用户名: 密码: 验证码:
无人艇的非线性运动控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋是人类赖以生存的第二空间。近年来,海洋资源勘探与开发以及海洋安全越来越受到人们的高度重视。由于无人艇(Unmanned Surface Vehicles, USV)在海洋探测、海洋环境监测以及海洋安全方面具有广泛的应用前景而成为国内外的研究热点。USV作为一种无人智能运载器,它的研究涉及到流体力学、结构力学、船型设计、系统工程、计算机科学、自动控制等诸多领域,因而对USV的研究既有较高理论意义,又有工程实用价值。在此研究背景下,本文重点研究了USV的运动控制问题。
     在USV的运动控制系统设计方面,以“XL”号USV为研究对象,主要探讨其系统体系结构、航速与航向控制(全驱动控制问题)、滤波方法等内容。为了满足USV在复杂海洋环境下进行无人自主作业的需要,基于脑基本功能联合区理论,设计了一种USV智能控制系统体系结构。在此架构下,进而提出了该USV的运动控制系统。在“XL”号USV控制器的设计中,充分考虑到该USV具有非线性、时滞性、不确定性和受到复杂海洋环境干扰等特点,引入了不依赖于严格数学模型的S面航速/航向控制方法。并针对舵泵系统存在的“舵角零点漂移”问题,提出了一种基于执行器补偿的改进S面控制方法。在“XL”号USV上进行了大量的外场试验,试验结果表明所设计的控制方法有效地解决了“舵角零点漂移”问题,具有良好的航速/航向跟踪控制性能,最终完成了无人自主航行任务,并验证了无人艇运动控制系统的可行性和有效性。
     在USV的欠驱动控制方面,主要针对镇定、路径跟踪和轨迹跟踪等控制问题,分别提出了相应的非线性控制策略,并在某USV数学模型上进行了数值仿真对比试验。文中将Backstepping设计法和滑模控制方法相结合,提出了适于一类单输入-输出不确定非线性系统的反步自适应动态滑模控制(Backstepping Adaptive Dynamic Sliding ModeControl,BADSMC)方法,以便于后续的控制器设计。同时提出了一种自适应人工鱼群算法(AdaptiveArtificial Fish Swarm Algorithm,AAFSA),并利用该方法进行控制参数的优化。仿真试验结果表明,该优化算法解决了USV欠驱动控制中存在参数调整困难的问题。
     针对欠驱动USV的镇定控制问题,首先利用级联系统分析方法将原系统的镇定问题简化为级联子系统的镇定问题,并借鉴变换法的思想,通过在状态反馈控制律中增加指数收敛控制项,提出了一种光滑时变状态反馈控制器。通过理论分析,可证明该控制器保证了系统的全局K指数稳定性。
     针对欠驱动USV的路径跟踪问题,并考虑到模型摄动和外界干扰等不确定性的影响。首先通过引入Serret-Frenet坐标系,在一定假设条件下,可将原单输入-三输出系统简化为单输入-双输出系统。然后基于BADSMC方法,提出了一种反步自适应动态滑模路径跟踪控制器。通过理论分析,可证明该控制器保证了系统的全局稳定性。
     针对欠驱动USV的轨迹跟踪问题,并考虑到模型摄动和外界干扰等不确定性的影响。利用虚拟USV产生的参考轨迹以获得USV轨迹跟踪误差系统,这将USV轨迹跟踪控制问题转化为误差系统的镇定控制问题。借鉴BADSMC方法,提出了一种反步自适应动态滑模轨迹跟踪控制器。通过理论分析,可证明该控制器保证了系统的解具有毕竟有界性,从而达到了轨迹跟踪控制目的。
     在某USV数学模型上,开展了大量仿真对比试验,仿真结果验证了上述非线性控制策略的有效性和鲁棒性,并具有良好的控制性能。
The ocean is the second space for human survival. Recently, the exploration andexploitation of marine resources and maritime security have been paid more and moreattention. Unmanned surface vehicles (USV) have become an intense research area becauseof their extensive military and civil applications. As an unmanned intelligent vehicle, USVinvolves the hydromechanics, structural mechanics, ship design, system engineering,computer science, automatic control and many other areas. Therefore, the research on USVhas both important theoretical significance and practical value. Under this background, themotion control of the USV is researched in detailed in this thesis.
