用户名: 密码: 验证码:
结球甘蓝抽薹开花性状的遗传、QTL定位及生理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结球甘蓝(Brassica oleracea L. var. capitata L.)是世界各地普遍栽培的一种重要的十字花科芸薹属蔬菜作物,在我国蔬菜生产中占有举足轻重的地位。在甘蓝生产中,未熟抽薹现象时有发生,是春季甘蓝生产中需要解决的重要问题。选育耐未熟抽薹品种和新种质是解决这一问题的最经济有效的措施。对育种目标性状遗传体系的了解及相关基因的定位将有助于应用适当的育种方法对目标性状进行定向选择,提高育种效率,加速育种进程。本课题以耐未熟抽薹不同的甘蓝自交系及其配制的不同组合和分离群体为试材,对结球甘蓝抽薹时间和开花时间性状的遗传、生理及相关基因的分子标记定位等方面进行了一系列的研究,得到以下主要结论:
     1.主基因+多基因混合遗传模型分离分析结球甘蓝抽薹时间性状的结果表明,结球甘蓝抽薹时间的遗传受2对主基因的控制,同时存在多基因对主基因的修饰。2对主基因解释了总遗传变异的86%以上,解释了分离世代总表型变异的68%~88%。说明甘蓝抽薹时间性状主基因起决定作用。结球甘蓝抽薹时间性状是受多基因控制的数量性状,存在效应大的主基因,在进行耐抽薹育种中可采用单交重组或简单回交转育的方法进行。
     2.主基因+多基因混合遗传模型分离分析结球甘蓝开花时间性状的结果表明,结球甘蓝开花时间的遗传受1对主基因控制,同时存在多基因对主基因的修饰。主基因解释总遗传变异的83%以上,解释分离世代总表型变异的44%~58%,说明甘蓝开花时间性状主基因起决定作用。开花时间性状的遗传和抽薹时间性状的遗传基本一致,可以采用同样的育种方法进行品种选育。
     3.本研究采用Griffing完全双列杂交方法Ⅳ,对中国农业科学院蔬菜花卉研究所甘蓝课题组育成的6个结球甘蓝优良自交系的抽薹时间和开花时间性状进行配合力和遗传力分析。结果表明,自交系05521-2和04M9-2均具有良好的一般配合力,具有作为耐抽薹开花亲本材料的潜力;抽薹时间性状的广义遗传力和狭义遗传力分别为92.6%和50.04%;开花时间性状的广义遗传力和狭义遗传力分别为92.09%和67.28%,它们主要受加性效应基因控制,在早世代着手对结球甘蓝的抽薹时间和开花时间性状的选择是有效的。
     4.利用结球甘蓝品种间杂交的F1代经自交后得到的F2代为作图群体,采用SSR和AFLP等分子标记方法构建了结球甘蓝分子遗传图谱。该遗传图谱包含了13个连锁群,共有113个标记位点(其中包含81个SSR标记,31个AFLP标记和1个CAPS标记),连锁群长度为11 cM~146.6 cM,覆盖基因组长度的677.7 cM,平均图距为6.0 cM,连锁群上的标记数为3~19个。该分子标记连锁图谱可以进行数量性状的QTL初步定位研究。
     5.分子标记分析结球甘蓝抽薹时间性状结果表明,结球甘蓝抽薹时间通过区间作图检测到4个QTL,单个QTL解释表型变异的9.8%~18.7%,共解释表型变异的56.2%;其中2个QTL表现正向的加性效应,其余2个表现负向加性效应。复合区间作图定位到1个QTL,该QTL解释表型变异的18.7%,加性效应为5.4;并且与08c0954标记共分离,QTL定位在小于10 cM的区间。在耐抽薹品种选育中可利用该共分离的标记和两侧的标记进行标记辅助选择。
     6.分子标记分析结球甘蓝开花时间性状结果表明,结球甘蓝开花时间通过区间作图检测到4个QTL,单个QTL解释表型变异的14.5%~19.1%,共解释表型变异的66.2%;4个QTL均表现正向的加性效应。复合区间作图定位到1个QTL,该QTL解释表型变异的15%,加性效应为3.14;该QTL与08c0784-2标记共分离,QTL定位在0.73 cM的区间,可进一步精细定位和基因克隆。在耐抽薹品种选育中可利用该共分离的标记和两侧的标记进行标记辅助选择。
     7.根据对甘蓝的生长点进行花芽形态分化发育过程的观察,将甘蓝的花芽分化划分为5个阶段,并明确了不同阶段的主要特点:第1阶段:花芽未分化期(营养生长期)。茎尖生长锥圆滑,周边有叶原基;第2阶段:花芽将分化期。茎尖生长锥加宽,有突起,周边有苞片原基和叶原基;第3阶段:花芽分化期。花原基和苞片原基形成,并且出现更多的花原基和苞片原基;第4阶段:花器官分化期。萼片原基形成,并且花器官萼片、花瓣、雄蕊、雌蕊逐渐形成;第5阶段:现蕾期。花蕾肉眼可见。
     以上得出的甘蓝花芽分化时期的划分及变化的特点为室内鉴定甘蓝材料的抽薹开花的早晚提供了参考依据。
     8.采用ELISA方法对甘蓝花芽分化过程中的内源激素含量变化规律进行了研究,结果表明,内源激素(GA3、IAA、ABA和ZR)含量的降低将有利于花芽分化;GA3含量的升高促进结球甘蓝现蕾。ABA/ZR和IAA/ZR比值减少,GA3/ZR比值增加将有利于花芽分化的完成。
     综上所述,自交系05521-2和04M9-2可以作为耐抽薹亲本直接用于耐抽薹新品种的选育;栽培措施上可以采用施用GA3生长抑制剂控制未熟抽薹,该措施可作为生产上一个快速解决未熟抽薹的方法,但具体的生长抑制剂类型的选择和浓度的配比还需进一步研究;然而外施生长抑制剂耗费人力、物力,又破坏生态环境,选用耐抽薹品种才是经济有效的途径。本研究表明,甘蓝抽薹开花时间性状均存在主效的基因控制,可通过采用单交重组或简单回交转育的方法进行育种;此外利用定位到主效的QTL,在育种过程中进行耐未熟抽薹品种的辅助选择,可进一步提高育种效率。
Cabbage (Brassica oleracea L. var. capitata L.) is an important vegetable crop of Cruciferous crops and is cultivated world-wide. It occupies an important position in vegetable production in China. In cabbage production, premature bolting occurred from time to time is the important issues that need to be addressed in the spring vegetable production. The most cost-effective solution to solve this problem is to develop bolting-resistant varieties and germplasms. Research on genetics and gene mapping helps to choose the appropriate breeding methods to select the target trait directionaly, to improve breeding efficiency and speed up the breeding process. This topic of genetics, physiology and related gene marker location on bolting time and flowering time was studied using different bolting-resistant cabbage inbred lines. Major conclusions are as follows:
     1. Analysis of major genes plus polygenes genetic segregation results show that the genetics of bolting time was controlled by two major gene and modified by polygenes; two major genes explained above 86% genetic variation, and 68%-88% of phenotype variation in segregation population. It showed that major genes played a decisive role of characteristics of the time of bolting. The bolting time character is a quantitative trait controlled by multiple genes. There is a most effective major gene, so the single cross or back cross can be used in breeding for premature bolting tolerance.
