙烯腈预氧丝的碳化结构和性能.粉末冶金材料科学与工程,2000,5(4):301-305.
    [69]李丽娅,黄启忠,张红波.PAN-CF的组织结构及力学性能.粉末冶金材料科学与工程,2002,7(3):253-257.
    [70]李丽娅,黄启忠,张红波.聚丙烯腈基碳纤维的组织结构及力学性能.中南大学学报(自然科学版),2005,36(2):193-197.
    [71]贺福.用拉曼光谱研究碳纤维的结构.高科技纤维与应用.2005,30(6):20-25.
    [72]华中,王月梅,赵萍,赵书华.应用Raman光谱方法研究PAN基碳纤维中sp2杂化的C-C原子键距与碳化温度的关系.吉林师范大学学报(自然科学版),2003,(1):77-79.
    [73]Bennett SC,Johnson DJ.Electron-microscope studies of structural heterogeneity in pan-based carbon fibres.Carbon,1979,17:25-39.
    [74]仲亚娟,孙亚娟,于万秋,刘艳清,魏茂彬,华中.PAN基碳纤维微孔结构的研究.吉林师范大学学报(自然科学版),2005,3:16-18.
    [75]Kaburagi M,Bin Y,Zhu D,Xu C,Matsuo M.Small angle X-ray scattering from voids within fibers during the stabilization and carbonization stages.Carbon,2003,41:915-926.
    [76]徐跃,李向山.碳纤维中纳米微孔的X射线小角散射分析.理化检验-物理分册,2003,39(1):28-31.
    [77]Johnson DJ,Tyson CN.Low-angle X-ray diffraction and physical properties of carbon fibres.Journal of Physics D:Applied Physics,1970,3(4):527-534.
    [78]Jing M,Wang C,Wang Q,Bai Y,Zhu B.Chemical structure evolution and mechanism during pre-carbonization of PAN-based stabilized fiber in the temperature range of 350-600℃.Polymer Degradation and Stability,2007,92(9):1737-1742.
    [79]Manocha LM,Bahl OP,Jain GC.Length changes in PAN fibres during their pyrolysis to carbon fibres.Angewandte Makromolekulare Chemie,1978,67(1):11-29.
    [80]Bahl OP,Mathur RB.Effect of load on the mechanical properties of carbon fibres from PAN precursor.Fibre Science and Technology,1979,12(1):31-39.
    [81]Jing M,Wang C,Zhu B,Wang Y,Gao X,Chert W.Effects of Preoxidation and Carbonization Technologies on Tensile Strength of PAN-Based Carbon Fiber.Journal of Applied Polymer Science,108:1259-1264.
    [82]刘扬,刘杰.碳化过程中改性聚丙烯腈预氧化纤维的高温热应力应变研究.航空材料学报.2005,25(4):30-34.
    [83]Johnson DJ.Structure-property relationships in carbon fibres.Journal of Physics D:Applied Physics,1987,20:286-291.
    [84]Hoffman WP,Hurley WC,Liu PM,Owens TW.The surface topography of non-shear treated pitch and PAN carbon fibers as viewed by the STM.Journal of Materials Research,1991,6(8):1685-1694.
    [85]Fourdeux A,Perret R,Ruland W.Gernaeral structural features of carbon fibres.Proceedings of the 1st international conference on carbon fibers,their composites and applications.London:the Plastics Institute,1971:52-67.
    [86]Bennett SC,Johnson DJ,Johnson W.Strength-structure relationships in PAN-based carbon fibers.Journal of Matterials Science,1983,18(11):3337-3347.
    [87]Guigon M,Oberlin A,Desarmot G.Microtexture and structure of some high tensile strength,PAN-base carbon fibres.Fibre Science and Technology,1984,20(11):55-72.
    [88]Deurbergue A,Oberlin A.TEM study of some recent high modulus PAN-based carbon fibers.Carbon,1992,30(7):981-987.
    [89]Guigon M.Oberlin A,Desarmot G.Microtexture and structure of some high-modulus,PAN-base carbon fibers.Fibre Science and Technology,1984,20(1):177-198.
    [90]Dobb MG,Johnson DJ,Park CR.刘敏,王作明 译.碳纤维的压缩特性.炭素技术,1992,3:17-22.
    [91]Dobb MG,Guo H,Johnson DJ,Park CR.Structure-compressional property relations in carbon fibers.Carbon,1995,33(11):1553-1559.