     For the “XL” USV motion control system design, system architecture, speed/directioncontrol (actuated control problem), filter measurements are mainly discussed. In order tomeet the USV autonomous operation request in the complex ocean environment, the USVintelligent control system architecture is proposed based on the cerebrum basic functioncombination zone theory. Under this framework, the motion control system for “XL” USV isproposed. Considering the USV with nonlinear, time-delay, uncertainty and marineenvironment disturbance, an S surface speed/direction controller independent of precisemathematic models is introduced in the design for “XL” USV controller. To solve the "rudderangle drift" problem of steering pump system, an improved S surface controller based on theactuator compensation is proposed. Many sea tests for “XL” USV demonstrate theeffectiveness and robustness of the above proposed motion control system.
     For the USV underactuated control, aiming at the stabilization, path-tracking andtrajectory-tracking problems, three nonlinear control strategies are proposed respectively, andnumerical simulation comparison experiments are presented on a USV mathematics model.By combining the Backstepping method with sliding mode control theory, a new methodnamed Backstepping adaptive dynamic sliding mode control (BADSMC) for a class ofsingle input-output uncertain nonlinear systems is constructed for the follow-up controllerdesign. Moreover, an adaptive artificial fish swarm algorithm (AAFSA) is proposed for thecontrol parameter optimization problem. Simulation results demonstrate that the proposedoptimization algorithm could resolve the difficulty of the parameter regulation for underactuated USV.
     The Stabilization control problem for underactuated USV is addressed. Based on cascadesystem analysis method, the stabilization control problem of resulting cascade system can bereduced to the stabilization problem of cascade subsystem. By drawing lessons from transform method, a smooth time-varying state feedback control law is developed byintroducing an assistant exponentially tapered control item into the feedback control law andtheoretically proved to render the original system globally K exponential asymptoticallystable.
     The path-following problem with model parameter uncertainties and externaldisturbances for underactuated USV is addressed. By introducing the Serret-Frenet frame, thesingle-input ternary-output system is transformed into an equivalent single-input two-outputsystem under some assumed conditions, which simplifies the controller design. ABackstepping adaptive dynamic sliding mode path-following controller is proposed based onBADSMC method. Theoretical analysis proves that the proposed controller can render theoriginal system global stable.
     The trajectory-tracking problem with model parameter uncertainties and externaldisturbances for underactuated USV is addressed. This paper assumes that the referencetrajectory is generated by a virtual USV, and then the original system is transformed into anequivalent tracking error system. Therefore, the tracking and regulation problem ofunderactuated USV is equivalent to stabilizing the tracking error system. By borrowing ideasfrom BADSMC method, a Backstepping adaptive dynamic sliding mode trajectory-trackingcontroller is proposed. Theoretical analysis proves that the solutions of original system areultimately bounded using the proposed controller. Accordingly, this can meet the request fortrajectory-tracking control.
     Numerical simulation comparison experiments on a USV mathematics model fordifferent cases are presented. Simulation results demonstrate the effectiveness, robustness andgood control performance of the above proposed control strategies.