     2. Analysis of major genes plus polygenes genetic model segregation results showed that the genetics of flowering time was controlled by a pair of major genes modified by polygenes; major genes explained above 83% of genetic variation, and 44%-58% of phenotype variation in segregation population. It indicated that major genes played a decisive role in the characterization of flowering time. The flowering time and bolting time are simultaneously initiated. The same breeding technique could be used in cabbage variety development and selection.
     3. Six inbred lines from the cabbage breeding group of the Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, was used in analyzing the combining ability and heritability of bolting time and flowering time by Griffing complete diallel crossingⅣ, the results showed that the general combining ability of inbred lines 05521-2 and 04M9-2 was desirable, which can be used as bolting-resistant parental materials; the broad heritability ability and the narrow heritability of bolting time and flowering time separately are 92.6%, 50.04% and 92.09%, 67.28%, and mainly affected by additive genes. So, the selection of bolting and flowering characters in cabbage were effective in early generations.
     4. A F2 generation population derived from F1 self-cross from crosses between cabbage varieties was used for constructing a genetic linkage map of SSR and AFLP molecular markers. The map included 13 linkage groups with 113 markers (including 81 SSR markers, 31 AFLP markers and one CAPS marker), the length of each linkage group was 11 cM-146.6 cM, It covered a total length of 677.7 cM with an average interval distance for 6.0 cM, and including 3-19 molecular markers for each linkage group. The molecular marker linkage map could be used QTL location.
     5. Molecular marker analysis showed four QTL controlling bolting time by IM, single QTL explained 9.8%-18.7% of phenotype variation and 56.2% in total; two QTL showed positive additive effect, the remaining two showed negative additive effect. MQM method mapped one QTL, it explained 18.7% of phenotype variation, the additive effect was 5.4; 08c0954 marker was co-segregated with QTL, QTL was located on less than 10 cM interval and reached a preliminary location. So the markers can be used for MAS of breeding for bolting tolerance.
     6. Molecular marker analysis of flowering time showed four QTL controlling by IM, single QTL explained 14.5%-19.1% of phenotype variation and 66.2% in total; all four QTL showed positive additive effect. MQM method could map one QTL, it explained 15% phenotype variation, the additive effect was 3.14; 08c0784-2 marker was co-segregated with QTL, QTL was located on less than 1 cM interval and could process fine mapping and gene cloning. So the markers can be used for MAS of breeding for bolting tolerance.
     7. The process of flower bud differentiation and development was observed based on the growth point of cabbage. Flower bud differentiation of cabbage can be divided into five stages as follows: Stage 1: Vegetative growth stage, characterized by a curved stem apex surrounded by leaf primordia at the basal part; Stage 2: Flower bud initiation, stem apex is widening and surrounded by bract primordia and leaf primordia at the basal part; Stage 3: Flower bud differentiation stage, characterized by floral primordia and bract primordia formation, and more floral and bract primodia are formed; Stage 4: Floral organ differentiation stage, characterized by sepal primordia formation and floral organs formation;
     Stage 5: Flower bud appearing stage, flower bud is visible without microscope. These characteristics of cabbage flower bud differentiation provide a reference for identifying bolting and flowering time of cabbage indoor.
     8. The process of cabbage flower bud differentiation of endogenous hormones was determined by ELISA method. The results show that endogenous hormones concentration (low concentration of ABA/ZR and IAA/ZR) was downward trend in stage 3, that helped flower bud to differentiate; higher GA3 concentration promoted bolting. Lower ABA/ZR and IAA/ZR concentration and higher GA3/ZR concentration were beneficial to the completion of flower bud differentiation.
     The results of this study showed that the inbred lines 05521-2 and 04M9-2 could be used as bolting-resistant varieties directly; GA3 inhibitors could be applied to control bolting in cultivation as a quick solution to prevent premature bolting in the production. However research on the type of growth inhibitor and the concentration should be further studied; the growth inhibitor cost manpower, material and brought damage to the ecological environment, the application of premature bolting varieties was an economic and effective way to solve this issue. This study showed that flowering time and bolting time of cabbage were controlled by major gene, the single cross and back cross breeding methods could be applied in the breeding for the bolting tolerance and QTL could be used as a tool to assist the breeding. It could improve the breeding efficiency.
引文
1.包和平,王晓丽,李春成,杨光,张丽萍.玉米抗螟性主基因-多基因混合遗传分析.吉林农业大学学报,2007,29(3):253~255.
    2.蔡长春,陈宝元,傅廷栋,涂金星.甘蓝型油菜开花期和光周期敏感性的遗传分析.作物学报,2007,33(2):345~348.
    3.曹维荣,王超.甘蓝迟抽薹基因的RAPD标记.生物技术通报,2007,5:167~169.
    4.陈书霞,房玉林,王晓武,程智慧,方智远,孙培田.甘蓝类作物抽薹期及开花期数量性状的研究进展.园艺园林科学,2005,21(7):298~301.
    5.陈书霞,王晓武,方智远,程智慧,孙培田.RAPD标记构建芥蓝×甘蓝分子标记连锁图.园艺学报,2002,29(3):229~232.
