用户名: 密码: 验证码:
长江河口湿地鱼类群落的生态学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2004年9月~2007年9月笔者在长江河口(N30°30′~32°00′;E121°00′~122°30′)采用潮滩插网(主要采集潮间带鱼类)、深水张网、鳗苗网、大型浮游生物网、阿氏网等多种网具进行了104次湿地鱼类(—6m以浅水域)现场调查;首次较为全面地研究了长江河口湿地鱼类群落结构和主要生态特征。主要内容有:(1)归纳分析了长江河口湿地鱼类的物种组成及其主要生态特征;(2)运用如nMDS、等级聚类、ANOSIM、优势度曲线等生物统计学方法对获得的231份样本分析了潮间带和潮下带鱼类群落组成的时空变化及不同高程下潮间带鱼类的群落结构差异;(3)探讨了长江河口湿地鱼卵、仔稚鱼种类和丰度的空间分布和季节变化趋势,以及潮滩湿地作为鱼类产卵场和哺育场的重要性;(4)根据长江口历年鳗苗捕捞统计资料及现场调研数据,分析了鳗苗捕捞活动所产生的经济效益及对湿地鱼类的影响。
     主要研究结果如下:
     1.长江河口湿地鱼类群落区系特征
     (1)本研究发现长江河口湿地鱼类有123种,隶属18目、46科、98属,全部为硬骨鱼类。其中,海鲢(Elops saurus)和印度小公鱼(Sardinella sindensis)为本区域的新记录种,分别位于北支中段水域(2005年10月)和口门区(2006年9月)。长江河口南支水域共发现鱼类80种,北支有57种,口门区有70种。同时,研究结果认为长江河口湿地鱼类是河流淡水鱼类区系和海洋鱼类区系的过渡类型。
     (2)潮间带鱼类共记录有93种,隶属15目、33科,约占总调查种数的75%,充分说明潮间带湿地是河口地区鱼类重要的栖息生境。
     (3)本研究共记录到口门区潮下带鱼类42种,隶属21科。以偶然进入河口湿地的海洋鱼类最多,有17种;其次为河口定居种和季节性进入河口湿地的海洋鱼类,均为10种;而淡水类型和过河口性鱼类很少,均为1种。主要也由小型鱼类或较大个体鱼类的幼鱼为主。
     (4)长江河口湿地鱼类共有6种生态类型,主要为淡水鱼类(66种)、终生河口湿地鱼类(即河口定居种,35种)、季节性河口湿地一海洋鱼类(26种)、溯河洄游鱼类(6种)、降河洄游鱼类(3种)和临时性河口湿地一海洋鱼类(70种);其中,8种鱼类兼具两种生态类群。前5种生态类群的鱼类种数约占总种数的三分之二。
     2、潮间带和潮下带湿地鱼类群落特征
     (1)长江河口潮间带湿地鱼类以小型鱼类或较大个体鱼类的幼鱼为主,约占总数的95%,成鱼较少出现在潮间带水域,体现了潮间带湿地对仔、稚、幼鱼的重要哺育作用。丰度—生物量曲线变化特征说明河口区潮间带鱼类群落主要以小型鱼类为主。由此可以证明,潮间带湿地是长江河口鱼类重要的育幼场。
     (2)聚类分析和非度量多维尺度分析相结合的方法证明潮间带鱼类组成显著分为两种群落类型,即口内淡水鱼类群落和口门咸、淡水鱼类群落。在季节变化上,春季鱼类的群落结构与夏、秋季差异较大,而夏季和秋季差异相对较小。在淡水区或咸淡水区,水温和鱼类丰度的相关系数较盐度稍高(淡水区:Spearmanr=0.023(水温)和0.022(盐度);咸、淡水区:r=0.13(水温)和0.1(盐度));而就整个河口鱼类群落来说,水温和鱼类丰度的相关系数较盐度低(r=0.03(水温)和0.46(盐度))。
     通过对河口低盐淡水区潮间带鱼类的昼夜、半月相和季节变化的研究发现,鱼类丰度的昼夜变化各个季节均有所差异,春季白天和夜晚潮水鱼类丰度无显著差异(t-test,P>0.05),而夏、秋、冬季存在显著差异(P<0.05)。夏季夜晚潮水的鱼类丰度显著高于白天潮水(P<0.05),而秋、冬季则相反。从半月相的短时间尺度来看,春、夏和秋季各个潮序的鱼类丰度一般均大于冬季;小汛潮期,各个季节的平均种类数和平均丰度均小于其它汛潮期(t-test,P>0.05)。从季节变化来看,鲫(Carassius auratus)、鳊(Parabramis pekinensis)、光泽黄颡鱼(Pelteobagrus nitidus)和斑尾刺虾虎鱼(Acanthogobius ommaturus)等几种鱼类都是季节性的出现在潮间带,且不同水深的鱼类丰度和体长分布存在一定的差异,这有助于降低种内、种间对食物资源的竞争,有利于幼鱼的肥育和生长。
     (3)口门区两站点的潮下带鱼类群落的种类组成和丰度差异不显著(ANOSIM,P=0.68),而其时间结构存在一定的差异,主要是由于日本鳗鲡、棘头梅童、龙头鱼、刀鲚等17种河口或沿岸鱼类的季节性洄游特征所引起。
     3.鱼卵、仔稚鱼群落特征
     (1)本研究通过对南、北支水域的六次鱼卵、仔稚鱼调查共发现鱼卵、仔稚鱼36种(类)。在六次水平网调查中,河口淡水区站点均未采集到鱼卵,仅在河口咸淡水区(S9站点)采集到较多鱼卵;而仔稚鱼的分布规律不是十分明显。
     (2)长江河口湿地鱼卵、仔稚鱼群落结构复杂,近20年来数量丰度有所下降。目前,淡水区以麦穗鱼(Pseudorasbora parva)、银鱼科鱼类为优势种,咸、淡水区以风鲚(Coilia mystus)、小公鱼属、短尾大眼鲷(Priacanthus macrocanthus)等为优势种。1990年9月初和2006年9月下旬航次均采集到凤鲚的仔稚鱼,且前者的平均丰度约是后者的10倍;2005和2006年4月航次前颌间银鱼(Hemisalanx prognathus)的平均丰度为0.8个/网,低于1986年4~5月口门区的平均丰度14.5个/网。
     4.长江口鳗苗捕捞活动对河口湿地鱼类群落的影响
     鳗苗捕捞活动除了对鳗苗资源的严重破坏外,对兼捕渔获物资源也有较大的负面影响。本研究发现,鳗苗捕捞活动对刀鲚(Coilia ectenes)、凤鲚、棘头梅童(Collichthys lucidus)和红狼牙虾虎鱼(Odontamblyopus rubicundus)等种群负面影响较大。2006年仅3月份,整个河口刀鲚幼鱼就被捕捞45吨以上,凤鲚幼鱼或成鱼被捕捞31吨以上;2007年1~3月刀鲚和凤鲚分别被捕捞96.6吨和29.0吨。此是刀鲚等资源鱼类衰退的原因之一。
This paper first comprehensively summarized the wetland fishes' master list and their mainly ecological characters and filled up the blank of study on the estuary wetland fish in China, based on 104 surveys about wetland fishes (below -6m) from Sep., 2004 to Sep., 2007 and relatively historical data in the Yangtze estuary (N30°30'~32°00'; E121°00'~122°30'). The intertidal fishes were normally collected by tide stow net, while subtidal fishes collected by deep-water stow net, eel net, macro-plankton net, Agassiz trawl and so on. In total, there were 231 fish samples collected. The paper includes four parts, the first is summery on wetland environment, fish master list and its ecology characters; the second is study on the spatial and temporal changes of community structure of the intertidal and subtidal fishes used some biostatistics methods; the third is the research to species composition of fish eggs and larvae; the forth is the effect on wetland fishes from the traditional fishing eel activity. The main conclusions follow:
     1. Characters offish community and flora in the Yangtze estuary
     (1) Based on the different sample methods, we collected 123 fish species belongs to 1 glasse, 18 orders, 46 families and 98 genera in the Yangtze estuary. Among them, Elops saurus and Sardinella sindensis are 2 new recored fishes species which were found in the middle north branch (June, 2006) and esturine mouth (September, 2006). 80 fish species were found in the south brach, while 57 and 70 species in the north branch and esturine mouth, respectively. In conclusion, fish flora in the Yangtze estuary is transitional type between fresh river water and adjacent marine fish flora.
     (2) The intertidal fishes were collected 93 species belongs to 15 orders and 33 families, occupied about 75% by the total collected fishes. It indicated the intertidal flat was a kind of very important habitant for fishes in estuary area.
     (3) We also collected 42 subtidal fish species belongs to 21 families in the estuarine mouth. The number of fishes those occasionally entering estuary wetland is the highest (17 species), then those resident and seasonally entering estuary wetland followed (both 10 species), while the fresh water and diadromous fishes are the lowest (both 1 species). Similarly, small fishes or juvenile fishes of larger size are dominant in the subtidal water area in estuarine mouth.
     (4) From the fish ecological groups, there are 6 groups in the Yangtze estuary wetland, fresh water fish (66 species), resident species (35 species), seasonally entering estuary wetland species (26 species), anadromous species (6 species), catadromous species (3 species), and ocassionlly entering estuary wetland species (70 species). In them, 8 fish species have 2 kind of ecological groups. Two-thirds of fishes are highly depend on the estuary, because the fishes spend their largely or all life history in estuary wetland waters.
     2. Characters of intertidal and undertidal fish community
     (1) Small fishes or juvenile fishes of larger sizes are dominant in the intertidal flat and a little fishes spawn in this area, it means that only minority of adult or spawning fishes occur in the intertidal water areas. The k-dominance curves of individuals suggested the fish community had a certain extent disturbed by long over-fishing and other anthropic activities. This paper richly approve that intertidal flat is nursey field in the Yangtze estuary.
     (2) Two community types were obviously divided in the intertidal fishes by CLUSTER and nMDS analyze methods, namely fresh water and brackish water fish communities. In seasonal changes, fish community structure in spring largely differ that of summer or autumn, but that of summer is relatively less differ from autumn. Temperature and salinity are two main factors affected the spatial and temporal changes of intertidal fish community. Temperature mainly affects the temporal change, because the spearman r of tempertuare are 0.023 and 0.13 in freshwater and brackish water, respectively; which higher than 0.022 and 0.1 of sanlinity. Salinity mainly affects the spatial change of fish community structure, because the salt endurance of different ecological groups of fishes decides them live in different waters in the estuary.
