用户名: 密码: 验证码:
车辆可变阻尼减振器半主动悬架研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
悬架系统是车辆行驶系统中一个重要组成部分,悬架系统的好坏决定了车辆乘坐舒适性和操纵稳定性的优劣。被动悬架是如今汽车上应用最广泛的一种悬架,虽然它在一定程度上改善了车辆的乘坐舒适性和操纵稳定性,但是其结构参数不能随车辆行驶外界条件和车辆状态不同而自动变化,这大大制约了它的应用。汽车半主动悬架的性能可以接近主动悬架,其制造成本和使用成本都远低于主动悬架,是汽车悬架技术发展的主要方向。
     目前,对于车辆半主动悬架系统,有两个方面的问题急需解决,一是研究性能可靠、调节方便的可变阻尼减振器,因为减振器是可变阻尼半主动悬架的关键部件之一,其性能直接影响半主动悬架的性能。二是半主动悬架系统的控制算法,科研人员对半主动悬架系统采用了一些控制方法但是大都没有达到理想效果。可变阻尼减振器半主动悬架系统是一个集机械、流体、信息、控制及系统理论等多学科交叉的智能结构系统,目前有待进一步研究的问题有多个方面。论文以某乘用车为研究对象,结合重庆市科委科技计划项目重点自然基金项目(CSTC,2006BA6017)、高等学校博士学科点专项科研基金资助课题(20100191110004)及汽车噪声振动和安全技术国家重点实验室2010年度开放基金资助(NVHSKL-201010)项目,开展可变阻尼减振器的研究及半主动悬架控制方法的研究。
     1)基于减振器的工作原理、内部结构和阀系特点,利用环形薄板阀片变形微分方程以及内外径处的边界条件推导出环形阀片受均布载荷作用时的挠曲变形解析式,根据流体力学缝隙流动、管嘴流动理论、薄壁小孔节流理论,建立了双筒液压减振器的数学模型。在MATLAB/Simulink环境下对模型进行仿真研究,并与实测的减振器的外特性进行了比较分析,仿真与实测结果的一致性证明数学模型正确可靠。同时用该模型详细分析了减振器各结构参数对减振器阻尼力的影响规律及敏感程度,并得到减振器阻尼力控制的一般规律,得出的结论为减振器的设计和性能预测提供了一定的技术支持。
     2)通过对普通双筒液压减振器进行改进,开发出一种行程敏感减振器。基于流体力学和弹性力学理论,提出并应用“串并混联管路流量多项式拟合法”推导出行程敏感减振器阀系“各分支管路流量及节流压差”的函数关系式,利用“环形薄板阀片受均布载荷作用时的挠曲变形解析式”建立了行程敏感减振器的数学模型。在MATLAB/Simulink环境下对模型进行仿真研究,计算结果与试验结果符合较好,同时用该模型分析了旁通槽直径对减振器阻尼力的影响规律。
     3)研制了一种适合于半主动悬架控制的性价比相对较高的可变阻尼减振器,阐述了该减振器的结构形式和工作原理。基于流体力学和弹性力学理论,提出了“并联管路总节流压差计算”和“串并混联管路各分支流量计算”方法并推导出其表达式。利用该表达式及“受均布载荷作用的环形薄板阀片挠曲变形解析式”建立了可变阻尼减振器的数学模型。在MATLAB环境下对模型进行仿真研究,仿真结果与试验结果符合较好。利用该可变阻尼减振器的测试结果,得到了调节旋钮转角与输出减振器阻尼力系数的关系曲线;同时应用所建立的数学模型,详细分析了“回油管路”结构参数对减振器阻尼力的影响规律。
     4)将车身质心加速度、悬架动挠度与轮胎动载荷三个振动响应量作为衡量车辆悬架性能的评价指标。介绍了系统仿真时路面激励公式的推导过程,得到了随机路面及弓型障碍路面的时域模型。根据拉格朗日方程,建立了汽车整车振动系统的运动微分方程,在此基础上用系统状态描述方法建立了七自由度车辆振动系统的状态空间模型。根据整车动力学模型,在Matlab/Simulink环境下建立了整车仿真模型。为了更方便地评价汽车振动系统综合性能,建立了包含车身质心加速度、悬架动挠度和轮胎动载荷的综合性能评价指标。
     5)结合整车控制系统的特点,提出了以垂向振动、俯仰振动及侧倾振动为控制器输入的“三并联控制器阻尼控制”方法;利用基于可变阻尼减振器的整车半主动悬架系统模型,设计了PID控制、模糊控制及模糊PID控制的控制系统,在随机路面和弓型障碍路面各工况下对其进行仿真,对比了各控制策略的优劣,其仿真结果表明:在改善系统综合性能方面,半主动悬架明显优于被动悬架,而且模糊PID控制优于模糊控制及PID控制。最后采用模糊PID控制分别对整车进行单独前悬控制、单独后悬控制、及前后共同控制的效果进行比较,结果表明前后共同模糊PID控制比单独对前悬控制和单独对后悬控制的效果要好得多,另外,单独对后悬控制比单独对前悬控制的效果要好。
Vehicle suspension system is an important component of the running gear due to itsimportant role in ride comfort and steering stability. For now, passive suspension is usedmost widely as a vehicle suspension system. Although passive suspension improvesvehicle ride comfort and steering stability in a certain extent, its structure parameterscan not change automatically with external ride conditions and different vehicle states,which restricts its application greatly. The semi-active suspension is main researchaspect of automobile suspension engineering, because its performance is close to activesuspension, the manufacture and use costs are far lower than active suspension.