    6.陈书霞,王晓武,方智远,程智慧,孙培田.芥蓝×甘蓝F2群体抽薹期性状QTLs的RAPD标记.园艺学报,2003,30(4):421~426.
    7.程斐,李式军,奥岩松,陈广福.大白菜抽薹性状的遗传规律研究.南京农业大学学报,1999,22(1):26~28.
    8.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001.
    9.方智远,孙培田.甘蓝自交系几个数量性状配合力的分析初报.中国农业科学,1982,15(1):49~55.
    10.方智远,孙培田,刘玉梅.早熟甘蓝品种配合力研究初报.中国蔬菜,1984,(6):24~27.
    11.杜辉,潘俊松,何欢乐,薄天岳,吴爱忠,蔡润.甘蓝抽薹性状基因的分子标记定位.分子植物育种,2007,5(5):673~676.
    12.郭志刚.数量性状主基因-多基因混合遗传分析的应用研究.南京农业大学,硕士学位论文,1998.
    13.顾慧,戚存扣.甘蓝型油菜(Brassica napus L.)抗倒伏性状的主基因+多基因遗传分析.作物学报,2008,34(3):376~381.
    14.何钟佩.作物激素生理及化学控制.北京:中国农业大学出版社,1996:1~42.
    15.孔繁玲.植物数量遗传学.北京:中国农业大学出版社,2005.
    16.盖钧镒,王建康.利用回交世代或F2︰3家系世代鉴定数量性状主基因-多基因混合遗传模型.作物学报,1998a,24(4):402~409.
    17.盖钧镒,王建康.大豆对豆秆黑潜蝇抗性的主基因+多基因混合遗传.见:王连铮戴景瑞主编.全国作物育种学术讨论会论文集.北京:中国农业科技出版社,1998b,241~248.
    18.盖钧镒,章元明,王建康.QTL混合遗传模型扩展至2对主基因+多基因时的多世代联合分析.作物学报,2000,26(4):385~391.
    19.盖钧镒,章元明,王建康.植物数量性状遗传体系.北京:科学出版社,2003.
    20.干春娟,陆萍.结球生菜中有机磷农药残留气相色谱检测技术初探.上海农业科技,2006,1:87.
    21.高力,陈飞,周立人,陆维忠.小麦品种望水白的抗赤霉病遗传分析.麦类作物学报,2005,25(5):5~9.
    22.管荣展,盖钧镒.甘蓝型油菜杂种优势及其与亲本配和力和亲本系数间的关系.中国油料作物学报,1998,20(4):11~15.
    23.管荣展,盖钧镒.甘蓝型油菜杂种组合优势改良方案研究.中国农业科技导报,1999,(4):22~26.
    24.龚利强,黄凯美,骆银儿.播栽期对越冬春甘蓝先期抽薹和产量的影响.浙江农业科学,2008,1:13~14.
    25.韩建明,侯喜林,史公军,陈沁滨.不结球白菜株高性状主基因+多基因遗传分析.南京农业大学学报,2008,31(1):23~26.
    26.韩建明,侯喜林,史公军,耿建峰,邓晓辉.不结球白菜叶子重量性状遗传模型分析.遗传,2007,29(9):1149~1153.
    27.韩灿功,赵凤莲,石红梅,孙化军.几起越冬甘蓝发生未熟抽薹的调查分析.中国蔬菜,2005,5:38~39.
    28.何光明,孙传清,付永彩.水稻抗衰老IPT基因与抗白叶枯病基因Xa23的聚合育种.遗传学报,2004,31(8):836~841.
    29.何昆燕,易斌,傅廷栋,涂金星.甘蓝型油菜菌核病抗性的遗传分析.作物学报,2005,31(11):1495~1499.
    30.侯北伟,窦秉德,章元明,李生强,杨晋彬,刘福霞.小麦雌性育性的主基因+多基因混合遗传分析.遗传,2006,28(12):1567~1572.
    31.胡学军,邹国林.甘蓝分子连锁图的构建与品质性状的QTL定位.武汉植物学研究,2004,22(6):482~485.
    32.黄和艳,张延国,邓波,娄平,王晓武.利用AFLP标记辅助甘蓝显性雄性不育高代回交系选择.园艺学报,2006,33(3):539~543.
    33.黄凯美,骆银儿,龚利强,金善根.品种和播期对越冬甘蓝先期抽薹和产量的影响.安徽农业科学,2006,34(11):2375,2399.
    34.姜长鉴,莫惠栋.质量-数量性状的遗传分析Ⅳ.极大似然法的应用.作物学报,1995,21(6):641~648.
    35.蒋欣梅,李丹,王凤娇,于锡宏.外源赤霉素(GA3)对青花菜花芽分化和花球发育的影响.植物生理学通讯,2008,44(4):639~642.
    36.蒋欣梅,马红,于锡宏.青花菜花芽分化前后内源激素含量及酶活性的变化.东北农业大学学报,2005,36(2):156~160.
    37.康俊根,翟依仁.甘蓝耐热性遗传效应分析.华北农学报,2003,18(3):93~95.
    38.李传勇,黄聪丽,潘爱民,许德瑞,许卫东.利用RAPD分析鉴定花椰菜杂种纯度.亚热带植物科学,2001,30(4):1~4.
    39.李广军,程利国,张国政,何小红,智海剑,章元明.大豆对豆卷叶螟抗性的主基因+多基因混合遗传.大豆科学,2008,27(1):33~36,41.
    40.李纪锁,沈火林,石正强.鲜食番茄果实中番茄红素含量的主基因-多基因混合遗传分析.遗传,2006,28(4):458~462.
    41.李梅,赵前程,孙德岭,申书兴,孙振英.花椰菜叶色突变的RAPD分析.天津农业科学,2004,10(4):10~12.
    42.李梅兰,曾广文,朱祝军.冬性与春性白菜品种花芽分化前后生理代谢的比较.中国农业科学,2003,36(11):1414~1418.
    43.李卓杰.植物激素及其应用.广州:中山大学出版社,1993:10~56.
    44.林珲,黄科,李永平,温庆放.花椰菜种质资源遗传多样性分析.福建农业学报,2008,23(2):172~177.
