用户名: 密码: 验证码:
细菌觅食优化算法的改进及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际生产和生活中,优化无处不在,力学中的优化问题也比比皆是,尤其是在工程力学中,许多问题都伴随着反问题。而反问题的求解,一般是利用建立泛函求极小值的方法,这就需要用到优化算法。传统的优化方法总有着计算效率低和局部搜索的局限性。随着人类生存空间的扩大,实际工程中的力学问题越来越复杂,传统的优化算法已不再满足求解精度和效率的要求,因此,对高效的智能优化方法的需求日益迫切。近年来,遗传算法、蚁群算法、粒子群算法等智能优化方法正逐渐被应用于力学中包括反问题在内的各类优化问题。细菌觅食优化算法(BFO)是近些年来发展起来的,基于大肠杆菌觅食行为模型的一种新型智能算法。它具有对初值和参数选择不敏感、鲁棒性强、简单易于实现,以及并行处理和全局搜索等优点。
     由于对BFO算法的研究尚处于起步阶段,BFO的应用还不够深入且它在应用过程中也存在精度不够高、收敛速度不够快的缺点,尤其是在多峰问题寻优时难以找到全部最优解。因此,分析、研究和改进BFO算法以及拓展、深入其应用,对生产、生活中各个领域的优化问题求解都具有十分重要的意义。为此,本文着重从BFO算法的改进和应用方面进行了研究。主要研究工作如下:
     (1)针对BFO易早熟和收敛速度慢等缺陷,本文对标准BFO算法的操作进行了三项改进:在趋向操作中,通过赋予细菌灵敏度的概念来改变细菌的游动步长;在复制操作中,嵌入分布估计思想;在迁徙操作中,提出自适应迁徙概率,进而提出了一种较全面的细菌觅食优化改进算法——分布估计细菌觅食优化算法(EDA-BFO),显著提高了算法的运行效率和求解质量,为解决复杂寻优问题提供了有效方法。通过函数优化测试验证,表明该算法是可行和有效的,编码后适用于解决高维复杂工程的相应优化问题。
     (2)针对BFO在多峰问题寻优时难以找到全部最优解及精度不高的问题,提出了一种基于小生境技术的细菌觅食算法(NBFO)。该算法避免了因聚集行为不当而导致的细菌在非全局极值点处大量聚集的局限性,维护了群体的多样性,并提高了算法的全局搜索能力。典型多峰值测试函数的求解试验表明:小生境细菌觅食优化算法有更强的全局搜索能力和更高的收敛速度,能够高效地寻找到多个全局最优值,是一种寻优能力、效率和可靠性更高的优化算法,其综合性能比标准细菌觅食算法有显著提高。
     (3)针对标准BFO算法的收敛速度不够快的缺点,考虑到遗传算法具有大范围快速搜索能力,本文将遗传算法和细菌觅食算法相结合,提出了遗传-细菌觅食混合优化算法(GA-BFO算法)。函数的优化测试结果表明,对于复杂的多维函数优化问题,GA-BFO混合算法无论在时间效率上还是在求解精度上,均优于两个单一算法,获得了优化性能和时间性能的双赢。
     (4)针对标准BFO算法的全局收敛能力不如PSO的情形,将PSO算法作为一个变异算子引入BFO算法的聚集操作中,提出一种混合的粒子群-细菌觅食优化算法(PSO-BFO),充分发挥BFO算法的局部搜索能力和PSO算法的全局搜索能力,令两个单一算法相互取长补短、优势互补。函数的优化测试结果表明,对于复杂的多维函数优化问题,PSO-BFO混合算法是有效的,且在全局收敛可靠性和收敛速度方面明显地优于BFO和PSO算法这两个单一算法。
     (5)由于EDA-BFO算法具有较强的全局搜索能力,同时具有较高的精度、模型简单、计算复杂度低、不易陷入局部最优解等优点,本文在BP神经网络的训练中嵌入EDA-BFO算法的复制和迁徙操作,提出了一种改进的BP神经网络模型(BFO-BP神经网络模型),用它来优化神经网络连接权值。为检验所提出的改进模型的优越性,将BFO-BP神经网络模型和BP神经网络模型同时应用于力学经典反问题——复合材料的损伤定位的数值仿真研究,并将两种模型的研究结果进行了对比。仿真结果表明:BFO-BP神经网络模型的损伤定位识别精度比BP神经网络模型的损伤定位识别精度高;在处理具有不确定信息的损伤定位领域中,BFO-BP神经网络模型具有良好的发展前景。
     (6)混沌系统参数辨识在对参数未知、参数不匹配等混沌系统的控制和同步中占有相当重要的地位,但目前的研究还比较薄弱,方法不多。本文提出了基于BFO的动力系统参数辨识的具体算法,为了检验BFO进行动力学系统参数辨识的有效性和可行性,分别对Lorenz和Chen无噪声的混沌系统和有噪声的混沌系统进行计算机数值仿真研究。结果表明BFO算法能有效地辨识无噪声混沌系统的参数,此外,BFO算法在添加了白噪声的混沌系统参数辨识中,相对PSO算法和GA算法而言,仍具有更高的辨识精度和更强的抗噪声能力。
Optimization is involved in every aspect of production and practical-life activities as well as Mechanics. Especially, in the field of engineering mechanics, plenty problems come along with the inverse problems. Optimization algorithms are often used in the general way of solving inverse problems--establishing functional along with minimization process. The weakness of the traditional optimization algorithm is the limitations of lower computing efficiency and local searching techniques. Mechanics problems in the practical engineering is becoming more and more sophisticated and complicated which makes tradition algorithm incompatible with the demand of the accuracy and efficiency. Therefore, it is urgent to develop new intelligent algorithm that is more efficient than ever. In recent years, intelligent optimization method such as genetic algorithm, ant colony optimization, particle swarm optimization etc. are wildly applied in the inverse problems of mechanics. Bacterial Foraging Optimization (BFO) is one of the new intelligent optimization methods that are based on the simulation of the foraging of Escherichia coli. The advantage of BFO is the insensitivity of parameter choosing, robustness, parallel computing and easily global searching.
     Researches of BFO remain initiation, and during the superficial application the weakness of relatively low accuracy and rate of convergence is discovered. Especially coping with the multi-model function optimization problems, it is difficult for BFO to discover all the optimal solutions at once. Therefore, it is highly important to thoroughly apply the BFO into the living and production, analyze and improve the original algorithm of BFO. This thesis focus mainly on the melioration and application of BFO and the major works are listed below:
     (1) To remove the defects of prematurity and low rate of convergence,3modifications were added to the standard BFO:In the Chemotaxis process, change the step length of the bacterial with the bacterial sensitivities; During the process of swarming process, attach each bacterial the probability of adaptive migration, and generate a more comprehensive improved algorithm:Estimated Distribution Algorithm of BFO (EDA-BFO), which can ameliorate the computing efficiency and solution quality significantly and might provide an effective way of solving complex optimization problems. After applied to the test functions, EDA-BFO is proved to be feasible and effective, and can be coded to solve high-dimensional optimization problems in practical engineering.
     (2) As for the low accuracy of finding out all optimal solutions with multi-method functions, Niched Bacterial Foraging Optimization is performed. Niched techniques can relatively avoid bacteria's chemotaxis, which may lead to gathering in the non-global extreme point, maintain the divergence of the bacterial and thus improve the capability of global searching. With the simulated optimization experiment with typical test functions, NBFO can generate a better searching ability globally and higher rate of convergence. NBFO is able to tracing multiple optimal solutions with higher accuracy and rate of convergence; its overall performance is significantly enhanced than the standard algorithm.
     (3) For the weakness of low rate of convergence, and considering the genetic algorithm is able to search in large scale, a hybrid algorithm of GA and BFO (GA-BFO) is given in this thesis. Being applied to sophisticated high-dimensional test functions, both higher time-efficiency and solution accuracy is obtained.
     (4) Considering the global convergence rate of BFO has no competence with PSO, an improvement of handling PSO as a mutation operator is given to combine the two algorithms--PSO and BFO in order to give full play of the ability for searching locally with BFO and globally with PSO. The mixed algorithm (PSO-BFO) is able to make the best of both optimization method and is proved to be effective after testing on the practical functions for its reliability of global convergence and rate of convergence, which are obviously more prominent than standard BFO or PSO.
     (5) Due to the better global searching ability of EDA-BFO, as well as the merit of high accuracy, simple modeling, low complexity of computing and unable of sinking into local extreme point, the operation of reproduction and swarming process is inserted into the standard BP network training, then an ameliorated BP network modal (BFO-BP) is generated, with optimized network connection weight. BFO-BP is applied into the simulation research of a classical inverse problem in mechanic--locating damage of compound material and the result is compared with control. Results say:BFO-BP's location of damage is highly accurate than the other, therefore BFO-BP network model possess potential in the field of locating damage of unknown.
     (6) Chaos system parameter identification plays a major role in the control and synchronism of chaos system, which contains unknown or unmatched parameters. Research on this field is superficial with no effective method. This thesis put forward a specific algorithm of identifying parameters of dynamical systems based on BFO in order to examine the validity and feasibility of BFO in PID of dynamical system. In practical research, numerical simulation of Lorenz&Chen non-noise chaos system and noise chaos systems are studied. Results show that BFO algorithm can effectively distinguish the parameters in the chaos systems without noise; meanwhile, BFO also has a superior ability of accurate identification of parameters in the chaos systems with white noise than PSO and GA.