     At present, there are two problems which are difficult to solve for the control ofautomotive semi-active suspension system. One is the research of the variable dampingshock absorber which is reliable and convenient adjustable, because the shock absorberis one of the key components of semi-active suspension, and its performance influencesthe semi-active suspension performance directly. The other one is the control algorithmof semi-active suspension system, the scientific research personnel used some controlmethod to semi-active suspension system, but have not achieve ideal result. So, thepractical application for the semi-active suspension system is still in its infancy.
     The semi-active suspension system based on the variable damping shock absorberis an intelligent structural system which is constituted by many discipline, such asmachinery, fluid, information, control and system theory, there are many problems to besolved for semi-active suspension system. This paper takes a car as research object anddoes some systematic research about variable damping shock absorber and semi-activesuspension control methods, which is supported by Key Natural Fund Projects forTechnology Plan Projects of Chongqing Science and Technology Commission,Specialized Research Fund for the Doctoral Program of Higher Education(20100191110004) and2010Annual Open Fund of State Key Laboratory of VehicleNVH and Safety Technology (NVHSKL-201010).
     1) Basing on the working principle, internal configuration and valve systembehavior of the shock absorber, the equation for annular laminar deformation under auniform load is deduced by using a deflection differential equation for throttle slice andboundary condition. The detailed mathematical model of double-tube hydraulic shockabsorber is established according to hydrodynamics gap flow, nozzle flow and small orifice throttle theory. The model is simulated by MATLAB/Simulink, and the outercharacteristic of the shock absorber is compared with the test result, the consistencybetween simulation result and test result verifies the correctness and creditability of themathematical model. In addition, the influence law and sensitiveness of damping forceaffected by structure parameters of the shock absorber are analyzed using the model, thegeneral controlling rule of shock absorber damping force is got, and the results obtainedcan provide technical support to the design and performance prediction of shockabsorber to a certain degree.
     2) A stroke-sensitive shock absorber was developed by improving the ordinarydouble tube hydraulic shock absorber. Basing on the theory of hydraulics and elasticity,the function expression of the embranchment flow rate and throttle pressure of the valvesystem for stroke-sensitive shock absorber is deduced by proposing and usingpolynomial fitting method series and parallel complex pipeline flow rate, themathematical model of the stroke-sensitive shock absorber is established with theequation for annular laminar deformation under a uniform load. The detailed model issimulated by MATLAB/Simulink, the calculated results agree well with the test results.In particular, the influence rule of the by-pass groove diameter on the shock absorberdamping is analyzed using the model.
     3) A variable damping shock absorber of high cost performance for semi-activesuspension is developed; the structure and operation principle of the shock absorber isillustrated. Based on the theory of hydraulics and elasticity, the ways of calculating thethrottle pressure on the parallel pipe line and the embranchment flow rate on theseries-parallel complex pipe line are deduced and employed, and the detailedmathematical model of the variable shock absorber is established by using the equationfor annular laminar deformation under a uniform load. The MATLAB software is usedto simulate the detailed model, and the calculated results agree well with the test results.Using the variable damping shock absorber test results, the relationship curve betweenthe damping force of shock absorber and the angle of the adjusting mechanism in avibration frequency is obtained. In addition, the influence rule of the structure parameteron the circumfluence pipeline to damping force of the shock absorber is analyzed usingthe model.
     4) Body acceleration, suspension dynamic deflection and tire dynamic load areregarded as the evaluation indexes of vehicle suspension performance. The roadincentives formula of suspension system is introduced, and the time domain models of the random road and arc road are obtained. According to Lagrange equation, the vehiclevibration differential equation of the suspension system is established, and the systemstate space model is established for the vehicle vibration system of7DOF. TheMatlab/Simulink software is used to simulate the vehicle model. In order to evaluatevehicle vibration system comprehensive performance conveniently, the comprehensiveperformance evaluation index is established including sprung mass acceleration,suspension deflection and tire dynamic deflection.