    [92]齐志军,林树波,于振环.影响碳纤维强度的因素分析.高科技纤维与应用,2003,28(4):30-35.
    [93]李丽娅,黄启忠,张红波.聚丙烯腈(PAN)基预氧丝的碳化工艺研究.粉末冶金材料科学与工程,2000,5(1):69-74.
    [94]Yu M,Wang C,Bai Y,Wang Y,Wang Q,Liu H.Combined effect of processing parameters on thermal stabilization of PAN fibers.Polymer Bulletin,2006,57:525-533.
    [95]林树波,齐志军,王文胜,孙金峰,苑杰.预氧化牵伸对碳纤维强度的影响.高科技纤维与应用,2005,30(5):6-8.
    [96]Johnson JW,Marjoram JR,Rose PG.Stress Graphitization of Polyacrylonitrile Based Carbon Fibre.Nature,1969,221:357-358.
    [97]Johnson JW,Rose PG,Scott G.Graphitisation of PAN-based carbon fibre.Proceedings of the 3rd conference on industrial carbon and graphite.London:Society of Chemical Industry.1971:443-446.
    [1]Fitzer E,Heym M.Carbon fibers—the outlook.Chemical Industry,1976,21(16):663-676.
    [2]Walsh PJ.Carbon fibers.In:Miracle DB,Donaldson SL,editors.ASM Handbook,Vol.21:Composites.ASM International,2001:35-40.
    [3]何东新.聚丙烯腈纤维的预氧化工艺与物化行为研究.博士学位论文,山东大 学,2005.
    [4]Bahl OP,Manocha LM.Characterization of oxidized PAN fibers.Carbon,1974,12:414-423.
    [5]Ko T,Ting H,Lin C.Thermal stabilization of PAN fibers.Journal of Applied Polymer Science,1988,35:631-640.
    [6]Balasubramanian M,Jain MK,Bhattacharya SK.Conversion of acrylonitrile-based precursors to carbon fibers:Part3 Thermooxidative stabilization and continuous,low temperature carbonization.Jouranal of Materials Science,1987,22(11):3864-3872.
    [7]Sen K,Bajaj P,Sreekumar TV.Thermal behavior of drawn acrylic fibers.Journal of Polymer Science:Part B:Polymer Physics,2003,41:2949-2958.
    [8]Boccara AC,Fournier D,Kumar A,Pandey GC.Nondestructive evaluation of carbon fiber by mirage-FTIR spectroscopy.Journal of Applied Polymer Science,1997,63:1785-1791.
    [9]Bashir Z.A critical review of the stabilization of polyacrylonitile.Carbon,1991,29:1081-1090.
    [I0]Deurberoue A,Oberlin A.Stabilization and carbonization of PAN-based carbon fibers as related to mechanical properties.Carbon,1991,29(4-5):621-628.
    [11]Ko T and Lin C.Sturcture changes and molecular motion of polyacrylonitrile fibers during pyrolysis.Journal of Applied Polymer Science,1989,37:553-566.
    [12]Dalton S,Heatley F,Budd PM.Thermal stabilization of polyacrylonitrile fibers.Polymer,1999,40:5531-5543.
    [13]Mochida I,Zeng S,Korai Y,Toshima H.The introduction of a skin-core structure in mesophase pitch fibers by oxidative stabilization.Carbon,1990,28:193-198.
    [14]Matsumoto T,Mochid I.Oxygen distribution in oxidatively stabilizaed mesophase pitch fiber.Carbon,1993,31(1):143-147.
    [15]BlancoC,Lu S,Appleyard SP,Rand B.The stabilization of carbon fibers studied by micro-thermal analysis.Carbon,2003,41:165-171.
    [16]Uchida T,Shinoyama I,Ito Y and Nukuda K.The structural changes in the formation of carbon fibers from polyacrylonitrile precursors.In Proceedings of the 10th Biennial Conference on Carbon.Pennsylvania,The American Carbon Committee and Lehigh University,1971:31-32.
    [17]贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    [18]Jain MK,Abhiraman AS.Conversion of acrylonitrile-based precursor fibers to carbon fibers:Part1 A review of the physical and morphological aspects.Journal of Materials Science,1987,22(1):278-300.
    [19]Clarke A J,Bailey JE.Oxidation of acrylic fibers for carbon fiber formation.Nature,1973,243:146-150.