     We also studied the diel, semi-lunar and seasonal changes of fish abundances in Chong-xi intertidal flat. The results showed that the abundance in night tides is significant higher than day tides (P<0.05), but contrary to autumn and winter (P<0.05). These differences mainly caused by different tidal height. In a semi-lunar cycle, the fish species and abundances in spring tides both higher than that in neap tides (Mest, P>0.05) . From the seasonal change, many fishes occur in the intertidal flat seasonally, such as Carassius auratus, Parabramis pekinensis, Pelteobagrus nitidus, Synechogobius ommaturus, while the abundances and body-size distribution in different water depth have some extent differences in favor of juvenile fishes' growth and deceasing inter or intra food competition.
     (3) There was no significant difference of fish abundance between 2 sations in the subtidal fish community in the estuarine mouth (ANOSIM, P=0.68), but exite some extent difference in the temporal structure. The greater contribution on the fish community were 17 fish species, such as Anguilla japonica, Coilia ectenes, Harpodon nehereus and Collichthys lucidus, ans so on.
     3. Characters of ichthyoplankton community
     (1) Based on the data at 6 surveys in the South and North branch waters, it showed that the total number of species of eggs and larvae was 36. Eggs were not collected in fresh waters and only collected in S9 station at estuary mouth in 6 surveys. There is not clearly disciplinary in distribution of larvae.
     (2) The dominant species vary much in each survey, this reflect that the community structure of ichthyoplankton is complicated. The the abundance of larvae and juveniles has some extent declined in nearly 20 years. In fresh water, the dominant species are Pseudorasbora and Salangidae; while those are Coilia mystus, Anchoviella, Priacanthus macracanthus. We both collected the Coilia mystus larvae in early Sep., 1990 and latterly Sep., 2006, while the abundance of former was about 10 times than the latter. The average abundance of Hemisalanx prognathus was 0.8 ind./net, which was obviously lower than 14.5 ind./net in April-May, 1986.
     4. Effect on the fish community of eel fishing activity in the Yangtze estuary The traditional fishing eel activity one hand damage the population of Japaneseeel; on the other hand, heavily destroy the resources of other wetland fishes, such as Coilia ectenes, Coilia mystus, Odontamblyopus rubicundus, and Collichthys lucidus. The total catch of Coilia ectenes juveniles was above 45 and 96.6 tons in Mar., 2006 and from Jan. to Mar., 2007, respectively, which above 31 and 29 tons of Coilia mystus. Hence, the heavily decreasing population of Coilia ectenes and other fish resources were mainly affected by the fishing activity.
引文
长江水系渔业资源调查协作组.1990.长江水系渔业资源.北京:海洋出版社.
    陈吉余,沈焕庭,李九发,等.1988.上海市海岸带和海涂资源综合调查报告.上海:上海科技出版社.
    陈吉余.1996.上海市海岛资源综合调查报告.上海:上海科学技术出版社.
    陈渊泉,龚群,黄卫平,等.1999.长江河口区渔业资源特点、渔业现状及其合理利用的研究.中国水产科学,6(5):48-51.
    邓岳松,林浩然.2001.鳗鲡繁殖生物学和人工育苗研究概况.湛江海洋大学学报,21(2):77-82.
    #12
    范航清,何斌源,韦受庆.1996.传统渔业活动对广西英罗港红树林区渔业资源的影响与管理对策.生物多样性,4(3):167-174.
    方少华,吕小梅,张跃平.1998.九龙江口鳗苗溯河生态与资源研究.台湾海峡,2:143-148.
    冯广朋,庄平,刘健,等.2006.崇明东滩团结沙鱼类群落多样性与生长特性.海洋渔业,29(1):38-43.
    富丽静,解玉浩,李渤.1996.中国沿海代表性河口地区鳗苗群体形态特征的比较研究.动物学研究,17(3):203-210.
    韩先朴.1990.鳗鲡养殖.北京:农业出版社,1~11,66~80.
    何斌源,范航清.2002.广西英罗港红树林潮沟鱼类多样性季节动态研究.生物多样性,10(2):175~180.
    湖北省水生生物研究所鱼类研究室.1976.长江鱼类.北京:科学出版社.
    黄大明,陈世群.1997.鳗鲡的生活史和人工育苗技术探讨.动物学杂志,32(3):39-48.
    黄晋彪,张国祥,张雪生,等.1992.长江口前颌间银鱼仔鱼的分布及其主要形态特征.海洋渔业,14(1):7-10.
    蒋玫,沈新强,陈莲芳.2006.长江口及邻近水域春季鱼卵仔鱼分布与环境因子的关系.海洋环境科学,25(2):37-44.
    蒋玫,沈新强.2006.长江口及邻近水域夏季鱼卵、仔鱼数量分布特征.海洋科学,30(6):92-97.
    解玉浩,李勃,富丽静,唐作鹏,解涵.1996.中国沿海河口地区鳗苗的群体生态和群体结构.大连水产学院学报,4:1-7.
    李明德.1998.鱼类分类学.北京:海洋出版社.
    梁旭方,谢骏,王秋荣,等.2002.日本鳗鲡仔鱼摄食机理及其营养策略.水产学报,26(6):556-560.
    刘凯,徐东坡,张敏莹,等.2005.崇明北滩鱼类群落生物多样性初探.长江流域资源与环境,14(4):418-421.
    刘凯,徐东坡,张敏莹,施炜纲.2004.长江口凤鲚资源变动及最大持续产量研究.上海水产大学学报,4:298-303.
    刘建康,曹文宣,朱居宏,等.1976.长江鱼类.北京:科学出版社.
    柳凌,郭峰,张洁明,等.2005.日本鳗鲡排卵的人工诱导.中国水产科学,12(1):49-54.
    陆健健,何文珊,童春富,等.2006.湿地生态学.北京:高等教育出版社.
