用户名: 密码: 验证码:
水泥基速凝浆液地下工程动水注浆扩散封堵机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国西部交通网的逐步完善、水电资源大开发及深部矿产资源开采,大批交通隧道、水工隧洞及矿山井巷工程投入建设。复杂水文地质条件下地下工程建设期间,经常会遭遇突涌水、塌方等地质灾害。其中突涌水造成的人员伤亡、财产损失和工期延误均排在各种地质灾害的前列。因此,突涌水注浆封堵理论与技术成为我国地下工程建设中的亟需解决的关键科学问题。本文针对动水条件下注浆扩散封堵理论与技术难题,紧密结合工程实践,研发了一种适用于动水封堵的新型高分子水泥基速凝注浆材料,建立单一平板裂隙的动水注浆扩散模型,通过理论分析、模型试验与数值模拟方法,深入研究了新型注浆材料在静水和动水条件下的扩散运移规律,建立了动水注浆封堵判据。通过与水泥-水玻璃等常规注浆材料对比,系统分析了不同类型浆液注浆扩散规律的影响因素及作用机制,并进行了工程应用研究,取得了一系列研究成果。
     (1)针对动水注浆工程对材料的特殊需求,基于高分子聚合物改性机制,确定了新型材料主剂与助剂,应用正交试验原理优化了材料组份与配比。通过一系列的力学性能试验,测定了新型注浆材料的性能指标,提出了可泵性和动水抗分散性的测试方法。通过仪器分析方法,研究了复合材料体系的微观特征,揭示了聚合物在复合体系中的作用。通过依托工程,研究了新型注浆材料在动水治理中应用的技术特点和操作工艺,证实了该材料良好的动水注浆适用性。
     (2)建立了单一平板裂隙注浆扩散模型,通过对水泥基速凝类浆液粘度时变性的测试,构建了浆液粘度时间函数。系统分析了浆液流型,采用考虑浆液粘度时变性的广义宾汉流体本构方程,研究了浆液在静水和动水条件下的扩散规律,建立了单平板裂隙条件下的注浆扩散运移方程。
     (3)为查明水泥基速凝类浆液扩散规律与影响因素,开展了准三维单一平板裂隙注浆模型试验研究,揭示了动水条件下水泥基速凝类浆液的“非对称椭圆(AE)扩散规律,建立了浆液扩散迹线的瞬态与稳态方程,获得了试验条件下的压力速度场分布特征。建立了单一平板裂隙浆液扩散的三维数值模型,采用粘度时变本构方程,研究了浆液扩散形态、压力场和速度场分布、地下水流量的瞬态规律。通过理论分析、模型试验与数值模拟研究结果的相互验证及对比,系统分析了地下水压力与流速、注浆压力与流量等关键参数对浆液扩散迹线形态、压力场速度场分布特征及变化规律的影响。
     (4)系统研究了动水注浆封堵过程中的静压水头、流速水头和水头损失的转换规律,揭示了特定水文地质条件下,浆液扩散开度同地下水流速的关系,分析了地下水流速极大值的存在性与注浆完全封堵的可行性。依据水泥基速凝浆液单一平板裂隙的扩散规律研究成果,提出了动水条件下的注浆封堵判据;
     (5)研究了动水治理工程中的注浆材料选择依据,进行了新型动水材料的现场应用试验,证实了其在动水封堵工程中的先进性,提出了适用于动水注浆设计的水文示踪试验及其数据分析方法。研究成果在张马屯铁矿和重庆中梁山隧道动水治理工程中进行了应用,取得了良好的效果,具有广阔的工程应用前景。
With the improvement of the transportation network in the western of China, the development of hydropower resources and deep exploitation of mineral resources, a large number of traffic tunnels, hydraulic tunnel and mining well projects are under building. In underground constructions under complex hydro-geological conditions, water gushing, collapse and other geological disasters are often encountered. Casualties, property lost and construction delay caused by water gushing are very severe comparing with that by other geological disasters. Therefore, the theory and technology of water gushing disaster governance through grouting method become the key scientific issues witch must be solved peremptorily. In this paper, base on the practice and solution of grouting block diffusion theory and technical problems, a kind of polymer modified cement grout material suitable for grouting in hydrodynamic conditions was developed, a single plane fracture model was established for grouting in in hydrodynamic conditions. by theoretical analysis, model experiment and numerical simulation methods, diffusion and movement laws of the new type material in hydrostatic and hydrodynamic conditions was researched, the criterion of water gushing plugging by grouting was established. Through the comparison with other traditional grouting material, such as c-s grout, influencing factors and mechanisms of grout diffusion for different grouts were analyzed systematically, there engineering application was researched too, a series of research results were obtained on this basis.