    [20]Ogawa H,Saito K.Oxidation behavior of polyacrylonitrile fibers evaluated by new stabilizsation index.Carbon,1995,33(6):783-788.
    [21]Saito K,Ogawa H.Process for producing carbon fibers.USPatent,1978:4069297.
    [22]Gupta AK,Paliwal DK,Bajaj P.Acrylic precursors for carbon fibers.Journal of Macromolecular Science-Reviews in Macromolecular Chemisty and Physics,1991,C31(1):1-89.
    [23]Yu M,Wang C,Bai Y.Evolution of tension during the thermal stabilization of polyacrylonitrile fibers under different parameters.Journal of Applied Polymer Science,2006,102(6):5500-5506.
    [24]Wu G,Lu C,Ling L,Hao A,He F.Influence of tension on the oxidative stabilization process of polyacrylonitrile fibers.Journal of Applied Polymer Science,2005,96(4):1029-1034.
    [25]于美杰.聚丙烯腈纤维预氧化过程中的热行为与结构演变.博士学位论文,山东大学,2007.
    [26]Coleman MM,Sivy GT.Fourier transform IR studies of the degradation lof polyacrylonitrile copolymers-1:Introduction and comparative rates of the degradation of three copolymers below 200℃ and under recuce pressure.Carbon,1981,19:123-126.
    [27]Varma SP,Lal BB,Srivastava NK.IR studies on preoxidized PAN fibers.Carbon,1976,14(4):207-209.
    [28]Raskovic V,Marinkovic S.Temperature dependence of processes during oxidation of PAN fibers.Carbon,1975,13(6):535-538.
    [29]Zhang W,Liu J,Wu G.Evolution of structure and properties of PAN precursors during their conversion to carbon fibers.Carbon,2003,41(14):2805-2812.
    [30]Mathur RB,Bahl OP,Mittal J.A new approach to thermal stabilisation of PAN fibers.Carbon,1992,30(4):657-663.
    [1]贺福.碳纤维及其应用技术.北京:化学工业出版社.2004.
    [2]Rahaman MSA,Ismail AF,Mustafa A.A review of heat treatment on polyacrylonitrile fiber. Polymer Degradation and Stability, 2007, 92: 1421-1432.
    [3] Ji M, Wang C, Bai Y, Yu M, Wang Y. Structural evolution of polyacrylonitrile precursor fibers during preoxidation and carbonization. Polymer Bulletin, 2007, 59: 527-536.
    [4] Jain MK, Abhiraman AS. Conversion of acrylonitrile-based precursor fibers to carbon fibers: Part1 A review of the physical and morphological aspects. Journal of Materials Science, 1987, 22(1): 278-300.
    [5] Balasubramanian M, Jain MK, Bhattacharya SK. Conversion of acrylonitrile-based precursors to carbon fibers: Part3 Thermooxidative stabilization and continuous, low temperature carbonization. Jouranal of Materials Science, 1987, 22(11): 3864-3872.
    [6] Ko T, Day T, Perng J, Lin M. The characterization of PAN-based carbon fibers developed by two-stage continuous carbonization. Carbon, 1993, 31(5): 765-771.
    [7] Ko T, Day T, Lin M. The Effect of Precarbonization on Mechanical Properties of Final Polyacrylonitrile-based carbon fibers. Journal of Materials Science Letter, 1993, 12(3): 343-345.
    [8] Jing M, Wang C, Wang Q, Bai Y, Zhu B. Chemical structure evolution and mechanism during pre-carbonization of PAN-based stabilized fiber in the temperature range of 350-600℃. Polymer Degradation and Stability, 2007, 92(9): 1737-1742.
    [9] Watt W, Johnson DJ, Parker E. Pyrolysis and structure development in the conversion of PAN fibres to carbon fibres. Proceedings of the 2nd international conference on carbon fibres, their place in modern technology. London: the Plastics Institute, 1974: 1-14.
    [10] Bromley J. Gas evolution processes during the formation of carbon fibers. Proceedings of the 1st international conference on carbon fibers, their composites and applications. London: the Plastics Institute, 1971: 3-9.
    [11] Zhang W, Liu J, Wu G. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon, 2003, 41(11): 2805-2812.
    [12] Mathur RB, Bahl OP, Mittal J. A new approach to thermal stabilization of PAN fibers. Carbon. 1992, 30(4): 657-663.