    陆健健,孙平跃,1998.长江口湿地资源生物的可持续利用.见:郎惠卿,林鹏,陆健健主编,中国湿地研究与保护.上海:华东师范大学出版社.
    陆健健.2003.河口生态学.北京:海洋出版社.
    罗秉征,沈焕庭.1994.三峡工程与河口生态环境.北京:科学出版社.
    毛国良,等.1978.辽宁黄海北部沿岸鳗苗资源概况及其利用.淡水渔业,1(2):56-60.
    倪勇,陈亚瞿.上海鱼类三新记录.海洋渔业,2007,.29(2):190-192.
    倪勇,伍汉霖.2006.江苏鱼类志.北京:中国农业出版社.
    倪勇,伍汉霖.江苏鱼类志.北京:中国农业出版社,2006.郑元甲,陈雪忠,程家骅,等.东海大陆架生物资源与环境.上海:上海科学技术出版社,2003.
    钱迎倩,马克平.1994.生物多样性研究的原理与方法.北京:中国科学技术出版社.
    沈焕庭,茅志昌,朱建荣.2003.长江河口盐水入侵.北京:海洋出版社.
    施德龙,龚洪新.2003a.关于保护长江口刀鲚资源的建议.海洋渔业,25(2):96-97.
    施德龙,龚洪新.2003b.保护长江刀鲚.上海渔业经济,2:46-48.
    施德龙.1993.崇明对长江鳗苗资源的利用及管理.海洋渔业,6:264-266.
    施炜纲,王博.2002.长江河口区凤鲚的资源现状.水生生物学报,6:648-653.
    孙帼英.1982.长江口及其邻近海域的银鱼.华东师范大学学报(自然科学版),1:111-119.
    唐文乔,诸延俊,陈家宽,等.2003.长江口九段沙湿地的鱼类资源及其保护价值.上海水产大学学报,12(3):193-200.
    童春富.2004.河口湿地生态系统结构、功能与服务——以长江口为例.华东师范大学博士论文.
    王幼槐,倪勇.1984.上海市长江口区渔业资源及其利用.水产学报,2:147-159.
    王云龙,倪勇,李长松,等.2006.上海鱼类新记录——日本海马.海洋渔业,28(1):87-88.
    吴铃铃,陆健健.2002.长江河口湿地生物多样性及其生态服务价值.第五届全国生物多样性保护与持续利用研讨会论文集.84-90.
    吴善.2000.日本鳗鲡人工育苗的进展及问题分析.水利渔业,20(4):4-5.
    谢营梁.1996.国外河口鱼类的研究现状.现代渔业信息,2:18-21.
    熊国强,邓思明,藏增嘉,等.1992.中国沿海日本鳗鲡幼苗群体鉴别研究.动物学报,3:254-265.
    徐宏发,赵云龙.2005.上海市崇明东滩鸟类自然保护区科学考察集.北京:中国林业出版社.
    徐源.2004.崇明县合理利用鳗苗资源的思考.上海渔业经济,2:36-38.
    徐兆礼,袁祺,蒋玫,等.1999.长江口鱼卵和仔稚鱼的初步调查.中国水产科学,5:63-64.
    杨东莱,吴光宗,孙继仁.1990.长江口及邻近海区浮性鱼卵和仔稚鱼的生态研究.海洋与湖沼,21(4):346-355.
    杨伟祥,罗秉征,卢继武,等.1990.长江口区鱼类资源调查与研究.海洋科学集刊,33:281-302.
    曾万年.1983.台湾产鳗线之种类识别及其生产力.中国水产,366:16-23.
    詹海刚.1996.珠江口及邻近水域鱼类群落结构研究.南海研究与开发,4:13-19.
    张国祥,张雪生.1985.长江口定置张网渔业调查.水产学报,9(2):185-198.
    张衡,何文珊,童春富,等.2007.崇西湿地冬季潮滩鱼类种类组成及多样性分析.长江流域资源与环境,16(3):308-313.
    张有为,肖真义,张世义,等.1981.鳗鲡在我国的溯河洄游和分布.动物学集刊,1:117-121.
    中国水产科学研究院东海水产研究所,上海市水产研究所.1990.上海鱼类志.上海:上海科学技术出版社.
    钟俊生,吴美琴,练青平.2007.春、夏季长江口沿岸碎波带仔稚鱼的种类组成.中国水产科学,14(3):436-443.
    钟俊生,郁蔚文,刘必林,等.2005.长江口沿岸碎波带仔、稚鱼种类组成和季节性变化.上海水产大学学报,14(4):428-435.
    钟俊生,傅萃长,郁蔚文,等.2006.鮻鱼稚鱼在沿岸碎波带的出现和滞留时间.上海水产大学学报,15(3):281-285.
    朱鑫华,刘栋,沙学绅.2002.长江口春季鱼类浮游生物群落结构与环境因子的关系.海洋科学集刊,44:169-178.
    庄平,王幼槐,李圣法,等.2006.长江口鱼类.上海:上海科学技术出版社.
    Able K W, Nemerson D M, Busch R, et al. 1997. Spatial variation in Delaware Bay (USA) marsh creek fish assemblages.Estuaries, 24: 441-452.
    Amara R, Laffargue P, Dewarumez J M, et al. 2001. Feedind ecology and growth of 0-group flatfishes (sole, dab and plaice) at a nursery ground on the southern North Sea. Journal of Fish Biology, 58: 788-803.