引文
[1]Holland J H. Adaptation in natural and artificial system. Ann Arbor:The University of Michigan Press,1975
    [2]Dorigo M. Optimization, learning and natural algorithms. Italy:Politecnico diMilano, Department of Electronics,1992
    [3]Eberhart R C, Kennedy J. A new optimizer using particle swarm theory. Proc. on 6th International Symposium on Micromachine and Human Science. Piscataway, NJ:IEEEE Service Center,1995:39-43
    [4]李晓磊.一种新型的智能优化方法——人工鱼群算法:[博士学位论文].杭州:浙江大学,2003
    [5]Passino K M. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems Magazine,2002,22:52-67
    [6]Holland J H. Outline for a logical theory of adaptive system. Journal of the Association for Computing Machinery,1962,9(3):297-328
    [7]Bagley J D. The behavior of adaptive systems which employ genetic and correlation algorithms. Doctoral dissertation, University of Michigan,1967
    [8]Goldberg D E. Genetic algorithms in search, optimization & machine learning. Addison-Wesley, Reading MA,1989
    [9]Dorigo, M. The ant system:Optimization by a colony of cooperating agents. IEEE Transactions on System, Man, and Cybernetics-Part B,1996,26(1): 1-13
    [10]Dorigo, M. Maniezzo V and Colorni A. The ant system:Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B,1996,26(1):29-41
    [11]Jerne N K. Towards a nerwork theory of the immune system. Annual Immunology,1974,125C:373-389
    [12]Farmer J D, Kauffman S A, P ackard N H et al. Adaptive dynamic networks as models for the immune system and autocatalytic sets. Perspectives in Biological Dynamics and Theoretical Medicine, Ann NY Acad Sci,1987,504: 118-131
    [13]Carter J H. The immune system as a model for pattern recognition and classification. Journal of the American Medical Informatics Association,2000, 7(1):28-41
    [14]Castiglione F, Motta S, Nicosia G. Pattern recognition by primary and secondary response of an artificial immune system. Theory in Biosciences, 2001,120(2):93-106
    [15]White J A, Garrett S M. Improved pattern recognition with artificial clonal selection. Lecture Notes in Computer Science,2003,2787:181-193
    [16]Tang Z, Tashima K, Cao Q P. Pattern recognition system using a clonal selection based immune network. Systems and Computers in Japan,2003, 34(12):56-63
    [17]Sarafijanovic S, Le Bouder J Y. An artificial immune system approach with secondary response for misbehavior detection in mobile and hoc network. IEEE Transactions on Neural Networka,2005,16(5):1076-1087
    [18]Gong M G, Du H F, Jiao L C et al. Immune clonal selection algorithm for multiuser detection in DS-CDMA systems. Lecture Notes in Artificial Intelligence,2004,3339:1219-1225
    [19]Aickelin U, Greensmith J, Twycross J. Immune system approaches to intrusion detection-A review. Lecture Notes in Computer Science,2004,3239: 316-329
    [20]Freschi F, Repetto M. Multiobjective optimization by a modified artificial immune system algorithm. Lecture Notes in Computer Science,2005,3627: 248-261
    [21]Du H F, Gong M G, Jiao L C et al. A nove algorithm of artificial immune system for high-dimensional function numerical optimization. Progress in Natural Science,2005,15(5):463-471
    [22]Farmer J D, Packard N H, Perelson A S. The immune system, adaptation, and machine learning. Physica D,1986,22(1-3):187-204
    [23]Hunt J E, Cooke D E. Learning using an artificial immune system. Journal of Network and Computer Application,1996,19:189-212
    [24]Glickman M, Balthrop J, Forrest S. A machine learning evaluation of an artificial immune system. Evolutionary Computation,2005,13(2):179-212