     5) Combining with the characteristics of vehicle control system, the method of“three parallel controller damping control” is proposed by taking vertical vibration,pitch vibration and roll vibration as inputs of controller. Basing on the semi-activesuspension system model with the variable damping shock absorber, the PID control,fuzzy control and fuzzy-PID control are designed. The three control strategies arecompared by simulating the semi-active suspension under the random excitation and arcbarriers road condition. To improve system comprehensive performance, the simulationresults show that the semi-active suspension is obviously superior to passive suspension,and fuzzy-PID control is better than the fuzzy control and PID control. The controleffect of the three kinds of control mode such as front suspension control, rearsuspension control, and full vehicle control is completed by using the fuzzy-PID control.It is demonstrated that the control effect of full vehicle control is much better than frontsuspension control and rear suspension control, and the control effect of rear suspensionis better than front suspension.
引文
[1]陈杰平.基于磁流变减振器的汽车半主动悬架设计与控制研究[D].博士学位论文,合肥工业大学,2010.
    [2]秦明,万钢.轿车悬架技术现状及发展趋势[J].汽车研究与开发.2004,3:27-29.
    [3]李世民,吕振华.汽车筒式液阻减振器技术的发展[J].汽车技术.2001,8:11-16.
    [4]方子帆,邓兆样,郑玲,舒红字.汽车半主动悬架系统研究进展[J].重庆大学学报.2003,26(1):104~107.
    [5] Karnopp D C., Crosby M J. and Harwood RA. Vibration control using semi-active forcegenerators[J]. Transactions of the ASME, Journal of Engineering for Industry,1974,98:14-918.
    [6] Karnopp D C., Crosby M J. and Harwood R A. Vibration Control Using Semi-Active ForceGenerators[J]. ASME Journal of Engineering for Industry,1975,96:19-626.
    [7]方子帆.基于MR阻尼器的半主动悬架控制方法研究[D].博士学位论文,重庆大学,2006.
    [8] Daniel Fischer, Rolf Isermann. Mechatronic semi-active and active vehicle suspensions[J].Control engineering practice,2003,8:1-15.
    [9]李智超,耿艳萍,陈朝阳等.一种可调阻尼减振器的设计与试验[J].合肥工业大学学报(自然科学版).1998,21(3):36-42.
    [10]严天一,刘大维,师忠秀等.基于混合控制策略的半主动悬架道路友好性[J].系统仿真学报,2007,19(16):3308-3312.
    [11]陈龙,江浩斌,周孔亢等.半主动悬架系统设计及控制[J].机械工程学报,2005,41(5):137-141.
    [12] Bangsing Nyoman, Sularso, Bagiasna Komang. et.al. An experimental investigation intothe design of a robust semi-active suspension system for a quarter-car model[J].International Conference on Control and Automation,2003:971-975.
    [13] Al-Holou Nizar, Bajwa Asad,Joo Dae-Sung1. Computer controlled individual semi-activesuspension system[J]. Midwest Symposium on Circuits and Systems,1993,1:208-211.
    [14]曾志华,章一鸣.三级可调阻尼减振器的设计[J].汽车技术,1992,12:14-19.
    [15]江洪,李仲兴,周文涛等.基于遗传算法的ECAS系统中三级阻尼匹配优化设计[J].机械工程学报,机械工程学报,2009,45(10):278-283.
    [16]郭洪文, NJ2045越野车可调减振器的研制和半主动悬架设计[D].硕士学位论文.吉林大学.2004.
    [17]吴九山.车辆半主动悬架模糊PID控制仿真及试验研究[D].硕士学位论文.南京林业大学,2008.
    [18] Crolla D.A, Vehicle dynamics-theory into practice[J], Proc Inset Mech Engrs part D, Vol210,1996, part D4,83-94.
    [19]尹丽丽,高婷婷.车辆半主动悬架技术和发展趋势[J].黑龙江交通科技,2005,131(1):64-65.
    [20] Seung-Bok Choi, Hwan-Soo Lee, Young-Pil Park. H∞control performance of a full-vehiclesuspension featuring magnetorheological shock absorbers[J]. Vehicle System Dynamics,2002, vol.38, No.5:341~360.
    [21] P. Gaspar, I. Szaszi, J. Bokor. Design of robust controllers for active vehicle suspensionusing the mixed μ synthesis[J]. Vehicle System Dunamics,2003, Vol.40, No.4:193~228.
    [22] A. Shariati, H. D. Taghirad, A. Fatehi. Decentralized robust H∞controller design for ahalf-car active suspension system[J]. Control2004, University of Bath, UK, September2004(ID216).