    Amara R, Paul C. 2003. Seasonal patterns in the fish and epibenthic crustaceans community of an intertidal zone with particular reference to the population dynamics of plaice and brown shrimp. Estuarine, Coastal and Shelf Science, 56: 807-818.
    Andres J J, Roberto M, Raul G, et al. 2004. Environmental factors structuring fish communities of the R'io de la Plata estuary. Fisheries Research, 66: 195-211.
    Barletta M, Barletta-Bergan A, Saint-Paul U, et al. 2003. Seasonal changes in density, biomass, and diversity of estuarine fishes in tidal mangrove creeks of the lower Caet'e Estuary (northern Brazilian coast, east Amazon). Mar. Ecol. Prog. Ser., 256: 217-228.
    Barnes R S K. 1974. Estuarine biology. Edward Arnold, London.
    Baxter R M. 1977. Environmental effects of dams and impoundments. Annual Review of Ecology and Systematics, 8: 255-283.
    Beentjes M P, Bull B, Hurst R J, et al 2002. Demersal fish assemblages along the continental shelf and upper slope of the east coast of the South Island, New Zealand. New Zealand Journal of Marine and Freshwater Research, 36: 197-223.
    
    Bell J D, Pollard D A, Burchmore J J, et al. 1984. Structure of a fish community in a temperate tidal mangrove creek in Botany Bay, New South Wales. Australia Journal of Marine Freshwater Research, 35: 33-46.
    
    Berasategui A D, Acha E M, Ferna' ndez A C. 2004. Spatial patterns of ichthyoplankton assemblages in the Ri'o de la Plata Estuary (Argentina-Uruguay). Estuarine, Coastal and Shelf Science, 60: 599-610.
    Berghahn R. 2000. Response to extreme conditions in coastal areas: biological tags in flatfish otoliths. Marine Ecology Progress Series, 192: 277-285.
    Beukema J J. 1992. Dynamics of juvenile shrimp Crangon crangon in a tidal-flat nursery of the Wadden Sea after mild and cold winters. Marine Ecology Progress Series, 83: 157-165.
    Biagi F, Sartor P, Ardizzone G D, Belcari P, et al. 2002. Analysis of demersal assemblages off the Tuscany and Latium coasts (north-western Mediterranean). Scientia Marina, 66 (Suppl. 2): 233-242.
    Bianchi G. 1992. Demersal assemblages of the continental shelf and upper slope of Angola. Marine Ecology Progress Series, 81: 101-120.
    Blaber S J M. 2002. 'Fish in hot water': the challenges facing fish and fisheries research in tropical estuaries. Journal of Fish Biology (Supplement A), 61: 1-20.
    Bleeker P. 1871. Memoire sur les Cyprinoides de Chine. Verh. Akad. Amsterdam, 12:1-19.
    Boesch D F, Turner R E. 1984. Dependence of fishery species on salt marshes: the role of food and refuge. Estuaries, 7: 460-468.
    Brazner J C, Beals E W. 1997. Patterns in fish assemblages from coastal wetland and beach habitats in Green Bay, Lake Michigan: A multivariate analysis of abiotic and biotic forcing factors. Canadian Journal of Fisheries and Aquatic Sciences, 54: 1743-1761.
    Burdick D M, Short F T. 1999. The effects of boat docks on eelgrass beds in coastal waters of Massachusetts. Environmental Management, 23: 231-240.
    Cain R L, Dean J M. 1976. Annual occurrence, abundance and diversity of fish in a South Carolina intertidal creek. Marine Biology, 36: 369-379.
    Cattrijsse A, Makwaia E S, Dankwa H R, et al. 1994. Nekton communities of an intertidal creek of a European estuarine brackish marsh. Marine Ecology Progress Series, 109: 195-208.
    Chapman M R, Kramer D L. 2000. Movements of fishes within and among fringing coral reefs in Barbados. Environmental Biology of Fishes, 57: 11-24.
    Clarke K R, Warwick R M. 2001a. A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Marine Ecology Progress Series, 216: 265-278.
    Clarke K R, Warwick R M. 200lb. Change in marine communities: an approach to statistical analysis and interpretation (2nd edition). PRIMPER-E: Plymouth.
    Colvocoresses J A, J A Musick. 1984. Species associations and community composition of middle Atlantic Bight continental shelf demersal fishes. Fishery Bulletin, 82(2): 295-313.
    Connolly R M, Dalton A, Bass D A. 1997. Fish use of an inundated saltmarsh fiat in a temperate Australian estuary. Australian Journal of Ecology, 22: 222-226.
    Costanza R, d'Arge R, de Groot R, et al. 1997. The value of the world's ecosystem services and natural capital. Nature, 387: 253-260.
    Cowley P D, Whitfield A K. 2001. Ichthyofaunal characteristics of a typical temporarily open/closed estuary of the Southeast coast of South Africa. Ichthyological Bulletin of the J. L. B. Smith Institute of Ichthyology N°71, Grahamstown..
    D'laz de Astarloa, Aubone J M, Cousseau M B. 1999. Asociaciones icticas de la plataforma costera de Uruguay y norte de Argentina, y su relacion con los parametros ambientales. Physis, 57: 29-45.
    Day J W, Hall C A S, Kemp W M, et al. 1989. Estuarine Ecology. John Wiley & Sons, Inc. (eds), New York, Chichester, Brisbane, Toronto, Singapore, 558.
    Deegan L A. 1990. Effects of estuarine environmental conditions on population dynamics of young-of-the-year gulf menhaden. Mar. Ecol. Prog. Set., 68: 195-205.