     (1)Based on the special needs for grouting in hydrodynamic conditions and polymer modification mechanism, the main agent and additives of the new grouting material were determined, the material composition and ratio were optimized using orthogonal test. Through a series of mechanical test were carried out to obtain performance indicators of the new material, the methods of measuring pumpability and dispersion resistance were proposed. By instrumental analytical methods, microscopic characteristics of the composite system were studied, the role of the polymer in the composite system was revealed. Based on the project, the technical characteristics and operation process of the new grouting material for water gushing governance were researched. It was confirmed that the good dynamic the new material was suitable for grouting in hydrodynamic conditions.
     (2)A single plane fracture model for grout diffusion was established. Through measurement of time-dependent behavior of viscosity with cement grouts, viscosity-time function was obtained. The flow pattern of grouts was analyzed systematically. By taking the time-dependent behavior of viscosity into generalized Bingham fluid constitutive equation, the grout diffusion law in hydrostatic and hydrodynamic conditions was researched. The grouting diffusion function for a single plane fracture was established.
     (3)To ascertain grout diffusion law and its influencing factors, a quasi-three-dimensional single plane fissure grouting model tests were carried out, revealing that cement-based quick-setting grout diffusion obeys "asymmetric elliptic (AE)" law. Transient and steady-state equation of grout diffusion traces was established. The pressure and velocity fields distribution was obtained. The three-dimensional numerical model for a single plane fissure grouting was established. By using time-dependent viscosity constitutive equation, the transient law of grout diffusion behavior, pressure field and velocity field was researched. By mutual verificationd and comparison of theoretical analysis, model tests and numerical simulation results, it was researched that how key parameters, such as underground water pressure, velocity, grouting pressure and quantity of flow, influence distribution of diffusion traces, pressure field and velocity field and its variation law.
     (4)The conversion law of hydrostatic head, velocity head and head loss in plugging gushing water by grouting, was researched systematically, revealing the relationship between diffusion opening and velocity of underground water. Groundwater velocity maxima existence and grouting the feasibility of complete occlusion was analyzed. Based on the research results of grout diffusion law in a single plane fissure, the criterion of water gushing plugging by grouting was established.
     (5)The principle of grouts selection in water gushing governance engineering was researched, the application test of the new material in situ was carried out too, confirmed that the material has its obvious advantages in water gushing governance projects, hydrological tracer test and its data analysis method witch was very useful in grouting design was proposed. The research results were applied to water gushing governance grouting in Zhangmatun iron mine and Zhongliangshan Chongqing tunnel gushing water governance, good effect was achieved. They have a broad application prospect of engineering.
引文
[1]LI Shu-cai, LI Guo-ying. Effect of heterogeneity on mechanical and acoustic emission characteristics of rock specimen[J]. Journal of Central South University of Technology,2010,17: 1119-1124.
    [2]黄德发,王宗敏,杨彬.地层注浆堵水与加固施工技术[M].徐州:中国矿业大学出版社,2003.2-5.
    [3]徐则民,黄润秋.深埋特长隧道及其施工地质灾害[M].成都:西南交通大学出版社,2000.1-8.
    [4]Cook N.G.W.The failure of rock [J]. Int. J. Rock Mech. Min. Sci.,1965,21(2):389-403.
    [5]Fairhurst, C.& Cook N.G.W.The phenomenon of rock splitting parallel to the direction of maximum compression in the neighborhood of a surface crack [C]. Proc. First Congress
    [6]E.G. Bombolakis.Photoelastic investigation of brittle crack growth within a field of uniaxial compression[J].Tectonophysics,1964,1(4):343-351.
    [7]E. G. Bombolakis. Photoelastic study of initial stages of brittle fracture in compression[J] Tectonophysics,1968,6(6):461-473.
    [8]N.C. Gay. Fracture growth around openings in thick-walled cylinders of rock subjected to hydrostatic compression [J].International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts.1973,10(3):209-218.
    [9]N.C. Gay. Fracture growth around openings in large blocks of rock subjected to uniaxial and biaxial compression [J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1976,13(8):231-243.
    [10]Hudson J A, Priest S D. Discontinuities and rock mass geometry [J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstra.,1979,16(2):339-362.
    [11]Priest S D, Hudson J A, Discontinuity spacings in Rock [J]. Int. J. Rock Mech. Min. Sci.& Geomech.Abstra.,1976,13(5):135-148.