引文
[1] Veers J, Bertram V. Development of the USV multi-mission surface vehicle III.Proceedings of the5th International Conference on Computer and IT Application inthe Maritime Industries,2006:345-355P
    [2] Bertram V. Unmanned surface vehicles-a survey. Technical report, cole NationaleSuprieure des Ingnieurs des tudes et Techniques d'armement (ENSIETA),2008:1-14P
    [3] Manley J E. Unmanned surface vehicles,15years of development. Proceedings of theOceans2008MTS/IEEE Quebec Conference and Exhibition, Quebec City, Canada,2008:1-4P
    [4] Caccia M, Bibuli M, Bono R, et al. Basic navigation, guidance and control of anunmanned surface vehicle. Autonomous Robots.2008,25:349-365P
    [5]郭晨,汪洋,孙富春,沈智鹏.欠驱动水面船舶运动控制研究综述.控制与决策.2009,24(3):321-329页
    [6] Larson J, Brucha M, Halterman R, et al. Advances in autonomous obstacle avoidancefor unmanned surface vehicles. Proceedings of AUVSI Unmanned Systems NorthAmerica2007, Washington, USA,2007:1-15P
    [7] Reyhanoglu M, A.van der Schaft, Mcclamroch N H, et al. Dynamics and control of aclass of underactuated mechanical systems. IEEE Transactions on Automatic Control.1999,44(9):1663-1671P
    [8] Bibuli M, Bruzzone G, Caccia M. Path-following algorithms and experiments for anunmanned surface vehicle. Journal of Field Robotics.2009,26(8):669-688P
    [9] Bibuli M, Bruzzonea G, Caccia M, et al. Self-oscillation based identification andheading control for unmanned surface vehicles. Proceedings of the17th InternationalWorkshop on Robotics in Alpe–Adria–Danube Region, Ancona, Italy,2008:1-6P
    [10] Caccia M, Bibuli M, Bono R. Unmanned marine vehicles at CNR-ISSIA. Proceedingsof the17th World Congress of the International Federation of Automatic Control,Seoul, Korea,2008:3070-3075P
    [11] Caccia M, Bono R, Bruzzone G. Design and exploitation of an autonomous surfacevessel for the study of sea-air interactions. Proceedings of the2005IEEE InternationalConference on Robotics and Automation, Barcelona, Spain,2005:3582-3587P
    [12] Caccia M, Bono R, Bruzzone G, et al. An autonomous craft for the study of sea-airinteractions. IEEE Robotics&Automation Magazine.2005,12(3):95-105P
    [13] Desa E, Maurya P K, Pereira A, et al. A small autonomous surface vehicle for oceancolor remote sensing. IEEE Journal of Oceanic Engineering.2007,32(2):353-364P
    [14] Son N S, Kim S Y, Van S H. Design of an operation control and remote monitoringsystem of small unmanned ship for close-range observations. Proceedings of theMTTS/IEEE TECHNO-OCEAN'04, Japan,2004:1093-1101P
    [15] Kumarawadu S, Kumara K J C. On the speed control for automated surface vesseloperation. Proceedings of the2007third international conference on information andautomation for sustainability, Melbourne, Australia,2007:135-140P
    [16] Xinping Bao, Nonami K, Zhenyu Yu. Combined yaw and roll control of anautonomous boat. Proceedings of the2009IEEE International Conference onRobotics and Automation. Kobe, Japan,2009:188-193P
    [17] Manley J, Curran J, Loockyer B. Applying AUV lessons and technologies toautonomous surface craft development. Proceedings of the Oceans2008MTS/IEEEQuebec Conference and Exhibition, Honolulu, Hawaii,2001:545-549P
    [18] Ebken J, Bruch M, Lum J. Applying unmanned ground vehicle technologies tounmanned surface vehicles. Proceedings of SPIE Unmanned Ground VehicleTechnology VII, Orlando, FL,2005:585-596P
    [19] Naeem W, Sutton R, Chudley J. Soft computing design of a linear quadratic gaussiancontroller for an unmanned surface vehicle. Proceedings of the14th IEEEMediterranean Conference on Control and Automation, Ancona, Italy.2006:1-6P
    [20] Naeem W, Sutton R, Chudley J. Modelling and control of an unmanned surfacevehicle for environmental monitoring. Proceedings of the UKACC InternationalControl Conference2006, Glasgow, Scotland,2006:1-6P
    [21] Soohong Park, Jongkwon Kim, Wonboo Lee, Cheolson Jang. A study on the fuzzycontroller for an unmanned surface vessel designed for sea probes. Proceedings of theInternational Conference on Control, Automation, and Systems, Gyeonggi-Do, Korea,2005:1-4P