    [25]吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法.计算机研究与发展,1999,36(10):1240-1244
    [26]高尚,钟娟,莫述军.微机发展,2003,13(1):21-22+69
    [27]段海滨,马冠军,王道波等.一种求解连续空间优化问题的改进蚁群算法.系统仿真学报,2007,19(5):974-977
    [28]李丽香.一种新的基于蚂蚁混沌行为的群智能优化算法及其应用研究:[博士学位论文].北京邮电大学,2006
    [29]陈崚,章春芳.自适应的并行蚁群算法.小型微机计算机系统,2006,27(9):1695-1699
    [30]杨勇,宋晓峰,王建飞等.蚁群算法求解连续空间优化问题.控制与决策,2003,18(5):573-576
    [31]张勇德,黄莎白.多目标优化问题的蚁群算法研究.控制与决策,2005,20(2):170-176
    [32]徐星,李元香,吴昱.基于扩散机制的双种群粒子群优化算法.计算机应用研究,2010,27(8):2882-2885+2898
    [33]陆克中,王汝传,帅小应.保持粒子活性的改进粒子群优化算法.计算机工程与应用,2007,43(11):35-38
    [34]王建林,薛尧予,于涛等.基于群能量恒定的粒子群优化算法.控制与决策,2010,25(2):269-272+277
    [35]蔡昌新,张顶学.带邻近粒子信息的粒子群算法.计算机工程与应用,2009,45(18):40-42
    [36]林楠.一种新型的动态粒子群优化算法.计算机应用研究,2011,28(3):935-937
    [37]秦全德,李荣钧.基于生物寄生行为的双种群粒子群算法.控制与决策,2011,26(4):548-552+557
    [38]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法.系统工程理论与实践,2002,22(11):32-38
    [39]李晓磊,钱积新.基于分解协调的人工鱼群优化算法研究.电路与系统学报,2003,8(1):1-6
    [40]张梅凤.人工鱼群智能优化算法的改进及应用研究:[博士学位论文].大连理工大学,2007
    [41]李晓磊,路飞,田国会等.组合优化问题的人工鱼群算法应用.山东大学学报(工学版),2004,34(5):65-67
    [42]黄光球,姚玉霞,任燕.用鱼群算法求解多级递阶物流中转运输系统优化问题.计算机应用,2007,27(7):1732—1737
    [43]马建伟,张国立,谢宏等.利用人工鱼群算法优化前向神经网络.计算机应用,2004,24(10):21-23
    [44]李晓磊,薛云灿,路飞等.基于人工鱼群算法的参数估计方法.山东大学学报(工学版),2004,34(3):84-87
    [45]李晓磊,冯少辉,钱积新等.基于人工鱼群算法的鲁棒PID控制器参数整定方法研究.信息与控制,2004,33(1):112-115
    [46]刘耀年,庞松岭,刘岱.基于人工鱼群算法神经网络的电力系统短期负荷 预测.电工电能新技术,2005,24(4):5-8
    [47]刘双印.免疫人工鱼群神经网络的经济预测模型.计算机工程与应用,2009,45(29):226-229
    [48]Wu C, Zhang N, Jiang J, et al. Improved bacterial foraging algorithms and their applications to job shop scheduling problems.LNCS 4431: ICANNGA2007,2007:562-569
    [49]张娜.细菌觅食优化算法求解车间调度问题的研究:[硕士学位论文].吉林大学,2007
    [50]梁艳春,吴春国,时小虎等.群智能优化算法理论与应用.北京:科学出版社,2009
    [51]Mishra S. A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation. IEEE Trans on Evolutionary Computation,2005,9(1): 61-73
    [52]Datta T, Misra I S, Mangaraj B B, et al. Improved adaptive bacteria foraging algorithm in optimization of antenna array for faster convergence. Progress in Electromagnetics Research C,2008,1:143-157
    [53]Dasgupta S, Biswas A, Abraham A, et al. Adaptive computational chemotaxis in bacterial foraging optimization:An analysis. CISIS-2008, Barcelona, Spain:IEEE Computer Society Press,2008:64-71
    [54]Das S, Biswas A, Dasgupta S, et al. Bacterial foraging optimization algorithm: Theoretical foundations, analysis, and applications. Foundations of Compute Intel,2009,3:23-55
    [55]Chen H, Zhu Y, Hu K. Self-adaptation in bacterial foraging optimization algorithm.2008 3rd International Conference on Intelligent System and Knowledge Engineering (ISKE 2008),2008:1026-1031
    [56]Shao Y, Chen H. The optimization of cooperative bacterial foraging. World Congress on Software Engineering,2009,2:519-523
    [57]Chen H, Zhu Y, Hu K, et al. Cooperative approaches to bacterial foraging optimization. LNCS 5227:ICIC,2008:541-548
    [58]Chen H, Zhu Y, Hu K. Cooperative bacterial foraging optimization. Discrete Dynamics in Nature and Society,2009:1-17
    [59]Shao Y, Chen H. A novel cooperative bacterial foraging algorithm. Proceedings of 2009 4th International Conference on Bio-Inspired Computing:Theories and Applications BIC-TA 2009,2009:44-47
    [60]Tang W J, Wu Q H, Saunders J R. A novel model for bacteria foraging in varying environments. LNCS 3980:ICCSA 2006,2006:556-565
    [61]Li M S, Tang W J, Tang W H, et al. Bacteria foraging algorithm with varying population for optimal power flow. LNCS 4448:Proc Evil Workshops,2007: 32-41
    [62]Treaty M, Mishap S. Bacteria foraging-based to optimize both real power loss and voltage stability limit. IEEE Transactions on Power Systems,2007,22(1): 240-248