    [12]Reuben H.Karol.Chemical Grouts and Their Properties [J]. Grouting in Geotechnical Engineering, ASCE,1982,359-377.
    [13]Reuben H. Karol. Chemical Grouting and Soil Stabilization [M].3 rd ed. New York. NY:Marcel Dekker, Inc.,2003.
    [14]Roy H. Borden, Raymond J.Krizek, Wallace H. Baker.Creep Behavior of Silicate-Grouted Sand[J]. Grouting in Geotechnical Engineering Proceedings of the Conference, ASCE, 1982:450-469.
    [15]Baker, Wallace Hayward. Planning and Performing Structural Chemical Grouting [J]. Grouting in Geotechnical Engineering, Proceedings of the Conference, ASCE,1982:515-539.
    [16]R.H. Karol Seepage Control with Chemical Grout [J]. Grouting in Geotechnical Engheering, ASCE,1982:564-575.
    [17]Almer E. C. van der Stoel. Pile Foundation Improvement by Permeation Grouting [J] ASCE GSP 2003,120:728-739.
    [18]Georg Breitsprecher, Paul Stefan Toth. Underpinning of a Pier by Microfine Cement Grouting and Compensation Grouting[J]. ASCE GSP No.120:740-751.
    [19]M Chuaqui, D.A, Bruce. Mix Design and Quality Control Procedures for High Mobility Cement Based Grouts[J]. ASCE GSP,2003,120:1153-1168.
    [20]E.Nonveiller, Grouting Theory and Practice, New York, USA, Elsevier Science Publishers B.V., 1989,1-7.
    [21]Nonveiller E..灌浆的理论与实践[M].顾柏林译,沈阳:东北工学院出版社,1991.
    [22]Gallagher, Patricia M & Koch, Alyssa J.Model Testing of Passive Site Stabilization:A New Grouting Technique[J], ASCE GSP,2003,120:1478-1489.
    [23]TL. Dreese, DB. Wilson, DM. Heenan, ect. State of the Art in Computer Monitoring and Analysis of Grouting[J]. ASCE GSP,2004,120; 1440-1453.
    [24]Shuttle, DA, Glynn, E. Grout Curtain Effectiveness in Fractured Rock by the Discrete Feature Network Approach[J] ASCE GSP,2003,120; 1405-1416.
    [25]Wehling, Timothy M, Rennie, David C. California Aqueduct Foundation Repair Using Multiple Grouting Techniques[J]. ASCE GSP 2003,120:893-904.
    [26]D.Gouvenot, State of the art in European grouting [J]. Proceedings of the ICE-Ground Improvement,2010,2(2):51-67.
    [27]Jouko Lehtonen, Stefan Aronsson. Grouting of Micropiles in Scandinavian[J]. ASCE GSP,2003, 120; 780-790.
    [28]Weaver, K D, A Retrospective on the History of Dam Foundation Grouting in the U.S[J]. ASCE GSP,2003,120; 857-868.
    [29]熊厚金.中国化学灌浆的过去现在与未来[C].广州:91全国灌浆技术学术会议论文集,1991:10-18.
    [30]何修仁.注浆加固与堵水[M],沈阳:东北工学院出版社,1990.
    [31]KeTC. Simulated testing of two dimensional heterogeneous and discontinuous rock masses using discontinuous deformation analysis [D]. Berkeley:Ph. D. Thesis University of California,1993.
    [32]Gebara J M. The Finite Block Method:Its basis and Its Modification to Allow the Fracturing of Blocks under High ImPact Loads [Ph. D. Thesis]. Lafayette:Purdue University,1994
    [33]Pearce C J, Thavalingam A, Liao Z, et al. Computational aspects of the discontinuous deformation analysis framework for modelling concrete fracture [J]. Engineering Fracture Mechanics,2000, 65:283-298
    [34]Liu H Y, Kou S Q, Lindqvist P A. Numerical simulation of the fracture process in cutting heterogeneous brittle material[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002,26(13):1253-1278.
    [35]Liu H Y, Roquete M, Kou S Q. et al. Characterization of rock heterogeneity and numerical verification[J]. Engineering Geology,2004,72(1/2):89-119.
    [36]战玉宝,宋晓辉,陈明辉.渗透注浆简介及其发展-岩士注浆理论研究进展[J].路基工程,2010(2):20-22.
    [37]Groppo Sembendli. G Sembenelli. Deep jet-grouted Cut-offs in Riverine Alluvia for Ertan CofferDams. Journal of Geotechnical and Geoenvironmental Engineering.1999,125(2):142-153.