    [22] Gongxing Wu, Hanbin Sun, Jin Zou, Lei Wan. The basic motion control strategy forthe water-jet-propelled usv. Control Theory&Applications.2010,27(2):257-262P
    [23]高双,朱齐丹,李磊.基于神经网络的高速无人艇模糊PID控制.系统仿真学报.2007,19(4):776-777页
    [24] Jianhua Wang, Wei Gu, Jianxin Zhu, Jubiao Zhang. An unmanned surface vehicle formulti-mission applications. Proceedings of the2009International Conference onElectronic Computer Technology, Macau, China,2009:358-361P
    [25] Juntong Qi, Yan Peng, He Wang, Jianda Han. Design and implement of a trimaranunmanned surface vehicle system. Proceedings of the2007International Conferenceon Information Acquisition, Jeju City, Korea,2007:361-365P
    [26] Reyhanoglu M. Control and stabilization of an underactuated surface vessel.Proceedings of the35th IEEE Conference on Decision and Control, Kobe, Japan,1996:2371-2376P
    [27] Reyhanoglu M. Exponential stabilization of an underactuated autonomous surfacevessel. Automatica.1997,33(12):2249-2254P
    [28] Mazenc F, Pettersen K T, Nijmeijer H. Global uniform asymptotic stabilization of anunderactuated surface vessel. IEEE Transactions on Automatic Control.2002,47(10):1759-1762P
    [29] Ghommam J, Mnif F, Benali A, Derbel N. Asymptotic backstepping stabilization ofan underactuated surface vessel. IEEE Transactions on Control Systems Technology.2006,14(6):1150-1157P
    [30] Pettersen K Y, Egeland O. Exponential stabilization of an underactuated surfacevessel. Proceedings of the35th IEEE Conference on Decision and Control, Kobe,Japan,1996:967-972P
    [31] Pettersen K Y, Fossen T I. Underactuated dynamic positioning of a ship-experimentalresults. IEEE Transactions on Control Systems Technology.2000,8(5):856-863P
    [32] Wenjie Dong, Yi Guo. Global time-varying stabilization of underactuated surfacevessel. IEEE Transactions on Automatic Control.2005,50(6):859-864P
    [33] Jin Cheng, Jianqiang Yi, Dongbin Zhao. Stabilization of an underactuated surfacevessel via discontinuous control. Proceedings of the2007American ControlConference, New York City, USA,2007:206-211P
    [34] Greytak M, Hover F. Underactuated point stabilization using predictive models withapplication to marine vehicles. Proceedings of the IEEE International Conference onIntelligent Robots and Systems, Nice, France,2008:3756-3761P
    [35] Greytak M, Hover F. Exponentially stable underactuated dynamic positioning ofmarine vehicle. Proceedings of the Dynamic Positioning Conference2007, Houston,USA,2007:1-14P
    [36] Pereira A, Das J, Sukhatme G S. An experimental study of station keeping on anunderactuated ASV. Proceedings of the2008IEEE/RSJ International Conference onIntelligent Robots and Systems, Nice, France,2008:3164-3171P
    [37] Matos A, Cruz N. Positioning control of an underactuated surface vessel. Proceedingsof the OCEANS2008MTS/IEEE Conference,2008:1-5P
    [38] Encarnacao P, Pascoal A. Combined trajectory tracking and path following for marinecraft. Proceedings of the40th IEEE Conference On Decision And Control, Orlando,USA,2001:964-969P
    [39] Aguiar A P, Hespanha J P. Trajectory-tracking and path-following of underactuatedautonomous vehicles with parametric modeling uncertainty. IEEE Transactions onAutomatic Control.2007,52(8):1362-1379P
    [40] Reyhanoglu M, Bommer A. Tracking control of an underactuated autonomous surfacevessel using switched feedback. Proceedings of the32nd Annual Conference of theIndustrial Electronics Society, Paris, France,2006:3833-3838P
    [41] Ashrafiuon H, Muske K R. Sliding-mode tracking control of surface vessels. IEEETransactions on Industrial Electronics.2008,55(11):4004-4011P
    [42] Soltan R A, Ashrafiuon H, Muske K R. State-dependent trajectory planning andtracking control of unmanned surface vessels. Proceedings of the2009AmericanControl Conference, Hyatt Regency Riverfront, USA,2009:3597-3602P
    [43] McNinch L C, Ashrafiuon H, Muske K R. Optimal specification of sliding modecontrol parameters for unmanned surface vessel systems. Proceedings of the2009American Control Conference, Hyatt Regency Riverfront, USA,2009:2350-2355P
    [44] Do K D, Jiang Z P, Pan J. Underactuated ship global tracking under relaxedconditions. IEEE Transactions on Automatic Control.2002,47(9):1529-1536P