    Desmond J S, Zedler J B, Williams G D. 2000. Fish use of tidal creek habitats in two southern California salt marshes. Ecological Engineering, 14: 233-252.
    Edgar G J, Barrett N S. 1999. The distribution of macroinvertebrates and fishes in Tasmanian estuaries. Journal of Biogeography, 26: 1169-1191.
    Edwards R, Steele J H. 1968. The ecology of O-group plaice and common dabs at Loch Ewe. I. Population and food. Journal of Experimental Marine Biology and Ecology, 2: 215-238.
    Elliott M, Dewailly F. 1995. The structure and components of European estuarine fish assemblages. Netherlands Journal of Aquatic Ecology, 29: 397-417.
    Elliott M, O'Reilly, M G, Taylor CJ L. 1990. The Forth estuary: a nursery and overwintering area for North Sea fishes. Hydrobiologia 195, 89-103.
    Farina A C, J Freireb, E Gonzalez-Gurriaranb. 1997. Demersal Fish Assemblages in the Galician Continental Shelf and Upper Slope (NW Spain): Spatial Structure and Long-term Changes. Estuarine, Coastal and Shelf Science, 44: 435-454.
    Field J G, Clarke K R, Warwick R M. 1982. A practical strategy for analyzing multispecies distribution patterns. Marine Ecology Progress Series, 8: 37-52.
    Gabriel W L, Tyler A V. 1980. Preliminary analysis of Pacific coast demersal fish assemblages. Marine Fisheries Review, 42: 83-88.
    Gibson R N. 1973. The intertidal movements and distribution of young fish on a sandy beach with special reference to the plaice Pleuronectes platessa L. Journal of Experimental Marine Biology and Ecology, 12, 79-102.
    Gibson R N. 1982. Recent studies on the biology of intertidal fishes. Oceanographie Marine and Biological Annual Review, 20: 363-414.
    Godinez-Dominguez E, J Rojo-Vazquez, V Galvan-Pina, et al. 2000. Changes in the Structure of a Coastal Fish Assemblage Exploited by a Small Scale Gillnet Fishery During an El Nino-La Nina Event. Estuarine, Coastal and Shelf Science, 51: 773-787.
    Greenwood M F D, Hill A S. 2003. Temporal, spatial and tidal influences on benthic and demersal fish abundance in the Forth estuary. Estuarine, Coastal and Shelf Science, 58: 211-225.
    Haedrich R L & Haedrich S O. 1974. A seasonal survey of the fishes in the Mystic River, a polluted estuary in downtown Boston, Massachusetts. Estuar. Cstl. Mar. Sci., 2: 59-73.
    Hampel H, Cattrijsse A, Vincx M. 2003. Tidal, diel and semi-lunar changes in the faunal assemblage of an intertidal salt marsh creek. Estuarine, Coastal and Shelf Science, 56: 795-805.
    Harris S A, Cyrus D R 1995. Occurrence offishlarvaeinthe St Lucia Estuary, KwaZulu—Natal, South Africa. South Afica Journal Marine Science, 16: 333-350.
    Henderson A R, Hamilton J D. 1986. The status of fish populations in the Clyde Estuary. Proceedings of the Royal Society of Edinburgh, 90B: 157-170.
    Henderson P A, Holmes R H A. 1987. Onthe population biology of the common shrimp Crangon crangon (L.) (Crustacea: Caridae) in the Severn estuary and Bristol Channel. Journal of the Marine Biological Association of the United Kingdom, 67: 825-847.
    Jin B S, Fu C Z, Zhong J S, et al. 2007 Fish utilization of a salt marsh intertidal creek in the Yangtze River estuary, China. Estuarine, Coastal and Shelf Science, 73, 844-852.
    Kendall A W, Ahlstrom E H, Moser H G. 1984. Early life history stages of fishes and their characters. Ontogeny and systematics of fishes. Am Soc Ichthyol Herpetol, Spec Publ 1: 11-22.
    Khalaf M A, M Kochzius. 2002. Changes in trophic community structure of shore fishes at an industrial site in the Gulf of Aqaba, Red Sea. Marine Ecology Progress Series, 239: 287-299.
    Kimura S, Inoue T, Sugimoto T. 2001. Fluctuation in distribution of low-salinity water in the North Equatorial Current and its effect on the larval transport of the Japanese eel. Fisheries Oceanography, 10: 51-60.
    Kneib R T. 1997. The role of tidal marshes in the ecology of estuarine nekton. Oceanography and Marine Biology, an Annual Review, 35: 163-220.
    Krumme U, Liang, T H. 2004. Tidal induced changes in a copepoddominated zooplankton community in a macrotidal mangrove channel in northern Brazil. Zoological Studies, 43 (2): 404-414.
    Krumme U. 2004. Patterns in tidal migration of fish in a Brazilian mangrove channel as revealed by a split-beam echosounder. Fisheries Research, 70: 1-15.
    Kuipers B R & Dapper R. 1984. Nursery aspects of Wadden Sea tidal flats for the brown shrimp Crangon crangon. Marine Ecology Progress Series, 17: 171-181.
    Labropoulou M, C Papaconstantinou. 2004. Community structure and diversity of demersal fish assemblages: the role of fishery. Scientia Marina, 68 (Suppl. 1): 215-216.
    Laffaille P, Feunteun E, Lefeuvre J C. 2000. Composition of Fish Communities in a European Macrotidal Salt Marsh (the Mont Saint-Michel Bay, France). Estuarine, Coastal and Shelf Science, 51: 429-438.