    [13] Mittal J, Bahl OP, Mathur RB, Sandle NK. IR studies of PAN fibers thermally stabilized at elevated temperatures. Carbon, 1994,32(6): 1133-1136.
    [14] 于记良,Rafique J, 于杰. 电纺PAN纳米纤维的碳化工艺研究. 广州化工, 2007, 35(3):25-28.
    [15]He D,Wang Ch,Bai Y,Zhu B.The contrastive study of structures and properties on different PAN precursors for carbon fibers.Journal of Materials Science and Technology,2005,21(3):376-380.
    [16]何东新.聚丙烯腈纤维的预氧化工艺与物化行为研究.博士学位论文,山东大学,2005.
    [17]井敏,王成国,朱波,王延相,丁海燕.PAN原丝预氧化工艺与氧元素含量相关性研究.航空材料学报,2006,26(5):56-60.
    [18]Clarke AJ,Bailey JE.Oxidation of acrylic fibres for carbon fibre formation.Nature,1973,243:146-150.
    [1]Fitzer E,Heym M.Carbon fibers-the outlook.Chemical Industry,1976,21(16):663-676.
    [2]Walsh PJ.Carbon fibers.In:Miracle DB,Donaldson SL,editors.ASM Handbook,Vol.21:Composites:ASM International,2001:35-41.
    [3]贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    [4]Jain MK,Abhiraman AS.Conversion of acrylonitrile-based precursor fibers to carbon fibers Part1 A review of the physical and morphological aspects.Journal of Materials Science,1987,22(1):278-300.
    [5]Balasubramanian M,Jain MK,Bhattacharya SK.Conversion of acrylonitrile-based precursors to carbon fibers:Part3 Thermooxidative stabilization and continuous,low temperature carbonization.Journal of Materials Science,1987,22(11):3864-3872.
    [6]Watt W.Nitrogen evolution during the pyrolysis of polyacrylonitrile.Nature Physical Science,1972,236:10-11.
    [7]Ko T,Day T,Perng J,Lin M.The characterization of PAN-based carbon fibers developed by two-stage continuous carbonization.Carbon,1993,31(5):765-771.
    [8]Ko T,Day T,Lin M.The Effect of Precarbonization on Mechanical Properties of Final Polyacrylonitrile-based carbon fibers.Journal of Materials Science Letter,1993,12(3):343-345.
    [9]Ko T.The influence of pyrolysis on physical properties and microstrucuture of modified PAN fiber during carbonization.Journal of Applied Polymer Science,1991,43:589-600.
    [10]李丽娅,黄启忠,张红波,葛毅成.聚丙烯腈预氧丝的碳化结构和性能.粉末冶金材料科学与工程,2000,5(4):301-305.
    [11]李丽娅,黄启忠,张红波.聚丙烯腈基碳纤维的组织结构及力学性能.中南大学学报(自然科学版),2005,36(2):193-197.
    [12]Mittal J,Konno H,Inagaki M,Bahl OP.Denitrogenation behavior and tensile strength increase during carbonization of stabilized PAN fibers.Carbon,1998,36(9):1327-1330.
    [13]Bromley J.Gas evolution processes during the formation of carbon fibers.Proceedings of the 1st international conference on carbon fibers,their composites and applications.London:the Plastics Institute,1971:3-9.
    [14]Watt W,Green J.The pyrolysis of polyacrylonitrile.Proceedings of the 1st international conference on carbon fibres,their composites and applications.London:the Plastics Institute,1971:23-31.
    [15]Watt W,Johnson DJ,Parker E.Pyrolysis and structure development in the conversion of PAN fibres to carbon fibres.Proceedings of the 2nd international conference on carbon fibres,their place in modern technology.London:the Plastics Institute,1974:1-14.
    [16]Watt W.Pyrolysis of polyacrylonitrile.Nature,1969,222:265-266.
    [17]Mittal J,Bahl OP,Mathur RB,Sandle NK.IR studies of PAN fibers thermally stabilized at elevated temperatures.Carbon,1994,32(6):1133-1136.
    [18]Mathur RB,Bahl OP,Mittal J.A new approach to thermal stabilization of PAN fibers.Carbon,1992,30(4):657-663.
    [19]Zhang W,Liu J,Wu G.Evolution of structure and properties of PAN precursors during their conversion to carbon fibers.Carbon,2003,41(14):2805-2812.