    [45] Do K D, Pan J. Global tracking control of underactuated ships with nonzerooff-diagonal terms in their system matrices. Automatica.2005,41(9):87-95P
    [46] Breivik M, Hovstein V E, Fossen T I, Straight-line target tracking for unmannedsurface vehicles. Modeling, Identification and Control.2008,29(4):131-149P
    [47] Repoulias F, Papadopoulos E. Planar trajectory planning and tracking control designfor underactuated AUVs. Ocean Engineering.2007,34(2):1650-1667P
    [48] Bibuli M, Bruzzone G, Caccia M. Line following guidance control: application to theCharlie unmanned surface vehicle. Proceedings of the2008IEEE/RSJ InternationalConference on Intelligent Robots and Systems, Nice, France,2008:3641-3646P
    [49] Bibuli M, Caccia M, Lapierre L. Path-following algorithms and experiments for anautonomous surface vehicle. Proceedings of the IFAC Conference on ControlApplications in Marine Systems, Bol, Croatia,2007
    [50] Miskovic N, Vukic Z, Bibuli M, et al. Marine vehicles’ line following controllertuning through self-oscillation experiments. Proceedings of the17th MediterraneanConference on Control and Automation, Thessaloniki, Greece,2009:916-921P
    [51] Gomes P, Silvestre C, Pascoal A, Cunha R. A path-following controller for theDelfimx autonomous surface craft. Proceedings of the7th IFAC Conference onManoeuvring and Control of Marine Craft, Lisbon, Portugal,2006:1-6P
    [52] Encarnacao P, Pacoal A, Arcak M. Path following for autonomous marine craft.Proceedings of the IFAC Conference on Manoeuvring and Control of Marine Craft,Aalborg, Denmark,2000:117-122P
    [53]王晓飞.基于解析模型预测控制的欠驱动船舶路径跟踪控制研究.上海交通大学博士学位论文.2009.
    [54] Do K D, Jiang Z P, Pan J. Robust adaptive path following of underactuated ships.Automatica.2004,40(6):929-944P
    [55] Do K D, Pan J. Global robust adaptive path following of underactuated ships.Automatica.2006,42(10):1713-1722P
    [56] Aguiar A P, Hespanha J P. Logic-based switching control for trajectory-tracking andpath-following of underactuated autonomous vehicles with parametric modelinguncertainty. Proceedings of the2004American Control Conference, Boston, USA,2004:3004-3010P
    [57] Skjetne R, Fossen T I. Nonlinear maneuvering and control of ships. Proceedings ofOCEANS2001MTS/IEEE Conference and Exhibition, Hawaii, USA,2001:1808-1815P
    [58] Do K D, Pan J. State and output-feedback robust path-following controllers forunderactuated ships using Serret-Frenet frame. Ocean Engineering.2004,31:587-613P
    [59]张显库.贾欣乐著.船舶运动控制.北京:国防工业出版社,2006.
    [60] Fossen T I. Marine control systems: guidance, navigation, and control of ships, rigsand underwater vehicles. Trondheim, Norway: Marine Cybernetics,2002.
    [61] Do K D, Pan J. Control of ships and underwater vehicles: design for underactuatedand nonlinear marine systems. London, U.K.: Springer,2009.
    [62] Lefeber E, Pettersen K Y, Nijmeijer H. Tracking control of an underactuated ship.IEEE Transactions on Control Systems Technology.2003,11(1):52-61P
    [63] Pettersen K Y, Nijmeijer H. Underactuated ship tracking control: theory andexperiments. International Journal of Control.2001,74(14):1435-1446P
    [64] Isidori A. Nonlinear control systems.王奔,庄圣贤译.3rd ed.非线性控制系统.第三版.北京:电子工业出版社,2005.
    [65] Murray R M, Li Z X, Sastry S S. A mathematical introduction to robotic manipulation.Cedex, France: CRC press,1994.
    [66] Reyhanoglu M, Arjan V S, McClamroch N H, Kolmanovsky I. Nonlinear control of aclass of underactuated systems. Proceedings of the35th IEEE Conference on Decisionand Control, Kobe, Japan,1996:1682-1687P
    [67] Sussmann H J. A general theorem on local controllability. SIAM Journal of Controland Optimization.1987,25(1):158-194P
    [68] Brockett R W. Asymptotic stability and feedback stabilization. Differential GeometricControl Theory,1983.27:181-191P
    [69]韩冰.欠驱动船舶非线性控制研究.哈尔滨工程大学博士学位论文.2004.
    [70] Pettersen K Y, Egeland O. Exponential stabilization of underactuated vehicles.Proceedings of the35th IEEE Conference on Decision and Control, Kobe, Japan,1996:967-972P
    [71]卜仁祥.欠驱动水面船舶非线性反馈控制研究.大连海事大学博士学位论文.2007.