    45.林影,叶茂,韩双艳,吴晓英.免疫检测技术的研究进展.食品与生物技术学报,2007,26(4):117~120.
    46.刘来福,毛盛贤,黄远樟.作物数量遗传[M].北京:农业出版社,1984:243~250.
    47.刘松,宋文芹,赵前程,陈成彬,孙德岭,陈瑞阳.与花椰菜(Brassica oleracea ssp. botrytis)抗黑腐病基因连锁的RAPD标记.南开大学学报(自然科学),2002,35(1):126~128.
    48.刘玉梅,方智远,Michael D McMullen,庄木,杨丽梅,王晓武,张扬勇,孙培田.一个与甘蓝显性雄性不育基因连锁的RFLP标记.园艺学报,2003,30(5):549~553.
    49.刘玉梅,王晓武,方智远,孙培田,杨丽梅.早熟秋甘蓝自交不亲和系的配合力及主要数量性状遗传效应分析.西南农业大学学报,1996,18(5):421~424.
    50.鲁博,冯辉,王五宏,刘娜.番茄主要株型参数主基因-多基因混合模型分析.沈阳农业大学学报,2008-06,39(3):351~353.
    51.刘志文,毛玮,周芳彬,傅廷栋.甘蓝型油菜种皮颜色的遗传分析.华北农学报,2008,23(2):84~87.
    52.马秀峰,王丽华,陈志英,朱祥春,李文华,高继国,袁丽梅,马凤鸣.甜菜当年抽薹株与不抽薹株内源激素含量及平衡状况的动态变化.中国糖料,1997,(1):1~4.
    53.莫惠栋.质量-数量性状的遗传分析Ⅱ.世代平均数和遗传方差.作物学报,1993b,19(3):193~200.
    54.潘海军,王春连,赵开军.水稻抗白叶枯病基因Xa23的PCR分子标记定位及辅助选择.作物学报,2003,29(4):501~509.
    55.庞占军,刘海清,贾兵国,卢月霞.2000年邯郸地区春早熟甘蓝先期抽薹因素浅析.邯郸农业高等专科学校学报,2001,18(2):17~19.
    56.戚存扣,盖钧镒.不同遗传来源甘蓝型型油菜开花期的基因型差异和遗传效应分析.作物学报,2002,28(4):455~460.
    57.戚存扣,盖钧镒,傅寿仲,浦惠明,张洁夫,陈新军,高建琴.甘蓝型油菜(Brassica napus L.)千粒重性状遗传体系分析.作物学报,2004,30(12):1274~1277.
    58.钱秀芳,夏春霞,钱忠贵.春甘蓝如何防止先期抽薹.上海蔬菜,2006,2:37.
    59.秦钢,李杨瑞,陈彩虹.分子标记聚合育种在作物新品种选育中的应用.广西农业大学,2006,37(4):345~349.
    60.饶立兵,陈先知,王燕,郑金和.温州地区春甘蓝“未熟抽薹”的原因及防止措施.温州农业科技,2008,2:48~49.
    61.杉山直仪著,赖俊铭译.蔬菜的发育生理和栽培技术.农业出版社,1980:147~223.
    62.孙日飞,张淑江,司家钢,钮心恪,吴飞燕.春化和赤霉素对大白菜抽薹开花的影响.中国蔬菜,1999,(3):14~17.
    63.索文龙,戚存扣.甘蓝型油菜油酸含量的主基因+多基因遗传分析.江苏农业学报,2007,23(5):396~400.
    64.唐启义,冯明光.DPS数据处理系统[M].北京:科学出版社,2007.
    65.田纪春.植物激素应用讲座.农业知识,1995,9:54~55.
    66.田雷,曹鸣庆,王辉,郭晶心,周乃元,孙江,贾希海.AFLP标记技术在鉴定甘蓝种子真实性及品种纯度中的应用.生物技术通报,2001,(3):38~40,44.
    67.万建民.作物分子设计育种.作物学报,2006(32):455~462.
    68.王健康.数量性状住基因-多基因混合遗传模型的鉴别和遗传参数估计的研究[博士学位论文].南京农业大学,1996.
    69.王建康,盖钧镒.利用杂种F2世代鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应.遗传学报,1997a,24(5):432~440.
    70.王建康,盖钧镒.主基因-多基因混合遗传分析中的EM算法.生物数学学报,1997b,12(5):540~548.
    71.王建康,盖钧镒.数量性状主基因-多基因混合遗传的P1,P2,F1,F2和F2︰3联合分析方法.作物学报,1998a,24(6):651~659.
    72.王建康,盖钧镒.数量性状主基因-多基因混合遗传模型的图形分析.遗传,1998b,20(增刊),110~111,139~140.
    73.王淑芳,石玉真,刘爱英,熊宗伟,唐淑荣,李俊文,王玉红,袁有禄.陆地棉纤维品质性状主基因与多基因混合遗传分析.中国农学通报,2006,22(2):157~161.
    74.王淑芬,徐文玲,郎丰庆,何启伟,侯丽霞,刘继保.赤霉素对耐抽薹萝卜抽薹开花的影响.山东农业科学,2002,(6):14~16.
    75.王晓武,方智远,刘玉梅,孙培田,杨丽梅,庄木.一个用于甘蓝显性雄性不育基因转育辅助选择的SCAR标记.园艺学报,2000,27(2):143~144.
    76.王晓武,方智远,孙培田,刘玉梅,杨丽梅.一个与甘蓝显性雄性不育基因连锁的RAPD标记.园艺学报,1998,25(2):197~198.
    77.王晓武,娄平,何杭军,杨宝军,张延国,赵建军.利用芥蓝×青花菜DH群体构建AFLP连锁图谱.园艺学报,2005,32(1):30~34.
    78.王羽,樊庆琦,张利,隋新霞,李根英,楚秀生,张宪省,黄承彦.小麦K35早熟特性的遗传分析.麦类作物学报,2007,27(6):957~960.
    79.王竹林,刘曙东,王辉,何中虎,夏先春,陈新民,段霞瑜.‘百农64’慢白粉病的遗传分析.西北植物学报,2006,26(2):0332~0336.