    [20]Varma SP,Lal BB,Srivastava NK.IR studies on preoxidized PAN fibres.Carbon,1976,14(4):207-209.
    [21]Raskovic V,Marinkovic S.Temperature dependence of processes during oxidation of PAN fibres.Carbon,1975,13(6):535-538.
    [22]Mathur RB,Bahl OP,Mittal J,Nagpal KC.Structure of thermally stabilized PAN fibers.Carbon,1991,29(7):1059-1061.
    [23]Rajalingam P,Radhakrishnan G.Polyacrylonitrile precursors for carbon fibers.Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics,1991,31(2-3):301-310.
    [24]裘组文.电子自旋共振波谱.北京:科学出版社,1980.
    [25]马礼敦.高等结构分析.上海:复旦大学出版社,2002.
    [26]施纳贝尔W.聚合物降解原理及应用.北京:化学工业出版社,1988.
    [27]Surianarayanan M,Vijayaraghavan R,Raghavan KV.Spectroscopic investigations of polyacrylonitrile thermal degradation.Journal of Polymer Science:Part A Polymer Chemistry,1998,36(14):2503-2512.
    [28]Pesin L A.Review Structure and properties of glass-like carbon.Journal of Materials Science,2002,37(1):1-28.
    [29]Michael B,Derek J.Determination of bandshifts as a function of strain in carbon fibres using Raman microline focus spectrometry(MiFS).Carbon,1993,31:1057-1064.
    [30]李东风,王浩静,贺福,王心葵.T300和T700碳纤维的结构和性能.新型炭材料,2007,22(1):59-64.
    [31]Jawhari T,Roid A,Casado J.Raman spectroscopic characterization of some commercially available carbon black materials.Carbon,1995,33(11):1561-1565.
    [32]Sadezky A,Muckenhuber H,Grothe H,Niessner R,Poschl U.Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information.Carbon,2005,43(8):1731-1742.
    [33]Nakamizo M,Kammereck R,Walker PL.Laser raman studies on carbons.Carbon,1974,12:259-267.
    [34]赵根祥,钱树安.PI薄膜在碳化和石墨化过程中表面结构的拉曼散射研究.高分子材料科学与工程,1998,14(1):101-103.
    [1]贺福,赵建国,王润娥.碳纤维工业的长足发展.高科技纤维与应用,2000,25(4):9-13.
    [2]王延相,王成国,朱波,何东新,季保华,王强.聚丙烯腈纤维片层组织结构演变历程的研究.合成纤维,2005,6:10-13.
    [3]Paris O,Loidl D,Peterlik H.Texture of PAN- and pitch-based carbon fibers.Carbon,2002,40:551-555.
    [4]Masaki Tsuji and Shinzo Kohjiya.Structural study on crystalline polymer solids by high-resolution electron microscopy.Progress in Polymer Science,1995,20:259-308.
    [5]进藤大辅,平贺贤二合著,刘安生译.材料评价的高分辨电子显微方法.北京:冶金工业出版社.2002.
    [6]Perret R,Ruland W.The microstructure of PAN-based carbon fibres.Journal of Applied Crystallography,1970,3(6):525-532.
    [7]Diefendorf RJ,Tokarsky EW.High performance carbon fibers.Polymer Engineering and Science,1975,15(3):150-159.
    [8]Bennett SC,Johnson DJ.Electron-microscope studies of structural heterogeneity in PAN-based carbon fibers.Carbon,1979,17:25-39.
    [9]Johnson DJ.Structure-property relationships in carbon fibres.Journal of Physics D:Applied Physics,1987,20:286-291.
    [10]Fourdeux A,Perret R,Ruland W.Gernaeral structural features of carbon fibres.Proceedings of the 1st international conference on carbon fibers,their composites and applications.London:the Plastics Institute,1971:52-67.
    [11]Bennett SC,Johnson DJ,Johnson W.Strength-structure relationships in PAN-based carbon fibers.Journal of Matterials Science,1983,18(11):3337-3347.
    [12]Guigon M,Oberlin A,Desarmot G.Microtexture and structure of some high tensile strength,PAN-base carbon fibres.Fibre Science and Technology,1984,20(11):55-72.
    [13]Deurbergue A,Oberlin A.TEM study of some recent high modulus PAN-based carbon fibers.Carbon,1992,30(7):981-987.