    [23] Christophe Lauwerys, Jan Swevers, Paul Sas. Robust linear control of an active suspensionon a quarter car test-rig[J]. Control Engineering Practice13(2005):577~586.
    [24] Seongpil Ryu, Youngjin Park, Younsik Park, et al. Robust preview contol of a vehiclesuspension[J]. The8th International Conference on Motion and Vibration Control (MOVIC2006).
    [25]方敏,史明光,陈无畏.汽车主动悬架多目标H2/H∞混合控制[J].农业机械学报,2005,36(3):4~7(18).
    [26] Joo D. S. Sliding-mode Neural-network inference Fuzzy Logic Controller of NonlinearActive Suspension System[J]. Detroit: Univ. of Detroit Mercy,1999,4-20,67,78-95,185.
    [27] Kurimoto M, Yoshimura T. Active Suspension of Passenger Cars Using Sliding ModeControllers[J].International Journal of Vehicle Design,1998,19(4):402-414.
    [28] Isobe, o, Kawabe, T, Watanabe, Y, Miyasato, Y. Semi-Active Suspension System for HeavyDuty Vehicles Using a Sliding Mode Control Theory[J]. JSAE Review,1996,17(4):444.
    [29]郑玲,邓兆祥,李以农.汽车半主动悬架的鲁棒控制[J].中国机械工程,2004,15(13):1214-1217.
    [30] Choi S B, Choi Y T, Park D W. A Sliding Mode Control of a Full-Car ElectrorheologicalSuspension System Via Hardware in-the-Loop Simulation[J]. Transactions of the ASMEJournal of Dynamic Systems, Measurement, and Control,2000,122(1):114-121.
    [31] Chen P C, Huang A C. Adaptive sliding control of non-autonomous active suspensionsystems with time-varying loadings[J]. Journal of Sound and Vibration,2005,282(3-5),1119-1135.
    [32] Kim C, RoPI, Kim H. Effect of the Suspension Structure on Equivalent Suspensionparameters[J]. Proceedings of the Institution of Mechanical Engineers-Part D-Journal ofAutomobile Engineering,1999,213(5):457-470.
    [33]于显利.车辆主动悬架集成控制策略研究[D].博士学位论文,吉林大学,2010.
    [34] Marzbanrad J, Ahmadi G, Zohoor H. Stochastic optimal preview control of a vehiclesuspension[J], Journal of Sound and Vibration,2004,275(3-5):973-990.
    [35]秦民,董波,马天飞.基于轴间预瞄的主动悬架研究[J].汽车工程,2004,26(2):193-196.
    [36]高翔,缪丰隆.基于预测控制的汽车主动悬架与电控液压助力转向系统的集成控制[J].拖拉机与农用运输车.2009,36(1):46-49.
    [37]王辉,高翔,陈吉.基于预瞄信息的主动悬架最优控制[J].大连交通大学学报.2009,30(2):54-57.
    [38]宋晓琳.基于免疫算法的汽车主动悬架控制技术研究[D].博士学位论文,湖南大学,2007.
    [39]宋宇,陈无畏,黄森仁.车辆悬架多刚体动力学分析及PID控制研究[J].农业机械学报,2004,35(1):4-7,21.
    [40]权龙,邢向丰,李凤兰.一种模糊自调整PID在车辆液压悬架主动控制中的应用[J].机床与液压,2000,(6):29-30,14.
    [41]孙涛,陈大跃.电流变智能半主动悬架模糊PID控制[J].汽车工程,2004,26(5):605-608.
    [42]刘刚,程勉宏,王文竹.基于ADAMS的汽车主动悬架控制策略与仿真研究[J].沈阳航空工业学院学报,2005,22(5):37-39.
    [43]杨英,刘刚,赵广耀.基于ADAMS机械模型的车辆主动悬架控制策略与仿真[J].东北大学学报(自然科学版),2006,27(1):73-75.
    [44]刘东升,金华,许敏.联合线性和模糊逻辑控制的4自由度主动悬架[J].汽车工程,2004,26(5):596-599.
    [45]侯志祥,申群太,吴义虎.汽车主动悬架系统的单神经元自适应PID控制[J].系统仿真学报,2004,16(9):2107-2108,2111.
    [46]陈志林,金达峰,马国新.基于变结构与PID联合控制策略的车身高度控制仿真[J].清华大学学报(自然科学版).1999,39(8),72-75.
    [47]张玉春,王良曦,丛华等.具有非线性电液作动器的车辆悬架鲁棒PID控制[J].汽车工程,2004,26(6):686-690,682.