    80.魏昕,李丽华,王娟,樊庆琦,兰海,吴元奇,荣廷昭,潘光堂.玉米丝裂病发生的数量遗传分析.中国农业科学,2008,41(8):2235~2240.
    81.吴纪中,颜伟,蔡士宾,任丽娟,汤颋.小麦纹枯病抗性的主基因+多基因遗传分析.江苏农业学报,2005,21(1):6~11.
    82.向太和.谈谈植物激素间的关系.生物学教学,1992,2:31.
    83.邢光南,赵团结,盖钧镒.大豆队豆卷叶螟Lamprosema indicate(Fabricius)抗性的遗传分析.作物学报,2008,34(1):8~16.
    84.许卫东,黄聪丽,李传勇,潘爱民,许瑞德,晋宏.利用RAPD分析花椰菜遗传多样性及预测杂交优势组合.浙江农业科学,2006,5:495~498.
    85.严慧玲,方智远,刘玉梅,王永健,杨丽梅,庄木,张扬勇,孙培田.甘蓝显性雄性不育材料DGMS79-399-3不育性的遗传效应分析.园艺学报,2007,34(1):93~98.
    86.余阳俊,张凤兰,赵岫云,张德双,何娟,张振贤.大白菜及种内杂种小白菜×大白菜、芜菁×大白菜的晚抽薹遗传效应研究.华北农学报,2005,20(3):17~21.
    87.曾庆钱,陈厚彬,鲁才浩,李建国.HPLC测定荔枝不同器官中内源激素流程的优化.果树学报,2006,23(1):145~148.
    88.张崇浩.开花的激素调控.生物学通报,1997,32(7):19~21.
    89.张韬,王超.春甘蓝抽薹特性的研究(Ⅱ)--遗传特性分析.东北农业大学学报,2003,34(4):368~371.
    90.张峰,宋文芹,李凌,李秀兰,陈瑞阳,孙德岭.利用AFLP—银染筛选与抗甘蓝黑腐病性状连锁的分子标记.南开大学学报(自然学报),1999,32(3):177~180.
    91.张洁夫,戚存扣,浦惠明,陈松,陈锋,陈新军,高建芹,傅寿仲.甘蓝型油菜花瓣缺失性状的主基因+多基因遗传分析.中国油料作物学报,2007,29(3):227~232.
    92.张洁夫,戚存扣,浦惠明,陈松,陈锋,陈新军,高建芹,傅寿仲.甘蓝型油菜主要脂肪酸的主基因+多基因遗传分析.中国油料作物学报,2007,29(4):359~364.
    93.张立平,赵昌平,单福华,张风廷,叶志杰.小麦光温敏雄性不育系BS210育性的主基因+多基因混合遗传分析.作物学报,2007,33(9):1553~1557.
    94.张书芬,傅廷栋,朱家成,王建平,文雁成,马朝芝.甘蓝型油菜芥酸含量的基因分析.中国农业科学,2008,41(10):3343~3349.
    95.章元明,盖均镒.利用P1 F1 P2 F2或F2︰3家系的联合分离分析.西南农业大学学报,2000a,22(1):6~9.
    96.章元明,盖均镒.利用DH或RIL群体鉴定QTL体系并估计其遗传效应.遗传学报,2000b, 27(7):634~640.
    97.章元明,盖钧镒.数量性状分离分析中分布参数估计的IECM算法.作物学报,2000c,26(6):699~706.
    98.章元明.植物数量性状遗传分离分析法的改进与拓展[博士学位论文].南京农业大学,2001.
    99.章元明,盖钧镒.利用P1、F1、P2、F2和F2︰3家系的数量性状分离分析.生物数学学报,2002,17(3):363~368.
    100.张勇,张伯桥,高德荣,程顺和.小麦赤霉病抗源N553的主基因+多基因遗传分析.植物保护科学,2005,21(6):305~307,336.
    101.郑永战,盖钧镒,周瑞宝,田少君,卢为国,李卫东.大豆脂肪及脂肪酸组分含量的遗传分析.大豆科学,2007,26(6):801~806.
    102.庄木,王晓武,杨丽梅,刘玉梅,孙培田,方智远.利用RAPD方法鉴定两个春甘蓝品种的纯度.中国蔬菜,1999,(5):8~9.
    103.周宝良,朱协飞,郭旺珍,张天真.异常棉渐渗的陆地棉高品质种质系纤维特性遗传.棉花学报,2006,18(1):60~62.
    104.朱军.复杂数量性状基因定位的混合线性模型方法.王连铮,戴景瑞,主编:全国作物育种学术讨论会论文集,北京:中国农业科技出版社,1998,11~20.
    105.Akaike H..On entropy macimum principle. In: Krishnaiah P R (ed.) Applications of Statistics. Amsterdam: NorthHolland Publishing Company 1977, 27-41.
    106.Axelsson T., Shavorskaya O., Lagercrantz U..Multiple flowering time QTLs within several Brassica species could be the result of duplicated copies of one ancestral gene. Genome 2001, 44: 856-864.
    107.Babu R., Nair S. K., Prasanna B. M., Gupta H. S.. Integrating marker-assisted selection in crop breeding-prospects and challenges. Curr Sci.2004, 87 (5) : 607-619.
    108.Baggert J. R., Wahlert W. K.. Annual Flowering and growth habit in cabbage-broccoli crosses. Hortscience 1975, 10: 170-172.
    109.Bagget, Kean D.. Inheritance of Annual Flowering in Brassica oleracea. Hortscience 1989, 24 (4) : 662-664.
    110.Baker R. J.. Issues in diallel analysis. Crop Sciences 1978, 18: 5335-5336.
    111.Bathia S., Das S., Jain A., Lakshmikumaran M.. DNA fingerprinting of the B.juncea cultivars using the microsatellite probes. Electrophoresis 1995, 16: 1750-1754.
    112.Bernardo R.. Breeding for quantitative traits in plants. Woodbury, Minnesota:Stemma Press, 2002.
    113.Bernier G.. Physiological signals that induce flowering. The Pant Cell 1993, 5: 1147-1155.
    114.Bohuon E. J. R., Keith R. D. J., Parkin I. A. P., Sharpe A. G., Lydiate D. J.. Alignment of the conserved C genomes of Brassica oleracea and Brassica napus. Theor Appl Genet 1996, 93: 833-839.