    [72]程金.水面船舶的非线性控制研究.中国科学院研究生院博士学位论文.2007.
    [73]刘海波.智能机器人神经心理模型研究.哈尔滨工程大学博士学位论文.2005.
    [74]刘学敏,徐玉如.水下机器人运动的S面控制方法.海洋工程.2001,19(3):81-84页
    [75]刘建成,于华男,徐玉如.水下机器人改进的S面控制方法.哈尔滨工程大学学报.2002,23(1):33-36页
    [76]甘永,王丽荣,刘建成等.水下机器人嵌入式基础运动控制系统.机器人.2004,26(3):246-249页
    [77]罗威,姚放吾,张正宏.基于ARM的船用导航雷达α-β-γ跟踪设计方法.上海海事大学学报.2008,29(1):32-36页
    [78]郭军海,高耀文,沙定国.多级组合α-β-γ跟踪滤波器.弹道学报.2003,15(2):83-88页
    [79]荆晓鹏,侯明善,曲润峰.模糊自适应α-β-γ滤波及其应用.弹箭与制导学报.2004,24(4):504-506页
    [80] Elkaim G, Kelbley R. Station keeping and segmented trajectory control of awind-propelled autonomous catamaran. Proceedings of the45th IEEE Conference onDecision&Control, San Diego, CA, USA,2006:2427-2429P
    [81] Larson J, Ebken J, Bruch M H. Autonomous navigation and obstacle avoidance forunmanned surface vehicles. Proceeding of Unmanned Systems Technology VIII,Defense Security Symposium, Orlando, America,2006:1-7P
    [82] Jiang Zhongping. Global tracking control of underactuated ships by Lyapunov’s directmethod. Automatica.2002,38:301-309P
    [83] Fossen T I, Pettersen K Y, Nijmeijer H. Global uniform asymptotic stabilization of anunderactuated surface vehicle. IEEE Transactions on Automatic Control.2002,47(10):1759-1762P
    [84] Ma Baoli. Global k-exponential asymptotic stabilization of underactuated surfacevessels. Systems&Control Letters.2009,58:191-201P
    [85] Lefeber E. Tracking control of nonlinear mechanical systems. Universiteit TwentePh.D. thesis.2000.
    [86]毕凤阳.欠驱动自主水下航行器的非线性鲁棒控制策略研究.哈尔滨工业大学博士学位论文.2010.
    [87] Fredriksen E, Pettersen K Y. Global κ-exponential way-point maneuvering of ships:theory and experiments. Automatica.2006,42(4):677-687P
    [88] Lee T C, Jiang Z P. New cascade approach for global κ-exponential tracking ofunderactuated ships. IEEE Transactions on Automatic Control.2004,49(12):2297-2303P
    [89]李殿璞编著.非线性控制系统.西安:西北工业大学出版社,2009.
    [90]梅生伟,申铁龙,刘康志著.现代鲁棒控制理论与应用.第二版.北京:清华大学出版社,2003.