    [14]Guigon M,Oberlin A,Desarmot G.Microtexture and structure of some high-modulus,PAN-base carbon fibers.Fibre Science and Technology,1984,20(1):177-198.
    [15]Bai Y,Wang C,Lun N,Wang Y,Yu M,Zhu B.HRTEM microstructure of PAN precursor fibers.Carbon,44:1773-1778.
    [16]徐海萍,孙彦平,陈新谋.PAN基预氧化纤维表面超微结构的STM研究.新型炭材料,2005,20(4):312-316.
    [17]Watt W,Johnson D J,Parker E.Pyrolysis and structure development in the conversion of PAN fibres to carbon fibres.Proceedings of the 2nd international conference on carbon fibres,their place in modern technology.London:the Plastics Institute,1974:1-14.
    [1]Edie DD.The effect of processing on the structure and properties of carbon fibers.Carbon,1998,36(4):345-362.
    [2]Mittal J,Konno H,Inagaki M,Bahl OP.Denitrogenation behavior and tensile strength increase during carbonization of stabilized PAN fibers.Carbon,1998, 36(9):1327-1330.
    [3]Ko T,Day T,Lin M.The Effect of Precarbonization on Mechanical Properties of Final Polyacrylonitrile-based carbon fibers.Journal of Materials Science Letter,1993,12(3):343-345.
    [4]李丽娅,黄启忠,张红波.聚丙烯腈基碳纤维的组织结构及力学性能.中南大学学报(自然科学版),2005,36(2):193-197.
    [5]李丽娅,黄启忠,张红波.聚丙烯腈(PAN)基预氧丝的碳化工艺研究.粉末冶金材料科学与工程,2000,5(1):69-74.
    [6]Ko T,Day T,Perng J,Lin M.The characterization of PAN-based carbon fibers developed by two-stage continuous carbonization.Carbon,1993,31(5):765-771.
    [7]齐志军,林树波,于振环.影响碳纤维强度的因素分析.高科技纤维与应用,2003,28(4):30-35.
    [8]Ko T.The influence of pyrolysis on physical properties and microstrucuture of modified PAN fiber during carbonization.Journal of Applied Polymer Science,1991,43(3):589-600.
    [9]李丽娅,黄启忠,张红波,葛毅成.聚丙烯腈预氧丝的碳化结构和性能.粉末冶金材料科学与工程,2000,5(4):301-305.
    [10]Deurbergue A,Oberlin A.Stabilization and carbonization of PAN-based carbon fibers as related to mechanical properties.Carbon,1991,29(4-5):621-628.
    [11]Moreton R,Watt W.Tensile strengths of carbon fbiers.Nature,1974,247:360-361.
    [12]Jain MK,Abhiraman AS.Conversion of acrylonitrile-based precursor fibers to carbon fibers Part1 A review of the physical and morphological aspects.Journal of Materials Science,1987,22(1):278-300.
    [13]Kim HS,Shioya M,Takaku A.Kinetic studies on hot-stretching of polyacrylonitrile-based carbon fibers by using internal resistance heating Part ⅡChange in structure and mechanical properties.Journal of Materials Science,1999,34(14):3307-3314.
    [14]李丽娅,黄启忠,张洪波.PAN基预氧丝炭化过程中的热收缩行为.炭素,2003,113:3-6.
    [15]Bromley J.Gas evolution processes during the formation of carbon fibers.Proceedings of the 1st international conference on carbon fibers,their composites and applications.London:the Plastics Institute,1971:3-9.
    [16]Johnson JW,Marjoram JR,Rose PG.Stress Graphitization of Polyacrylonitrile Based Carbon Fibre.Nature,1969,221:357-358.
    [17]Manocha LM,Bahl OP,Jain GC.Length changes in PAN fibres during their pyrolysis to carbon fibres.Angewandte Makromolekulare Chemie,1978,67(1):11-29.
    [18]Bahl OP,Mathur RB.Effect of load on the mechanical properties of carbon fibres from PAN precursor.Fibre Science and Technology,1979,12(1):31-39.
    [19]刘扬,刘杰.碳化过程中改性聚丙烯腈预氧化纤维的高温热应力应变研究.航空材料学报,2005,25(4):30-34.
    [20]Fitzer E,Frohs W,Heine M.Optimization of stabilization and carbonization treatment of PAN fibers and structural characterization of the resulting carbon fibers.Carbon,1986,24(4):387-395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700