    [48]杨钫.基于PID控制空气悬架系统的仿真与试验研究[D],硕士学位论文,吉林大学,2004.
    [49]陶永华,新型PID控制及其应用[M],北京:机械工业出版社,2002.
    [50]刘金琨著,先进PID控制MATLAB仿真[M],北京:电子工业出版社,2004.
    [51]孙涛,黄震宇,陈大跃,蔡良斌.模糊控制在半主动悬架系统中的应用研究[J].汽车技术,2002,(6):18-21.
    [52]黄尚廉.智能材料系统与结构[J].世界科技研究与发展,1996,3:61-63.
    [53]黄尚廉,陶宝祺,沈亚鹏.智能结构系统—梦想,现实与未来[J].中国机械工程,2000,11:32-35.
    [54]陶宝祺.智能材料结构[M].北京:国防工业出版社,1997.
    [55]沈亚鹏,徐健学,张景绘,陈宜亨.断裂,智能结构、非线性振动、不确定分析凸集理论研究的新进展[J].西安交通大学机械结构强度与振动国家重点实验室.西安.
    [56]丁文镜.减振理论[M].北京:清华大学出版社,1988.
    [57] Lee Choon-tae. Simulation and Experimental Validation of Vehicle Dynamic Characteristicsfor Displacement Sensitive Shock Absorber using Fluid-flow Modeling[J]. MechanicalSystems and Signal Processing,2006,20:373~388.
    [58] Lee Choon-tae. Study of the Simulation Model of a Displacement-sensitive Shock Absorberof a Vehicle by Considering the Fluid Force[J]. Journal of Automobile Engineering,2005,219(8):965-975.
    [59]任卫群,赵峰,张杰.汽车减振器阻尼特性的仿真分析[J].系统仿真学报.2006,18(2):957~960.
    [60]陈龙,陈杨,江浩斌,等.节流口可调式减振器的性能分析与试验研究[J].江苏大学学报.2004,25(3):208-211.
    [61]江浩斌,杨如泉,陈龙,等.麦弗逊式前悬架液力减振器阻尼特性仿真与试验[J].汽车工程.2007:129(11):970-974.
    [62] Zhou Changcheng, Zheng Zhiyun, Zhang Xueyi. Design Method for Throttle Holes Area ofTelescopic Shock Absorber for Small Electric Vehicles[J]. Journal of Asian ElectricVehicles.2009,7(1):1191-1197.
    [63]郭孔辉,孙胜利.行程相关减振器的建模与试验[J].吉林大学学报(工学版),2008,38(2):33-35.
    [64] J.C. Ramos, A. Rivas, J. Biera. Development of a Thermal Model for Automotive Twin-tubeShock Absorbers[J]. Applied Thermal Engineering,2005,25:1836-1853.
    [65] J.A. Calvo, B.Lopez-Boada, J.L. San Roman, et al. Influence of a Shock Absorber Model onVehicle Dynamic Simulation[J]. Proc.IMechE Vol.223Part D: J.Automobile Engineering.2009:189-202.
    [66] W.Ren, J.Zhang, G.Jin. The Virtual Tuning of an Automatic Shock Absorber[J].Proc.IMechE Vol.223Part C: J.Mechanical Engineering Science.2009:2655-2662.
    [67]李世民.筒式液阻减振器液-固耦合动力学特性仿真技术研究[D],博士学位论文,清华大学,2004.
    [68]周长城,顾亮,王丽.节流阀片弯曲变形与变形系数[J].北京理工大学学报,2006,26(7),581-584.
    [69]陈轶杰,顾亮,管继富.减振装置节流阀片均布载荷变形解析计算[J].重庆大学学报,2008,31(9):988-991.
    [70]周长城,顾亮.筒式减振器叠加节流阀片开度与特性试验[J].机械工程学报,2007,43(6):210-215.
    [71] John C. Dixon. The Shock Absorber Handbook[M]. Professional Engineering PublishingLtd and John Wiley and Sons, Ltd.2007.
    [72]周长城,孟婕.车辆悬架最佳阻尼匹配减振器设计[J].交通运输工程学报.2008,8(3):15~19.
    [73]石秉良,薛念文.可调减振器及其模糊控制方法初探[J].江苏理工大学学报(自然科学版).1999,20(4):32-40.
    [74] Kum-Gil Sung, Young-Min Han, Jae-Wan Cho, Seung-Bok Choi. Vibration control ofvehicle ER suspension system using fuzzy moving sliding mode controller[J]. Journal ofSound and Vibration2008,311,1004–1019.
    [75]江浩斌,孙丽琴,杨如泉,等.分体式充气可调阻尼减振器的阻尼特性仿真与试验[J].农业机械学报.2007,38(9):10-15.