    [91] Khalil H K. Nonlinear Systems.3rd ed. Upper Saddle River, NJ: Prentice-Hall,2002:138-171P
    [92]李晓磊.一种新型的智能优化方法—人工鱼群算法.杭州:浙江大学,2003页
    [93]李晓磊,冯少辉,钱积新,路飞.基于人工鱼群算法的鲁棒PID控制器参数整定方法研究.信息与控制.2004,33(1):112-115页
    [94]李晓磊,路飞,田国会,钱积新.组合优化问题的人工鱼群算法应用.山东大学学报(工学版).2004,34(5):64-67页
    [95]师彪,李郁侠,何常胜,于新花,等.水轮机智能调速系统数学模型仿真及参数辨识.电力自动化设备.2010,30(4):10-15页
    [96]唐剑东,熊信银,吴耀武,蒋秀洁,等.基于人工鱼群算法的电力系统无功优化.继电器.2004,32(19):9-12页
    [97] Zhang Mei-feng, Shao Cheng, Li Mei-juan, Sun Jun-man. Mining classification rulewith artificial fish swarm. Proceedings of the6th World Congress on IntelligentControl and Automation. Dalian, China, June,2006:5877-5881P
    [98]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法.系统工程理论与实践.2002(22):32-38页
    [99]张梅凤,邵诚,甘勇,李梅娟.基于变异算子与模拟退火混合的人工鱼群优化算法.电子学报.2006,34(8):1381-1385页
    [100]李晓磊,钱积新.基于分解协调的人工鱼群算法研究.电路与系统学报.2003,8(1):1-6页
    [101]师彪,李郁侠,于新花,闫旺,等.基于弹性自适应人工鱼群-BP神经网络的风轮节距控制环.农业工程学报.2010,26(1):145-149页
    [102]张梅风,邵诚.多峰函数优化的生境人工鱼群算法.控制理论与应用.2008,25(4):773-776页
    [103]修春波,张雨虹.基于蚁群与鱼群的混合优化算法.计算机工程.2008,34(14):206-217页
    [104]汪蓓蕾.基于鱼群算法和Hopfield网络的PID参数寻优.南京信息工程大学学报.2009,1(2):179-182页
    [105] Deb K. An efficient constraint handling method for genetic algorithms. ComputerMethods in Applied Mechanics and Engineering.2000,186(2):311-338P
    [106] Do K D, Pan J. Robust path-following of underactuated ships: theory and experimentson a model ship. Ocean Engineering.2006,33(10):1354-1372P
    [107] Breivik M, Fossen T I. Path following for marine surface vessels. Proceedings of theMTTS/IEEE TECHNO-OCEAN'04, Japan,2004,4:2282-2289P
    [108] Breivik M, Fossen T I. Principles of guidance-based path following in2D and3D.Proceeding of the44th IEEE Conference on Decision and Control, Seville, Spain,2005:627-634P
    [109] Lapierre L, Soetanto D, Pascoal A. Nonlinear path following with applications to thecontrol of autonomous underwater vehicles. Proceeding of the42nd IEEE Conferenceon Decision and Control, Maui, Hawaii, USA,2003:1256-1261P
    [110] ZHEN Li, JING Sun, Soryeok Oh. Design, analysis and experimental validation of arobust nonlinear path following controller for marine surface vessels. Automatica.2009,45:1649-1658P
    [111]陈维桓著.微分几何初步.北京:北京大学出版社,1990.
    [112] Ma L, Cui W C. Path following control of a deep-sea manned submersible based uponNTSM. China Ocean Engineering.2005,19(4):625-636P
    [113] Utkin V I. Sliding modes in control and optimization. New York: Springer-Verlag,1992.
    [114]高为炳编著.变结构控制理论基础.北京:中国科学技术出版社,1990.
    [115] Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and adaptive control design.New York: John Wiley&Sons,1995.
    [116]胡跃明著.非线性控制系统理论与应用.第二版.北京:国防工业出版社,2005.
    [117] Kokotovic P V. The joy of feedback: nonlinear and adaptive. IEEE Control SystemMagazine.1992,12(3):7-17P
    [118] Wang L X. Adaptive fuzzy systems and control: design a stability analysis. EnglewoodCliffs, NJ: PTR Prentice Hall,1994.
    [119]孙明轩,黄宝健著.迭代学习控制.北京:国防工业出版社,1999.
    [120]杨俊华,吴捷,胡跃明.反步方法原理及在非线性鲁棒控制中的应用.控制与决策.2002,12(增刊):641-647页
    [121] Azinheira J R, Moutinho A, E C de Paiva. A backstepping controller for path-trackingof an underactuated autonomous airship. Internation Journal of Robust and NonlinearControl.2009,19(4):418-441P
    [122] Ghommam J, Mnif F. Coordinated path-following control for a group of underactuatedsurface vessels. IEEE Transactions on Industrial Electronics.2009,56(10):3951-3963P
    [123] Batista P, Silvestre C, Oliveira P. A sensor-based controller for homing ofunderactuated AUVs. IEEE Transactions on Robotics.2009,25(3):701-716P
    [124] Bateman A, Hull J, Lin Zongli. A backstepping-based low-and-high gain design formarine vehicles. International Journal of Robust and Nonlinear Control.2009,19(4):480-493P
    [125] Lin F J, Chang C K, Huang P K. FPGA-based adaptive backstepping sliding-modecontrol for linear induction motor drive. IEEE Transactions on Power Electronics.2007,22(4):1222-1231P
    [126] Liu Z, Jia X H. Novel backstepping design for blended aero and reaction-jet missileautopilot. Journal of Systems Engineering and Electronics.2008,19(1):148-153P
    [127] Refsnes J E, Srensen A J, Pettersen K Y. Model-based output feedback control ofslender-body underactuated AUVs: theory and experiments. IEEE Transactions onControl Systems Technoloy.2008,16(5):930-946P
    [128] Pettersen K Y, Mazenc F, Nijmeijer H. Global uniform asymptotic stabilization of anunderactuated surface vessel: experimental results. IEEE Transactions on ControlSystems Technology.2004,12(6):891-903P
    [129]胡跃明编著.变结构控制理论与应用.北京:科学出版社,2003.