    115.Bohuon E. J. R., Ramsay L. D., Craft J. A., Arthur A. E., Marshall D. F.. The association of flowering time quantitative trait loci with duplicated regions and candidate loci in Brassica oleracea. Genetics 1998, 150: 393-401.
    116.Botstein D., White R. L., Skolnick M., Davis R. W.. Cnstruction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet 1980, 32: 314-331.
    117.Butruille D. V., Guries R. P., Osbom T. C.. Linkage analysis of molecular markers and quantitative trait loci in Populations of inbred backcross lines of Brassica napus L. Genetics 1999, 153: 949-964.
    118.Camargo L. E. A., Osborn T. C.. Mapping loci controlling flowering time in Brassica oleracea. Theor Appl Genet 1996, 92: 610-616.
    119.Chandler J., Wilson A., Dean C.. Arabidopsis mutants showing an alered response tovernalization. Plant J 1996, 10 (4) : 637-644.
    120.Cheung W. Y., Champagne G., Hubert N., Tulsieram L., Charne D., Patel J., Landry B. S.. Conservation of S-locus for self-incompatibility in Brassica napus (L.) and Brassica oleracea (L.). Theor Appl Genet 1997, 95: 73-82.
    121.Cheung W. Y., Friensen L., Rakow G. F. W., Seguin-Swartz G., Landry B. S.. A RFLP-based linkage map of mustard (Brassica juncea (L.)Czern and Coss). Theor Appl Genet 1997, 94: 841-851.
    122.Comstock R. C., Robinson H. F..The component of quantitative variance in populations. Biometrics 1948, 4: 254-266.
    123.Comstock R. C., Robinson H. F., Harvey P. H.. A breeding procefure designed to make maximum use of both general and specific combing ability. Agron J 1949, 41: 360-367.
    124.Comstock R. C., Robinson H. F.. Estimation of average dominance of genes heterosis. Ames IA:Iowa State Univ Press 1952, 494-516.
    125.Cockerham C. C.. An extension of the concept of partitioning hereditary variance for analysis of covance among relatives when epistasis is present. Genetics 1954, 39: 859-882.
    126.Cockerham C. C.. Analysis of quantitative gene action.Brookhaven Symp Biol 1956, 9: 53-58.
    127.Cockerham C. C..Estimation of genetic variances. In: W D Hanson & H F Robinson (eds.) Genetics Statistics and Plant Breeding, NASNRC Publ 1963, 982: 53-94.
    128.Darvasi A., Soller M.. Selective DNA pooling for determination of linkage between a marke and a quantitative trait locus. Genetics 1994, 138: 1365-1373.
    129.De Vicente M. C., Tanksley S. D.. QTL analysis of transgressive segregation in an intrespecific tomato cross.Genetics 1993, 134: 585-596.
    130.Detjen L. R. A..Preliminary report on cabbage breeding. Proc Amer Soc Hort Sci 1926, 23: 325-332.
    131.Deyze A. V., Pauls K. P.. The inheritance of seed color and vernalization requirement in Brassica napus using Dhpopulations. Euphytica 1994, 74: 78-83.
    132.Edwards M. D., Stuber C. W., Wendel J. F.. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 1987, 27: 639-648.
    133.Elkind Y., Cahaner A.. A mixed model for the effects of single gene, polygenes and their interaction on quantitative traits. The model and experimental design. TAG 1986, 72: 377-383.
    134.Elkind Y., Cahaner A.. A mixed model for the effects of single gene,polygenes and their interaction on quantitative traits.2.The effects of the major gene and polygenes on tomato fruit softness.Heredity 1990, 64: 205-213.
    135.Elston R. C., Stewart J..The analysis of quantitative traits for simple genetic models from parental, F1 and backcross data. Genetics 1973, 73: 695-711.
    136.Falconer D. S.. Introduction to quantitative genetics. 2nd edn. London: Longman, 1981.
    137.Falconer D. S., Markay T. F. C.. Introduction to quantitative genetics. 4th edn. London: Longman, 1996.
    138.Ferreira M. E., Satagopan J., Yandell B. S.. Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet 1995, 90: 727-732.
    139.Gai J., Wang J.. Identification and estimation of a QTL model and its effects. TAG 1998, 97 (7) : 1162-1168.
    140.Gelderman H.. Investigation on inheritance of quantitative characters in animals by gene markers.Ⅰ.Methods. TAG 1975, 46: 300-319.
    141.Grant I., Beverdorf W. D.. Heterosis and combining ability estimates in spring rape (Brassica napus). Can J Genet Cytol 1985, 27: 472-478.
    142.Haley S. S., Knott S. A.. A simple regression method for mapping quantitative trait loci in line crossed using flanking markers. Heredity 1992, 69: 315-324.
    143.Horovitz S., Petrlasca G.. Genetics of normal flowering of cabbage in thetorrid tropics. Agron Trop 1954, 4: 81-93.
    144.Hu J., Sadowski J., Osborn T. C., Landry B. S., Quiros C. F.. Lingkage group alignment from four independent Brassica oleracea RFLP maps. Genomes 1998, 41: 226-235.
    145.Jain A., Bhatia S., Banga S. S., Prakash S., Lakshmikumaran M.. Potential use of random amplified polymorphic DNA (RAPD) technique to study the genetic diversity in indian mustard (Brassica juncea) and its relationship to heterosis. Theor Appl Genet 1994, 88: 116-122.
    146.Kao C. H., Zen Z. B., Teasdale R. D.. Multiple interval mapping for quantitative trait loci. Genetics 1999, 152: 1203-1216.
    147.Kearsey M. J.. The principles of QTL analysis (a minimal mathematics approach). J Exp Bot 1998, 49 (327) : 1619-1623.
    148.Keightley P. D., Bulfield G.. Detection of quantitative trait loci from frequency changes of marker alleles under selection. Genet.Res.Camb 1993, 62: 195-203.
    149.Kennard W. C., Slocum M. K., Figdore S. S., Osborn T. C.. Genetic analysis of morphological variation in Brassica oleracea using molecular markers. Theor Appl Genet 1994, 87: 721-732.