    [63]Liu Y, Passion K M. Biomimicry of social foraging bacteria for distributed optimization:models, principles, and emergent behaviors. Journal of Optimization Theory and Applications,2002,115(3):603-628
    [64]Biswas A, Dasgupta S, Das S, et al. A synergy of differential evolution and bacterial foraging algorithm for global optimization. Neural Network World, 2007,17(6):607-626
    [65]姜飞,刘三阳.混沌系统控制与同步的细菌觅食和差分进化混合算法.计算物理,2010,6:933-939
    [66]Biswas A, Dasgupta S, Das S, et al. Synergy of PSO and bacterial foraging optimization-A comparative study on numerical benchmarks. Innovations in Hybrid Intelligent Systems,2007,44:255-263
    [67]Abraham A, Biswas A, Dasgupta S, et al. Analysis of reproduction operator in bacterial foraging optimization. IEEE Congress on Evolutionary Computation (CEC 2008),2008:1476-1483
    [68]Biswas A, Das S, Dasgupta S, et al. Stability analysis of the reproduction operator in bacterial foraging optimization. IEEE ACM International Conference on Soft Computing as Transdisciplinary Science and Technology (CSTST 2008), Paris, France,2008:568-575
    [69]Das S, Dasgupta S, Biswas A, et al. On stability of the chemotactic dynamics in bacterial foraging optimization algorithm. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,2009,39(3):670-679
    [70]Mishra S. A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation. IEEE Trans on Evolutionary Computation,2005,9(1): 61-73
    [71]Mishra S, Bhende C N. Bacterial foraging technique-based optimized active power filter for load compensation. IEEE Transactions on Power Delivery, 2007,22(1):457-465
    [72]Chatterjee A, Matsuno F. Bacteria foraging techniques for solving EKF-based SLAM problems. Proc International Control Conference (Control 2006), Glasgow, UK,2006
    [73]Acharya D P, Panda G, Mishra S, et al. Bacteria foraging based independent component analysis. International Conference on Computational Intelligence and Multimedia Applications. Los Alamitos:IEEE Press,2007:527-531
    [74]Chen H, Zhu Y, Hu K. Multi-colony bacteria foraging optimization with cell-to-cell communication for RFID network planning. Applied Soft Computing,2010,10:539-547
    [75]Dasgupta S, Biswas A, Das S, et al. Automatic circle detection on images with an adaptive bacterial foraging algorithm.2008 Genetic and Evolutionary Computation Conference (GECCO 2008),2008:1695-1696
    [76]刘晓峰,阎军,程耿东.采用自动分组遗传算法的频率约束下桁架拓扑优化.计算力学学报,2011,28(1):1-7
    [77]李密,高雷,孙筱波等.高速单体船航行性能与结构力学特征综合优化初步研究.舰船科学技术,2009,31(1):47-52
    [78]薛晓敏,孙清,张陵等.基于遗传算法策略的含时滞结构振动主动控制研究.工程力学,2011,28(3):143-149
    [79]王玲,付冬梅,穆志纯.遗传优化的SVR在钢材力学性能预报中的应用.系统仿真学报,2009,21(4):1192-1194
    [80]尹强,周丽.基于遗传优化最小二乘算法的结构损伤识别.振动与冲击,2010,29(8):155-159
    [81]郭红玲,杨海天,赵潇.蚁群算法求解弹性本构参数区间反问题.工程力学,2012,29(1):7-12
    [82]车竞,唐硕,何开锋等.基于蚁群算法的高超声速飞行器气动布局优化设计.空气动力学学报,2009,27(4):497-502
    [83]刘相秋.改进PSO算法在结构作动器位置优化中的应用.力学与实践,2011,33(5):29-32
    [84]潘继,蔡国平.桁架结构作动器优化配置的粒子群算法.工程力学,2009,26(12):35-39
    [85]王荣伟,高正红.基于改进粒子群算法的翼型多目标优化研究.应用力学学报,2011,28(3):232-236
    [86]殷艺云,郭海丁.基于粒子群神经网络的轮盘优化.航空动力学报,2007,22(9):1578-1582
    [87]刘锋,张俊葆,李丽娟.基于粒子群算法的板结构离散优化设计.工程力学,2009,26(4):27-37
    [88]于繁华,刘寒冰.基于支持向量机和粒子群算法的结构损伤识别.吉林大学学报(工学版),2008,38(2):434-438
    [89]王凌.智能优化算法及其应用.北京:清华大学出版社,施普林格出版社, 2001
    [90]李亚楠.菌群优化算法的研究:[硕士学位论文].哈尔滨工业大学,2009,15
    [91]Larranaga P, Lozano J A. Estimation of distribution algorithms:a new tool for evolutionary computation. Boston:Kluwer Academic Publishers,2002
    [92]纪震,廖惠连,吴青华.粒子群算法及应用.北京:科学出版社,2009