    [130]凌睿.悬臂式掘进机器人高阶滑模控制研究.重庆大学博士学位论文.2009.
    [131]刘金琨著.滑模变结构控制MATLAB仿真.北京:清华大学出版社,2002.
    [132] Wang W. Yi J Q, Liu D T. Design of a stable sliding-mode controller for a class ofsecond-order underactuated systems. IEE Proceedings Control Theory Applications.2004,151(6):691-698P
    [133] Yu X H, Xu J X. Advances in variable structure systems. Singapore: World ScientificPublishing,2000.
    [134] Fahimi F. Sliding mode formation control for underactuated autonomous surfacevehicles. IEEE Transactions on Robotics.2007,23(3):617-622P
    [135] Koshkouei A J, Burnham K J, Zinober A S I. Dynamic sliding mode control design.IEE Proceedings Control Theory Applications.2005,142(4):392-396P
    [136] Davila J, Poznyak A. Dynamic sliding mode control design using attracting ellipsoidmethod. Automatica.2011,47(1):1467-1472P
    [137] Sungsoo Na, Lee B, Choo J, Marzocca P. Robust dynamic sliding mode control of arotating thin-walled composite blade. Journal of Aerospace Engineering.2011,24(3):298-308P
    [138] Ansarifar G R, Davilu H, Talebi H A. Gain scheduled dynamic sliding mode controlfor nuclear steam generators. Progress in Nuclear Energy.2011,53(1):651-663P
    [139]刘延斌,韩秀英,许晖.3-RRRT并联机器人解耦的反演自适应动态滑模控制.系统仿真学报.2008,20(14):3633-3636页
    [140]徐玉华,张崇巍,鲍伟,等.基于动态滑模控制的移动机器人路径跟踪.合肥工业大学学报(自然科学版).2009,32(1):28-31页
    [141]吴玉香,胡跃明.二阶动态滑模控制在移动机械臂输出跟踪中的应用.控制理论与应用.2006,23(3):411-415页
    [142]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展.控制理论与应用.2007,24(3):407-418页
    [143] Khalil H K. Nonlinear systems.朱义胜,董辉,李作洲等译.3rd ed.非线性系统.第三版.北京:电子工业出版社,2011.
    [144]范尚雍著.船舶操纵性.北京:国防工业出版社,2002:30-39页
    [145] Auiar A P, Cremean L, Hespanha J P. Position tracking of a nonlinear underactuatedhovercraft: controller design and experimental results. Proceedings of the42nd IEEEConference on Decision and Control, Maui, Hawaii, USA,2003:3858-3863P
    [146] Do K D, Pan J. Underactuated ships follow smooth paths with integral actions andwithout velocity measurements for feedback: theory and experiments. IEEETransactions on System Technology.2006,14(2):308-322P
    [147] Do K D, Pan J, Jiang Z P. Robust and adaptive path following for underactuatedautonomous underwater vehicles. Ocean Engineering.2004,31(16):1967-1997P
    [148] S Al-Hiddabi, Mcclamroch N. Tracking and maneuver regulation control for nonlinearnonminimum phase systems: application to flight control. IEEE Transactions ControlSystems Technology.2002,10(6):780-792P
    [149] Do K D. Universal controllers for stabilization and tracking of underactuated ships.Systems&Control Letters.2002,47(4):299-317P
    [150] Encarnacao P, Pascoal A.3D path following for autonomous underwater vehicle.Proceedings of the39th IEEE Conference on Decision and Control, and the EuropeanControl Conference2005, Sydney, Australia,2005:2977-2982P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700