    Lalli C M, Parsons T R. 1997. Biological oceanography: An introduction (2nd). Butterworth-Heinemann, Oxford.
    Lasiak T A. 1981. Nursery grounds of juvenile teleosts: Evidence from the pings Beach. Algoa Bay. S Afi J Sci, 77: 388-390.
    Lasta C. 1995. La Bahi' a Samborombo' n: zona de desove y cri 'a de peces. PhD Dissertation, Facultad de Ciencias Naturales y Museo, Universidad Nacional de la Plata, La Plata.
    Le Quesne, W J F. 2000. Nekton utilization of intertidal estuarine marshes in the Knysna estuary. Transactions of the Royal Society of South Africa, 55: 205-214.
    Lee Y, D B Sampson. 2000. Spatial and temporal stability of commercial groundfish assemblages off Oregon and Washington as inferred from Oregon trawl logbooks. Canadian Journal of Fisheries and Aquatic Sciences, 57: 2443-2454.
    
    Loneragan N R, Potter I C, Lenanton R CJ. 1989. Influence of site, season and year on contributions made by marine, estuarine, diadromous and freshwater species to the fish fauna of a temperate Australian estuary. Marine Biology., 103: 461-479.
    
    Macchi G J, Acha E M, Lasta CA. 2002. Reproduction of black drum (Pogonias cromis) in the Ri'o de la Plata estuary, Argentina. Fisheries Research, 2: 83-92.
    Madurell T, Cartes J E, Labropoulou M. 2004. Changes in the structure of fish assemblages in a bathyal site of the Ionian Sea (eastern Mediterranean). Fisheries Research, 66: 245-260.
    Maes J, Van Damme P A, Taillieu A, Ollevier E. 1998. Fish communities along an oxygen-poor salinity gradient (Zeeschelde Estuary, Belgium). Journal of Fish Biology, 52(3): 534-546.
    Mahon R, R W Smith, B Bernstein, J S Scott. 1984. Spatial and temporal patterns of groundfish distribution on the Scotian Shelf and in the Bay of Fundy, 1970-1981. Canadian Technical Report of Fishery and Aquatic Science, 1300.
    Marshall S, Elliott M. 1998. Environmental influences on the fish assemblage of the Humbert Estuary, UK. Estuar. Coast. Shelf Sci, 46: 175-181.
    Mathieson S, Cattrijsse A, Costa M J, Drake P, Elliott M, Gardner J, Marchand J. 2000. Fish assemblages of European tidal marshes: a comparison based on species, families and functional guilds. Marine Ecology Progress Series, 204: 225-242.
    
    McErlean A J, O'Connor S G, Mihursky J A, et al. 1973. Abundance, diversity and seasonal patterns of estuarine fish populations. Estuar. Cstl. Mar. Sci., 1:19-36.
    
    Michael W B, Kenneth L H, Kenneth W A, et al., 2001. The Identification, Conservation, and Management of Estuarine and Marine Nurseries for Fish and Invertebrates. BioScience, 51(8): 633-641.
    
    Mitsch W J, Gosselink J G. 2000. Wetlands. Canada, John Wiley & Son. 254,259-305.
    Morrison M A, Francis M P, Hartill B W, et al. 2002. Diurnal and Tidal Variation in the Abundance of the Fish Fauna of a Temperate Tidal Mudflat. Estuarine, Coastal and Shelf Science, 54: 793-807.
    Morton R M, Pollock B R, Beumer J P. 1987. The occurrence and diet of fishes in a tidal inlet to a salt-marsh in Southern Moreton bay. Queensland. Australian Journal of Ecology, 12: 217-237.
    Nagelkerken I, Dorenbosch M, Verberk W C, et al. 2000 Day-night shifts of fishes between shallow-water biotopes of a Caribbean bay, with emphasis on the nocturnal feeding of Haemulidae and Lutjanidae. Marine Ecology Progress Series, 194: 55-64.
    Nelson J S. 1994. Fishes of the World. New York: John Wiely and Sons Inc.
    Paterson A W, Whitfield A K. 2000. The ichthyofauna associated with an intertidal creek and adjacent eelgrass beds in the Kariega estuary, South Africa. Environmental Biology of Fishes, 58: 145-156.
    Paterson A W, Whitfield A K. 2003. The fishes associated with three intertidal salt marsh creeks in a temperate southern African estuary. Wetlands Ecology and Management, 11:305-315.
    Patricia R, Backwell Y, Patrick D. 1998. Prey availability and selective foraging in shorebirds. Animal Behavior, 55(6): 1659-1667.
    Piet G J, Pfisterer A B, Rijnsdorp A D. 1998. On factors structuring the flatfish assemblage in the southern North Sea. Journal of Sea Research, 40: 143-152.
    
    Pombo L, Elliott M, Rebelo J E. 2002. Changes in the fish fauna of the Ria de Aveiro estuarine Potter I C, Claridge P N, Hyndes G A, et al. 1997. Seasonal, annual and regional variations in ichthyofaunal composition in the inner Severn Estuary and inner Bristol Channel. Journal of the Marine Biological Association of the United Kingdom, 77: 507-525.
    Potter I C, Hyndes G A. 1994. Composition of the fish fauna of a permanently open estuary on the southern coast of Australia, and comparisons with a nearby seasonally closed estuary. Marine Biology, 121: 199-209.
    Powera M, Attrill M J, Thomasc R M. 2000. Environmental factors and interactions affecting the temporal abundance of juvenile flatfish in the Thames Estuary. Journal of Sea Research, 43: 135-149.