    [76] S-B Choi, M-S Seong, K-S Kim. Vibration control of an electrorheological fluid-basedsuspension system with an energy regenerative mechanism[J]. Proc. IMechE, Part D: J.Automobile Engineering.2009,233,459-469. DOI:10.1243/09544070JAUTO968.
    [77] Seung-Bok Choi, Young-Min Han, Kum-Gil Sung. Vibration control of vehicle suspensionsystem featuring ER shock absorber[J]. International Journal of Applied Electromagneticsand Mechanics.2008,27,189–204.
    [78] K-G Sung, Y-M Han, J W Sohn, S-B Choi. Road test evaluation of vibration controlperformance of vehicle suspension featuring electrorheological shock absorber[J]. Proc.IMechE, Part D: J. Automobile Engineering.2008,222,685-698. DOI:10.1243/09544070JAUTO738.
    [79] K Yi, B S Song. A new adaptive sky-hook control of vehicle semi-active suspensions[J].Proc Instn Mech Engrs Vol.213Part D,293-303,1999.
    [80] Marius-Constantin O.S. Popescu, Nikos E. Mastorakis. Testing and Simulation of a MotorVehicle Suspension[J]. International Journal of Systems Applications, Engineering&Develop-ment. Issue2, Vol.3,74-83,2009.
    [81] Young-hwan Yoon, Myung-jin Choi, Kyung-hoon Kim. Development of a reversecontinuous variable shock absorber for semi-active suspension[J]. International Journal ofAutomotive Technology, Vol.3, No.1, pp.2732,2002.
    [82] C. F. Nicolas, J.Landaluze, X. Sabalza, R. Reyero. An intelligent suspension system basedon a continuously variable shock absorber[J]. AVEC’96-International Symposium onAdvanced Vehicle Control.1996,241-254.
    [83] T. Butsuen, The design of semi-active suspensions for automotive vehicles[D], Ph.D. Thesis,Massachusetts Institute of Technology, June1989.
    [84] D.C. Karnopp, M.J. Crosby, Vibration control using semi-active force generators[J]. Journalof Engineering for Industry.96(1974)619–626.
    [85] E. Esmailzadeh, H. Taghirad, State-feedback control for passenger ride dynamics[J],Transactions of the Canadian Society for Mechanical Engineering.19(4)(1995)495–508.
    [86] I. Fialho, G. Balas, Road adaptive active suspension design using linear parameter varyinggain-scheduling[J]. IEEE Transactions on Control Systems Technology10(1)(2002)43–54.
    [87] I. Szaszi, P. Gaspar, J. Bokor, Nonlinear active suspension modeling using linear parametervarying approach[J]. Proceedings of the10th IEEE Mediterranean Conference on Controland Automation. MED2002, Portugal, THA (5-4)(2002).
    [88] J.S. Lin, I. Kannellakopoulos, Road adaptive nonlinear design of active suspensions[J].Proceedings of the American Control Conference,1997,714–718.
    [89] A. Alleyne, J.K. Hedrick, Nonlinear adaptive control of active suspensions[J]. IEEETransactions on Control Systems Technology3(1)(1995)94–101.
    [90] Y. Zhan, A. Alleyne, A practical and effective approach to active suspension control[J].Sixth International Symposium on Advanced Vehicle Control, AVEC02, Hiroshima, Japan,2002.
    [91] C. Lauwerys, J. Swevers, P. Sas, Robust linear control of an active suspension on a quartercar test rig[J]. Control Engineering Practice13(5)(2005)577–586.
    [92] Koenraad Reybrouck, A NonLinear Parametric Model of an Automotive Shock Absorber[J].SAE paper940869.
    [93] Besinger F. H., and Cebon D. J., Shock absorber model for Heavy Vehicle-RideDynamics[J]. Vehicle System Dynamics, Vol.24, No.1,35-64, Jan.1995.
    [94] Lang, H. H. A study of the characteristics of automotive hydraulic shock absorbers at highstroking frequencies[D]. PhD thesis, Department of Mechanical Engineering, University ofMichigan, Ann Arbor, Michigan, USA, December1977.
    [95] Duym, S. W., Stiens, R., Baron, G. V., and Reybrouck, K. G. Physical modeling of thehysteretic behavior of automotive shock absorbers[J]. SAE paper970101,1997,125–137.
    [96] Cherng, J. G., Ge, T., Pipis, J., and Gazala, R. Characterization of air-borne noise of shockabsorber by using acoustics index method[J]. In Proceedings of the1999SAE InternationalCongress and Exposition, SAE paper1999-01-1838,1999.