    [93]Tang W J, Wu Q H, Saunders J R. Bacterial foraging algorithm for dynamic environment. Proc. of IEEE Congress on Evolutionary Computation. Canada: IEEE Press,2006:4467-4473
    [94]Maclin R, Opitz D. An empirical evaluation of bagging and boosting. In Proceedings of the 14th National Conference on Artificial Intelligence.1997. Providence. RI
    [95]Freund Y, Schapire R. Experiments with a New Boosting Algorithm. In Proceedings of the International Conference in Machine Learning.1996. Sanfrancisco, CA:Morgan Kaufmann
    [96]Zhou Z H, Tang W. Selective ensemble of decision trees. In 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, May 2003. Chongqing, China
    [97]Lee C G, Cho D H, Jung H K. Niche genetic algorithm with restricted competition selection for multimodal function optimization. IEEE Trans on Magnetics,1999,35(3):1122-1125
    [98]贾东立,张家树.基于混沌变异的小生境粒子群算法.控制与决策,2007,22(1):117-120
    [99]De Jong. Analysis of the behavior of a class of genetic adaptive systems, University of Michigan, Ann Arbor,1975
    [100]Goldberg D E. Genetic Algorithms in search, optimization and machine learning. Addison Wesley, Reading MA,1989
    [101]林焰,郝聚民,纪卓尚等.隔离小生境遗传算法研究.系统工程学报,2000,15(1):86-91
    [102]Cavicchio D J. Adaptive search using simulated evolution. University of Michigan, Ann, Arbor,1970
    [103]De Jong K A. An analysis of the behavior of a class of genetic adaptive systems. University of Michigan. Dissertation Abstracts International,1975, 36(10),5140B.
    [104]Samir W Mahfoud. Crowding and preselection revisited in parallel problem solving. Nature,1992,27-36
    [105]Samir W Mahfoud. Niching methods for genetic algorithms. Doctoral dissertation, University of Illinois at Urbana-Champaign,1995
    [106]Perez-Vazquez M E, Gento-Municio A M, Lourenco H R. Solving a concrete sleepers production scheduling by genetic algorithms. (UPF Working Paper Series 2004)
    [107]Goldberg D E, Richardson J J. Genetic algorithms with sharing for multimodal function optimization. Genetic algorithms and their application: Proceedings of the Second International Conference on Genetic Algorithms, 1987,41-49
    [108]于欲杰,王赞基.适用于多峰函数优化的改进顺序生境遗传算法.清华大学学报,2001,41(3):17-20
    [109]Deb K. Genetic algorithms in multimodal function optimization. TCGA Report No89002,1989
    [110]Deb K, Goldberg D. An investigation of niche and species formation in genetic optimization.3rd International Conference on Genetic Algorithms, 1989,42-50
    [111]Gan J, Warwick K. A variable radius niching technique for speciation in genetic algorithms. Proceeding of the Genetic and Evolutionary Computation Conference (GECCO 2000),2000,96-103
    [112]Brits R, Engelbrchta P, Bergh F D. A niching particle swarm optimizer. Proceedings Conf. on Simulated Evolution and Learning, Singapore, IEEE Inc.,2003:1037-1040
    [113]王俊年,申群太,沈洪远等.一种基于聚类的小生境微粒群算法.信息与控制,2005,34(6):680-684+689
    [114]王俊年,申群太,沈洪远等.一种改进的小生境微粒群算法.山东大学学报(工学版),2005,35(3):98-102
    [115]王俊年,申群太,沈洪远.基于小生境微粒群算法的山峰聚类.计算机工程与应用,2006,17:4-8
    [116]Liu Y, Passino K M. Polycarpou M. Stability analysis of m-dimensional asynchronous swarms with a fixed communication topology. IEEE Trans on Automatic Control,2003,48(1):76-95
    [117]Veysel Gazi, Passino K M. Stability analysis of swarms. IEEE Trans on Automatic Control,2003,48(4):692-697
    [118]Shi Y, Eberhart R C. A modified particle swarm optimizer. Proceedings of IEEE International Conference on Evolutionary Computation, Anchorage, 1998:69-73
    [119]Norio Baba. A new approach for finding the global minimum of error function of neural networks. Neural Networks,1989,5(2):367-373.