    150.Kempthorne O.. The correlation between relatives in a random mating population. Proc R Soc London B 1954, 143: 103-113.
    151.Kempthorne O.. The theoretical values of correlation between relatives in a random mating populations. Genetics 1955, 40: 153-167.
    152.Kempthorne O.. An Introduction to Genetics Statistics. New York:John Wiley & sons 1957.
    153.Kianian S. F., Quiros C. F..Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor Appl Genet 1992, 84: 544-554.
    154.Kresovich S., Szewc-McFadden A. K., Bliek S. M., NcFerson J. R.. Abundance and characterization of simple-sequence repeats SSRs isolated from a size-fractionated genomic library of Brassaca napus L. rapeseed. Theor Appl Genet 1995, 91: 206-211.
    155.Lander E. S., Botstein S.. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 1989, 121: 185-199.
    156.Landry B. S., Hubert N.. A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome 1991, 34: 543-552.
    157.Landry B. S., Hubert N., Crete R., Chang M. S., Lincoln S. E., Etoh T.. A genetic map of Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 of Plasmodiophora brassicae (Woronin). Genome 1992, 35: 409-420.
    158.Laurian R. S., Robson S. F., Sharpe A. G.. Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Mol Biol 1998, 37: 763-772.
    159.Loisel P., Goffinet B., Monod H., De Oca G. M.. Detecting a major gene in an F2 population. . Biometrics 1994, 50: 512-516.
    160.Luo Z. W., Wu C. I., Kearsey M. J.. Precision and High-Resolution Mapping of Quantitative Trait Loci by Use of Recurrent Selection, Backcross or Intercross Schemes. Genetics 2002, 161: 915-929.
    161.Lou P., Zhao J. J., Kim J. S., Shen S. X., Carpio D. P. D., Song X. F., Jin M., Vreugdenhil D., Wang X. W., Koornneef and Bonnema G.. Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. Journal of Experimental Botany 2007, 58 (14) : 4005-4016.
    162.Mather K.. Biometrical Genetics. London: Methuen & Co. Led. 1949.
    163.Mero C. E., Honma S.. Inheritance of bolt resistance in an interspecific cross of Brassica species. II: chikale×Chinese cabbage. J Hered 1984, 75: 485-487.
    164.Mero C. E., Honma S.. Inheritance of bolting resistance in an intraspecific Chinese cabbage×turnip cross. Hortscience 1985, 20: 881-882.
    165.More T. A., Wallace D. H.. Combing ability and heterosis studies using self-incompatible lines of cabbae. Indian j. Genet 1988, 47: 20-27.
    166.Morton N. E.. Sequential tests for the detection of linkage. American Journal of Human Genetics 1955, 7: 277-318.
    167.Morton N. E., Maclean C. J.. Analysis of family resemblance.Ⅲ. Complex segregation of quantitative traits. Am J Hum Genet 1974, 26: 489-503.
    168.Nakayama M., Yamane H., Nojiri H.. Qualitative and quantitative analysis of endogenous gibberellins in Raphanus sativus during cold treatment and the subsequent growth. Biosci. Biotech. Biochem 1995, 59: 1121-1125.
    169.Nishioka M., Tamura K., Hayashi M., Fujimori Y., Ohkawa Y., Kuginuki Y., HaradaK.. Maping of QTLs for bolting time in Brassica rapa (syn. campestris) under different environmental conditions. Breeding Science 2005, 55:127-133.
    170.Oka M., Tasaka Y., Iwabuch I. M.. Elevated sensivity to gibberellin by vernalization in the vegetable rosette plants of Eustoma grandifloram and Arabidopsis thaliana. Plant Sci 2001, 160: 1237-1245.
    171.Okazaki K., Sakamoto K., Kikuchi R., Saito A., Togashi E., Kuginuki Y., Matsumoto S., Hirai M.. Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea. Theor Appl Genet 2007, 114: 595-608.
    172.Osborn T. C., Kole C., Parkin I. A. P., Sharpe A. G., Kuiper M., Lydiate D. J., Trick M.. Comparison of flowering time genes in Brassica rapa, B.napus and Arabidopsis thaliana. Genetics 1997, 156: 1123-1129.
    173.Paran I., Michelmore R. W.. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Apple Genet 1993, 85: 985-993.
    174.Paterson A. H., Lander E. S., Hewitt J. D., Peterson S., Lincoln S. E., Tanksley S. D.. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 1988, 335(6192): 721-726.
    175.Peleman J. D., Voort J. R..Breeding by design. Trends in Plant Science 2003, 8: 330-334.
    176.Phillip A. Crockett, Prem L. Bhalla, Lee C. K., Mohan B. Singh.. RAPD analysis of seed purity in a commercial hybrid cabbage (Brassica oleracea var. capitata) cultivar. Genome 2000, 43: 317-321.
    177.Pieter Vos, Rene Hogers, Marjo Bleeker, Martin Reijans, Theo van de Lee, Miranda Hornes, Adrie Frijters, Jerina Pot, Johan Peleman, Martin Kuiper, Marc Zabeau.. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 1995, 23 (21) : 4407-4414.
    178.Rae A. M., Howell E. C., Kearsey M. J.. More QTL for flowering time revealed by substitution lines in Brassica oleracea. Heredity 1999, 83: 586-596.
    179.Ribaut J. M., Betran J.. Single large-scale marker-assisted selection (SLS-MAS). Mol Breeding 1999, 5: 531-541.
    180.Ribaut J. M., Hoisington D. A.. Marker assisted selection: New tools and strategies. Trends Plant Sci 1998, 3: 236-239.
    181.Ribaut J. M., William H. M., Khairallah M., Worland A. J., Hoisington D..Genetic basis of physiological traits.Application of physiology in wheat breeding. CIMMYT, Mexico, 2001.
    182.Rocherieux J., Glory P., Giboult A., Boury S., Barbeyron G., Thomas G., Manzanares-Dauleux M. J.. Isolate-specific and broad-spectrum QTLs are involved in the control of clubroot in Brassica oleracea. Theor Appl Genet 2004, 108: 1555-1563.
    183.Ross C. Thompson . A morphological study of flower and seed development in cabbage.Journal of Agricultural Research, Washington D. C. 1933, 47 (4): 215-232.