    [97] Reybrouck, K. G. A nonlinear parametric model of an automotive shock absorber[J]. SAEpaper940869,1994,79–86.
    [98] Herr, F., Malin, T., Lane, J., and Roth, S. A shock absorber model using CFD analysis andEasy5[J]. In Proceedings of the1999SAE International Congress and Exposition, SAEpaper1999-01-1322,1999.
    [99] Simms, A. and Crolla, D. The influence of shock absorber properties on vehicle dynamicbehavior[J]. SAE paper2002-01-0319,2002,79–86.
    [100] Liu, Y., Zhang, J., Yu, F., and Li, H. Test and simulation of nonlinear dynamic response forthe twin-tube hydraulic shock absorber[J]. SAE paper2002-01-0320,2002,91–98.
    [101] Park, J., Joo, D., and Kim, Y. A study on the stroke sensitive shock absorber[J]. J. KoreanSoc. Precision Engng,1997,14,11–16.
    [102] Cho, K. and So, S. A study of the new typed stroke dependent shock absorber[J]. J. KoreanSoc. Automot. Engrs,1999,7(3),294–300.
    [103] Lee Choon-tae. Simulation and Experimental Validation of Vehicle Dynamic Characteristicsfor Displacement Sensitive Shock Absorber using Fluid-flow Modeling[J]. MechanicalSystems and Signal Processing,2006,20:373~388.
    [104] Lee Choon-tae. Study of the Simulation Model of a Displacement-sensitive Shock Absorberof a Vehicle by Considering the Fluid Force[J].. Journal of Automobile Engineering,2005,219(8):965~975.
    [105] C.T. Lee, B.Y. Moon. Simulation and experimental validation of vehicle dynamiccharacteristics for displacement-sensitive shock absorber using fluid-flow modelling[J]..Mechanical Systems and Signal Processing,2006,20:373~388.
    [106]翁建生,基于磁流变阻尼器的车辆悬架系统半主动控制[D].博士学位论文,南京航空航天大学,2002.
    [107] Dave Crolla,俞凡著,车辆动力学及其控制[M],北京:人民交通出版社,2004.
    [108]余淼,汽车磁流变半主动悬架控制系统研究[D],博士学位论文,重庆大学,2003.
    [109]胡庆玉.基于IPSO-BP网络的汽车半主动悬架控制算法研究[D].博士学位论文,吉林大学,2010.
    [110]《中国煤炭工业年鉴》编审委员会.路基路面试验检测技术[M],北京,人民交通出版社,2000.
    [111]郑健龙.沥青路面抗裂设计理论与方法[M].北京,人民交通出版社,2003.
    [112]姚祖康.水泥混凝土路面设计[M].合肥,安徽科学技术出版社,1999.
    [113]现代交通远程教育教材编委会.路基路面工程[M].北京,北方交通大学出版社,2003
    [114]黄晓明.水泥路面设计[M],北京,人民交通出版社,2003.
    [115] Sayers M W. Dynamic terrain inputs to predict structural integrity of ground vehicles[J]..Michigan: University of Michigan Transportation Research Institute Report UM TR I-88-16,1988.
    [116]杨小卫.磁流变减振器磁路分析及磁流变半主动悬架控制策略研究[D].博士学位论文,江苏大学,2007.
    [117] C Hang C.C, Roschke P. Neural network modeling o a magnetorheological shock absorber[J]. JIntell Mater Syst Struct1998,9(9):755-764.
    [118]余志生.汽车理论[M](第5版).北京:机械工业出版社,2010.
    [119] Billie F. Spencer, Jr.,Guangqiang Yang,J. David Carlson and Michael K. Sain, Smart Shockabsorbers for Seismic Protection of Structures[J]. the Second World Conference onStructural Control,Kyoto, Japan, June28–July1,1998.
    [120]杨方廷,余群,喻谷源.车辆路面的数值模拟[J].北京农业工程大学学报,1995,15(4):99-104.
    [121] Cebon D,Newland D E. Artificial generation of road surface topography by the Inverse FFTMethod[J]. Vehicle Syst Dyn.1983,12(1-3):160-165.
    [122] Shinozuke M, Jan C M. Digital simulation of random process and its application[J]. J SoundVib,1972,25(1):111-128.
    [123] Winterstein S R. Random process simulation with the fast Hartley transform[J]. J soundVib,1990,137(3):527-531.
    [124]张洪信,陈秉聪,张铁柱等.车辆纵振路面谱研究[J].汽车工程,2002,24(6):513-515.
    [125]檀润华,陈鹰,路甬祥,路面对汽车激励的时域模型建立及计算机仿真[J],中国公路学报,1997,11(3):96~102.
    [126]邓正万.基于模糊PID空气悬架电子控制系统的研究[D].硕士学位论文,江苏大学,2008.