    [120]Stager F and Agarwal M. Three methods to speed up the training of feedforward and feedback perceptions. Neural Networks,1997,10(8):1435-1444
    [121]Tollenaere T. SuperSAB:Fast adaptive back propagation with good scaling properties. Neural Networks,1990,5(3):561-573
    [122]Wang Jianmei, Qin Wenzhong. BP neural network classifier based on levenberg-marquardt algorithm. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University,2005,30(10): 928-931
    [123]Li Jiongcheng, Huang Hanxiong. QLMBP:A quick BP neural network algorithm. Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science),2006,34(6):49-54
    [124]Chang Hong, Wei Xiaoliang, Feng Zuren. Optimum associative neural network utilizing maximum likelihood.2nd International Work-Conference on the Interplay Between Natural and Artificial Computation,2009,72(4): 1274-1282
    [125]Castro J R, Castillo O, Melin P. Intelligent control using an interval type-2 fuzzy neural network with a hybrid learning algorithm.2008 IEEE International Conference on Fuzzy Systems,2008,5(1):893-900
    [126]Manshad A K, Ashoori S, Edalat M. Application of artificial neural networks (ANN) and genetic programming neural network (GPNN) for prediction of wax precipitation in crude oil systems. Proceedings of the 6th IASME/WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment (HTE'08),2008:488-497
    [127]Lu J, Chen G. A time-varying complex dynamical network models and its controlled synchronization criteria. IEEE Transactions on Automatic Control, 2005,50(6):841-846
    [128]Lu J, Yu X H, Chen G, Cheng D Z. Characterizing the synchronizability of small-world dynamical networks. IEEE Transactions on Circuits and Systems I,2004,51(4):787-796
    [129]Al Salameh M S, Al Zuraiqi E T. Solutions to electromagnetic compatibility problems using artificial neural networks representation of vector finite element method. IET Microwaves, Antennas & Propagation,2008,4(2): 348-357
    [130]Vasilaki E, Fusi S, Wang Xiaojing, Senn W. Learning flexible sensori-motor mappings in a complex network. Biological Cybernetics,2009,100(2): 147-158
    [131]Wolpert D H, Macready W G. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation,1997,1(1):67-82
    [132]高芳清,金建明,高淑英.基于模态分析的结构损伤检测方法研究.西南交通大学学报.1998,33(1):108-113
    [133]袁明,贺国京.基于模态应变能的结构损伤检测方法研究.铁道学报.2002,24(2):92-94
    [134]董聪.现代结构系统可靠性理论及其应用.北京:科学出版社,2001
    [135]Wu X, Ghaboussi J, Garrett J H. Use of neural networks in detection of structural damage. Computers & Structures.1992,42:649-659
    [136]Elkordy M F, Chang K C, Lee G C. Neural networks trained by analytically simulated damage states. Journal of Computing in Civil Engineering, ASCE. 1993,7:130-145
    [137]Barai S V, Pandey P C. Vibration signature analysis using artificial networks. Computing in Civ. Engrg., ASCE.1995,9:259-265
    [138]Zhao J, Ivan J N, Dewolf J T. Structural damage detection using artificial neural networks. Journal of Infrastructure System,1998,4:93-101
    [139]Kaminski P C. The approximation location of damage through the analysis of natural frequencies with artificial neural networks. Journal of Process Mechanical Engineering.1995,209(E2):117-124
    [140]Lam H F, Ko J M, Wong C W. Localization of damaged structural connections based on experimental modal and sensitivity analysis. Journal of Sound and Vibration.1998,210(1):91-115
    [141]李言俊.系统辨识理论及应用.北京:国防工业出版社,2003
    [142]李秀英,韩志刚.非线性系统参数辨识方法的新进展.自动化技术与应用,2004,23(10):5-7
    [143]Astrom K J, Eykhoff. System identification:a survey. Automatica,1971, 7(2):123-162
    [144]王琳,马平.系统辨识方法综述.电力情报,2001,4:63-66
    [145]Annan J D, Hagreves J C. Efficient parameter estimation for a highly chaotic system. Tellus A,2004,56(5):520-526
    [146]Chen S, Lu J. Parameters identification and synchronization of chaotic systems based upon adaptive control. Physics Letters A,2002,299(4): 353-358
    [147]Fotsin H B, Dafouz J. Adaptive synchronization of uncertain chaotic colpitts oscillators based on parameter identification. Physics Letters A,2005, 339(3-5):304-315