    184.Satagopan J. M., Yandell B. S., Newton M. A., Osborn T. C. A.. Bayesian approach to detect quantitative trait loci using markov chain monte carlo. Genetics 1996, 144: 805-816.
    185.Schranz M. E., Quijada P., Sung S., Lukens L., Amasino R., Osborn T. . Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics 2002, 162: 1457-1468.
    186.Schuler T. J., Hutcheson D. S., Downey R. K.. Heterosis in intervarietal hybrids of summer turnip rape in western Canada. Can J Plant Sci 1991, 72: 127-136.
    187.Sebatian R. L., Howell E. C., King G. J., Marshall D. F., Kearsey M. J.. An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled haploid mapping populations. Theor Appl Genet 2000, 100: 75-81.
    188.Sernyk J. L., Stefanssion B. R.. Heterosis in summer rape (Brassica napus). Can J Plant Sci 1983, 63: 407-413.
    189.Slocum M. K.. Analyzing the genomic structure of Brassica species using RFLP analysis. In:Helentjaris T, Burr B.(eds). Development and application of molecular markers to problems in plant genetics. Cold Spring Harbor Lab. Prsee NY. 1989.
    190.Slocum M. K., Figdore S. S., Kennard W. C., Suzuki J. Y., Osborn T. C.. Linkage arrangement of restriction fragment length polymorphism loci in Brassica oleracea. Theor Appl Genet 1990, 80: 57-64.
    191.Soller M., Beckman J. S.. Marker based mapping of quantitative trait loci using replicated progenies. Theor Appl Genet 1990, 80 (2) : 205-208.
    192.Song K. M., Suzuki J. Y., Slocum M. K., Williams P. H., Osborn T. C.. A linkage map of Brassica rapa (syn. Campestris) based on restriction fragment length polymorphism loci. Theor Appl Genet 1991, 82: 296-304.
    193.Tan D. K.Y., Wearing A. H., Ricker K. G., Birch C. J.. Detection of floral initiation in broccoli (Brassica oleracea L.var. italica Plenck) based on electron micrograph standards of shoot apices. Australian Journal of Experimental Agriculture 1998, 38: 313-318.
    194.Tanksley S. D., McCouch S. R.. Seed bank and molecular maps: unlocking genetic potential from the wild. Science 1997, 277: 1063-1066.
    195.Tanksley S. D., Nelson J. C.. Advanced backcross QTL analysis: a method for unadapted germplasm into elite breeding lines. Theor Appl Genet 1996, 92: 191-203.
    196.Tanksley S. D., Young N. D., Paterson A. H., Bonierbale M. W.. RFLP mapping in plant breeding: new tools for an old science. Biotechnology 1989, 7: 257-264.
    197.Teutonico R. A., Osborn T. C.. Mapping loci controlling vernalization requirement in Brassica rapa. Theor Appl Genet 1995, 91: 1279-1283.
    198.Truco M. J., Quiros C. F.. Structure and organization of the B genome based on a linkage map in Brassica nigra. Theor Appl Genet 1994, 89: 590-598.
    199.Van Ooijen, J. W.. JoinMap○R 4, Software for the calculation of genetic linkage maps in experimental populations. 2006, Kyazma B. V., Wageningen, Netherlands.
    200.Van Ooijen, J. W.. MapQTL○R 5, Software for the mapping of quantitative trait loci in experimental populations. 2004, Kyazma B. V., Wageningen, Netherlands.
    201.Vered Naor, Jaime Kigel, Meira Ziv.. Hormonal control of inflorescence development in plantlets of calla lily (Zantedeschia spp.) grown in vitro.Plant Growth Regulation 2004, 42: 7-14.
    202.Voorrips R. E., Jongerius M. C., Kanne H. J..Mapping of two genes for resistance to clubroot (Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theor Appl Genet 1997, 94: 75-82.
    203.Voorrips R. E.. MapChart: Software for the graphical presentation of linkage maps and QTLs. The Journal of Heredity 2002, 93: 77-78.
    204.Wang X. W., Fang Z. Y., Huang S. W., Sun P. T., Liu Y. M., Yang L. M., Zhuang M.. An extended random primer amplified region (ERPAR) marker linked to a dominant male sterility gene in cabbage (Brassica oleracea var. capitata). Euphytica 2000, 112: 267-273.
    205.Wellensiek S. J.. Annual Brussels Sprouts. Euphytica 1960, 9: 10-12.
    206.Williams J. G. K., Kubelik A. R., Livak K. J..DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 1990, 18 (22) : 6531-6535.
    207.Xiao J., Li J., Yuan L., Tanksley S. D.. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet 1996, 92: 230-244.
    208.Xu S. Z.. Mapping quantitative trait loci using multiple families of line crosses. Genetics 1998, 148: 517-524.
    209.Yeager A. F.. The characteristics of crosses between brotanical varieties of cabbage: Brassica oleracea. proc Amer Soc Hort Sci 1943, 43: 199~200.
    210.Zabeau M., Vos P.. Selective restriction fragment amplificatiom: a general method for DNA fingerprinting, European Patent Application Number: 92402629.7, Publication Number EP 0534858 A1, 1993.
    211.Zaman M. W.. Introgression in Brassica napus for adaptation to the growing condition in Bangladesh. Theor Appl Genet 1989, 77: 721-728.
    212.Zeng Z. B.. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA 1993, 90: 10972-10976.
    213.Zhang X., Wu J., Zhao J., Song X., Li Y., Zhang Y., Xu D., Sun R., Yuan Y., Xie C., Wang X.. Identification of QTLs related to bolting in Brassica rapa ssp. pekinensis (syn. Brassica campestris ssp. pekinensis). Agr. Sci. China 2006, 5 (4): 265-271.
    214.Zhao J. Y., Becker H. C., Ding H. D., Zhang Y. F., Zhang D. Q., Ecke W.. QTL of three important agronomic traits and their interactions with environment in a European×Chinese Rapeseed population. Acta Genet Sini 2005b, 32: 969-978.
    215.Zietkiewica E., Rafalski A., Labuda D..Genome fingerprinting by simple sequence repeat (SSR) -anchored polymerase chain reaction amplification. Genomics 1994, 20 (2) : 176-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700