    [127]孙增沂,计算机控制理论及应用[M],北京:清华大学出版社,1989.
    [128] Astrom.K.J, Hagglund, T, PID Controllers:Theory, Design and Tuning[M]. InstrumentSociety of America,1995.
    [129]徐大诚,邹丽新丁建强.微型计算机控制技术及应用[M].北京:高等教育出版社,2003.
    [130]张宇河,金钰.计算机控制系统[M].北京:北京理工大学出版社,1996.
    [131]俞忠原,陈一民.工业过程控制计算机系统[M].北京:北京理工大学出版社,1995.
    [132]杨辉,王金章,模糊控制技术及其应用[M],江西:江西科学技术出版社,1997.
    [133] Yusuf Kaelani. Integrated Traction Control with Implementation of Fuzzy LogicController[J].. AVEC2002.
    [134] Ianj.Fialho and Gary J. Balas. Design of Nonlinear Controllers for Active VehicleSuspensions Using Parameter-Varying Control Synthesis[J]. Vehicle System Dynamecs,2000(33):351370.
    [135]周立开.半主动悬架模糊动态系统设计与试验研究[D].硕士学位论文,江苏大学.2005.
    [136]陈吉安,陈晓峰.液压减振器工作特性分析[J].哈尔滨工业大学学报,1999,31(3):115~117.
    [137] A. Alleyne, J.K. Hedrick, Nonlinear adaptive control of active suspensions[J]. IEEETransactions on Control Systems Technology3(1)(1995)94–101.
    [138] A. Simms, D. Crolla. The influence of shock absorber properties on vehicle dynamicbehavior[J]. Society of Automotive Engineers,2002,1:79~86.
    [139] CHEN Ji an, CHEN Xiao feng. An Analysis of Working Performance of Hydraulic ShockAbsorber[J]. Journal of HARNIN Institute of Technology,1999,31(3):115~117.
    [140] Dyms S W R. Simulation tools, modeling and identification, for an automotive shockabsorber in the context of vehicle dynamics[J]. Vehicle System Dynamics,2000,33:263~285.
    [141] F. H. Besinger, D. Cebon, D. J. Cole. Shock absorber models for heavy vehicle-ridedynamics[J]. Vehicle System Dynamics,1995,24(1),35–64.
    [142] FENG Xue mei, LIU Zuo min. New Model for Simulating Damping Force Characteristicsof Automotive Hydraulic Shock Absorber[J]. Journal of Vibration and Shock,2003,22(2):52~56.
    [143] GUO Kong hui, SUN Sheng li. Modeling and experiment of stoke dependent shockabsorber[J]. Journal of Jilin University.2008,38:33~35.
    [144] HANG Heng cheng GUANG Wei. Modeling and Simulation of External Characteristic ofAutomotive Shock Absorbers [J]. Automobile Technology,2005,(11):4~7.
    [145] HUANG Zhi gang ZHENG Mu qiao. Simulation on Outer Performance of the Valve PlateShock Absorber[J]. Computer Simulation,1996,13(1):36~44.
    [146] K. Lee. Numerical Modeling for the Hydraulic Performance Prediction of AutomotiveMonotube Shock absorbers[J]. Vehicle System Dynamics.1997,28:25~39.
    [147] Koenraad Reybrouck, A NonLinear Parametric Model of an Automotive Shock Absorber[J].SAE paper940869.
    [148] Lee CT, Moon BY. Simulation and experimental validation of vehicle dynamiccharacteristics for displacement sensitive shock absorber using fluid-flow modeling[J].Mechanical Systems and Signal Processing,2006,20:373~388.
    [149] Ramos JC, Rivas A, Biera J, et al. Development of a thermal model for automotivetwin-tube shock absorbers[J]. Applied Thermal Engineering,2005,25:1836~1853.
    [150] Richard VK, Wang CC, Qian LX, et al. A new shock absorber model for use in vehiclesystem dynamics studies[J]. Vehicle System Dynamics,2005,43(9):613~631.
    [151] S.W.R. Duym, K. Reybrouck. Physical Characterization of Nonlinear Shock AbsorberDynamics[J]. Euro J Mech Eng M.1998,43:423~433.
    [152] S.W.R. Duym. Simulation Tools, Modelling and Identification, for an Automotive ShockAbsorber in the Context of Vehicle Dynamics[J]. International Journal of Vehicle Mechanicsand Mobility,2000,33(4):261~285.
    [153] ZHAO Zhe shan, LI Zhong yu. The Flow-Rate Calculation of Parallel Pipelines[J]. Journalof Jilin Institute of Chemical Technology.1995,12(3):31~35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700