    [148]Kristinsson K, Dumont G A. System identification and control using genetic algorithm, IEEE Transactions on Systems Man and Cybernetics,1992,22(5): 1033-1046
    [149]Narendra K S, Parthasarathy K. Identification and control of dynamic systems using neural networks, IEEE Trans. Neural Networks,1990,1(3): 4-27
    [150]吴明光,陈曦,王明兴等.基于禁忌搜索算法的系统辨识.电路与系统学报,2005,10(2):105-111
    [151]柯晶,钱积新.应用粒子群优化的非线性系统参数辨识.电路与系统学报,2003,8(4):12-16
    [152]吴启迪,汪蕾.智能蚁群算法及应用.上海:上海科技教育出版社,2004,183-190
    [153]Huang D, Guo R. Identifying parameter by identical synchronization between different systems. Chaos,2004,14(1):152-159
    [154]Feng J, Chen S, Wang C. Adaptive synchronization of uncertain hyperchaotic systems based on parameter identification. Chaos, Solitons&Fractals,2005,26:1163-1169
    [155]Tao C, Zhang Y, Du G, et al. Estimating model parameters by chaos synchronization. Physical Review E,2004,69(3):036204
    [156]Yang Y, Ma X K, Zhang H. Synchronization and parameter identification of high-dimensional discrete chaotic systems via parametric adaptive control. Chaos, Solitons and Fractals,2006,28(1):244-251
    [157]Huang L, Wang M, Feng R. Parameters identification and adaptive synchronization of chaotic systems with unknown parameters. Physics Letters A,2005,342(4):299-304
    [158]Fotsin H B, Woafo P. Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification. Chaos, Solitons and Fractals,2005,24(5):1363-1371
    [159]王兴元,武相军.不确定Chen系统的参数辨识与自适应同步.物理学报,2006,55(2):605-609
    [160]Vassiliadis D. Parametric adaptive control and parameter identification of low dimensional chaotic systems. Physica D:Nonlinear Phenomena,1994, 71(3):319-341
    [161]Lii J H, Zhou T S, Zhang S C. Controlling the Chen attractor using linear feedback based on parameter identification. Chinese Physics,2002,11(1): 12-16
    [162]关新平,彭海朋,李丽香等Lorenz混沌系统的参数辨识与控制.物理学报,2001,50(1):26-29
    [163]Lu J H, Zhang S C. Controlling Chen's chaotic attractor using back stepping design based on parameters identification. Physics Letters A,2001,286: 148-152
    [164]Baker G L, Gollub P J, Blackburn J A. Inverting chaos:Extracting system parameters from experimental data. Chaos,1996,6(4):528-533
    [165]Parlitz U. Estimating model parameters from time series by auto synchronization. Phys. Rev. Lett.,1996,76(8):1232-1235
    [166]Lu J A, Tao C H, Lu J H, et al. Parameter identification and tracking of a unified system. Chin. Phys. Lett.,2002,19(5):632-635
    [167]Liu J, Chen S, Xie J. Parameter identification and control of uncertain unified chaotic system via adaptive extending equilibrium manifold approach. Chaos, Solitons & Fractals,2004,19(3):533-540
    [168]Pisarenko V F, Sornette D. Statistical methods of parameter estimation for deterministically chaotic time series. Physical Review E,2004,69(3): 036122
    [169]Palaniyandi P, Lakshmanan M. Estimation of system parameters and predicting the flow function from time series of continuous dynamical systems. Phys. Lett. A,2005,338:253-260
    [170]Palaniyandi P, Lakshmanan M. Estimation of systems in discrete dynamical systems from time series. Phys. Lett. A,2005,342:134-139
    [171]Suarez-Castanon M S, Aguilar-Ibanez C, Flores-Ando F. Reconstructing the states and parameters of Chua's system based on successive integrations of the output. Phys. Lett. A,2003,317:265-274
    [172]Ponznyak A S, Yu W, Sanchez E N, Identification and control of unknown chaotic systems via dynamic neural networks, IEEE Trans. Cris. Syst.-I., 1999,46(12):1491-1495
    [173]戴栋,马西奎,李富才等.一种基于遗传算法的混沌系统参数估计方法.物理学报,2002,51(11):2459-2462
    [174]Chang W D. Parameter identification of Rossler's chaotic system by an evolutionary algorithm. Chaos, Solitons&Fractals,2006,29(5):1047-1053
    [175]Li L, Yang Y, Peng H, et al. Parameters identification of chaotic systems via chaotic ant swarm. Chaos, Solitons&Fractals,2006,28(5):1204-1211
    [176]高飞,童恒庆.基于改进型粒子群优化算法的混沌系统参数估计方法.物理学报,2006,55(2):577-582
    [177]Lorenz E N. Deterministic nonperiodic flow. J. Atmos. Sci.,1963,20: 130-141
    [178]Chen G, Ueta T. Yet another chaotic attractor. Int. J. of Bifur. Chaos,1999,9: 1465-1466

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700