    Rachid A, Catherine P. 2003. Seasonal patterns in the fish and epibenthic crustaceans community of an intertidal zone with particular reference to the population dynamics of plaice and brown shrimp. Estuarine, Coastal and Shelf Science 56: 807-818.
    Ribeiro J, L. Bentes, R. Coelho, et al. 2006. Seasonal, tidal and diurnal changes in fish assemblages in the Ria Formosa lagoon (Portugal). Estuarine, Coastal and Shelf Science, 67: 461-474.
    Robertson A I, Duke N C. 1990. Mangrove fish-communities in tropical Queensland, Australia: spatial and temporal patterns in densities, biomass and community structure. Marine Biology, 104: 369-379.
    Rogers S I, Maxwell D, Rijnsdorp A D, DammU, Vanhee W. 1999. Fishing effects in northeast Atlantic shelf seas: patterns in fishing effort, diversity and community structure. Ⅳ. Can comparisons of species diversity be used to assess human impacts on demersal fish faunas? Fisheries Research, 40: 135-152
    Rountree R A, Able K W. 1997. Nocturnal fish use of a New Jersey marsh creek and adjacent bay shoal habitats. Estuarine, Coastal and Shelf Science, 44: 703-711.
    Rountree R A, Able KW. 1993. Diel variation in decapod crustacean and fish assemblages in New Jersey polyhaline marsh creeks. Estuarine, Coastal and Shelf Science, 37: 181-201.
    Rozas L P, Minello T J. 1997. Estimating densities of small fishes and decapod crustaceans in shallow estuarine habitats: a review of sampling design with focus on gear selection. Estuaries, 20: 199-213.
    Ruiz M G, Hines A H, Posey M H. 1993. Shallow water as a refuge habitat for fish and crustaceans in non-vegetated estuaries: an example from Chesapeake Bay. Marine Ecology Progress Series, 99: 1-16.
    Salgado J P, Cabral H N, Costa M J, et al. 2004. Nekton use of salt marsh creeks in the upper Tejo estuary. Estuaries, 27: 818-825.
    SentaT, Kinoshita L. 1985. Larval andjuvenilefishes occurringin surf zones ofwestem Japan. Trans Am Fish Soc, 114: 609-618.
    Shingo K, Yakashi I, Yakashige S. 2001. Fluctuation in the distribution of low-salinity water in the North Equatorial Current and its effect on the larval transport of the Japanese eel. Fish. Oceanogr, 10(1): 51-60.
    Takashige S, Shingo K, Kazuaki Y. 2001. Impact of El Nino events and climate regime shift on living resources in the western North Pacific. Progress in Oceanography, 49: 113-127.
    Tanaka H, Ohta H, Kagawa H. 2000. Development of techniques for artificial induction of maturation and rearing larvae of Japanese eel. Bull Jap Soc Sci Fish, 66: 623-626.
    Tankisho. 2004. An Enigma on Resource Dynamic Variety of Larvae of Anguilla Japonica Yemminck et Schlegel. Agriculture, 41(12): 72-75.
    Thomas B E, Connolly R M. 2001. Fish use of subtropical saltmarshes in Queensland, Australia: relationships with vegetation, water depth and distance onto the marsh. Marine Ecology Progress Series, 209: 275-288.
    Toshihiro Y, Noritaka M, Akinobu N. 2001. Seasonal occurrence of anguillid glass eels at Yakushima Island, Japan. Fisheries Science, 67: 530-532.
    Tseng M C, Tseng W N, Lee S C. 2003. Historical Decline in the Japanese eel Anguilla japonica in Northern Taiwan Inferred from Temporal Genetic Variations. Zoological Studies, 42(4): 556-563.
    Tsukamoto K. 1992. Discovery of the spawning area for Japanese eel. Nature, 356: 789-791.
    Tsukamoto K. 2006. Spawning of eels near a seamount. Nature, 439: 929.
    Van der Veer H W. 1986. Immigration, settlement and densitydependent mortality of a larval and early post-larval O-group plaice (Pleuronectes platessa) population in the western Wadden Sea. Mar Ecol Prog Set, 29: 223-236.
    Vlas J. 1979. Annual food intake by plaice and flounder in a tidal fiat area in the Dutc Wadden sea, with particular reference to consumption of regenerating parts of macrobenthic prey. Netherlands Journal of Sea Research, 13: 117-153.
    Wantiez L, Hamerlin-Vivien M, Kulbicki M. 1996. Spatial and temporal variation in a soft-bottom fish assemblages in St.Vincent Bay, New Caledonia. Mar. Biol, 125: 801-812.
    Weinstein M P. 1979. Shallow marsh habitats as primary nurseries for fishes and shellfish, Cape Fear River, North Carolina. Fishery Bulletin, 77: 339-357.
    Wheeler A. 1979. The Tidal Thames. The History of a River and its Fishes. London: Routledge and Keegan-Paul.
    Whitfield A K. 1996. Fishes and the environmental status of South African estuaries. Fisheries Management and Ecology, 3: 45-57.
    Whitfield A K. 1997. Fish conservation in South African estuaries. Aquatic Conservation, 711: 1-11.
    Yang S L, Gao A, Hotz H M, et al. 2005. Trends in annual discharge from the Yangtze River to the sea (1865-2004). Hydrological Sciences Journal, 50: 825-836.
    Yarrell W. 1836. A History of British Fishes. London: John Van Voorst.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700