    [38]张春文.高压喷射注浆法处理岭澳核电站DG GB廊道工后沉降的应用[J].电力建设,2002,23(6):16-17.
    [39]Cundall P.A. Distinct Element Models of Rock and Soil Structure,in Analytical and Computational Methods in Engineering[J]. Rock Mechanics,1987, Ch.4, pp.129-163.
    [40]Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979,29(1):47-65.
    [41]Lorig L J, Brady B H G. Hybrid distinct element-boundary element analysis of jointed rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1982, 23(4):303-312.
    [42]Lemos J V. A distinct element model for dynamic analysis of jointed rock with application to dam foundation an fault motion[D]. Minneapolis:Ph. D. thesis, University of Minnesota,1987.
    [43]黄宏伟,杨慧芳,陈杰生.煤气柜地基的劈裂注浆—注水预压处理和分析[J].工业建筑,1996(8),7-11.
    [44]邹金锋.劈裂注浆机理分析及应用研究长沙[D].长沙:中南大学博士学位论文,2004.
    [45]冯旭海.压密注浆作用机理与顶升效应关系的研究[D].北京:煤炭科学研究总院,2003.
    [46]契尔金基..聚合物水泥混凝土[M].张留城.译.,北京:地质出版社,1987.14-36.
    [47]Zhu W C, Tang C A. Numerical simulation of Brazilian disk rock failure under static and dynamic loading. International Journal of Rock Mechanics and Mining Sciences,2006,43 (2):236-252
    [48]盛苹湘,杨殿文.丙烯酸盐注浆材料的研究[C].广州:91全国灌浆技术学术讨论会论文集[C],1991:195-201.
    [49]王星华.粘土固化浆液在广州地铁杨体区间含水沙层注浆堵水固沙开挖应用研究[J].成都:西南交通大学科研研究报告,1997:15-18.
    [50]姚治邦.建筑材料实用配方手册[M].南京:河海大学出版社,1991.10-25.
    [51]湖南大学,同济大学,天津大学,东南大学合编.土木工程材料[M].北京:中国建筑工业出版社,2005:25-38.
    [52]杜嘉鸿.国外化学注浆教程[M].北京:水利电力出版社,1987.10-35.
    [53]李谷云.聚合物水泥防水材料标准的制订[J].中国建筑防水,2001,4:6-9
    [54]李应权,徐永模.聚合物水泥类防水材料性能改进的研究[J].中国建筑防水,2002,3:19-22
    [55]李春江,杨庆生.水泥水化过程的细观力学模型与性能演化[J].复合材料学报,2006,23(1):117-123.
    [56]龙军.聚合物与水泥水化物间的相互作用[J].混凝土,1995(3):35-37.
    [57]胡曙光.聚合物水泥基复合材料其界面增强的机理研究[D].武汉:武汉工业大学,1992.
    [58]Shi G H. Discontinuous Deformation Analysis:A New Numerical Model for the Statics and Dynamics of Block System [D]. Berkeley:Ph. D. Thesis, Department of Civil Engineering, University of California,1988
    [59]Lin C T. Extension to the discontinuous deformation analysis for jointed rock masses and other blocky systems [D]. Boulder:Ph. D. Thesis, University of Colorado Boulder,1995.
    [60]李长明.宾汉流体粗糙裂隙注浆理论研究及应用[D].沈阳:沈阳建筑大学硕士论文,2008.
    [61]G.Lombardi水泥灌浆浆液是稠好还是稀好?[C],现代灌浆技术译文集,北京:水利电力出版社,1991:76-81.
    [62]O.IO.卢什尼科娃,根据钻孔流量仪测定资料确定岩石的裂隙性质[J].国外煤田地质,贺江秋译,1987(2)
    [63]W.Wittke采用膏状稠水泥浆灌浆新技术[C],现代灌浆技术译文集,北京:水利电力出版社,1991:48-58.
    [64]Baker W H以压密灌浆加固已建土石坝坝基[C],现代灌浆技术译文集,北京:水利电力出版社,1991,117-126.
    [65]刘嘉材.裂缝灌浆扩散半径研究[C].中国水利水电科学院科学研究论文集(第8期)[C],北京:水利出版社,1982:186-195.
    [66]张良辉.岩土注浆渗流机理及渗流力学[D].北京:北方交通大学博十论文,1996.
    [67]石达民,吴理云.关于注浆参数研究的一点探索[J].矿山技术,1986,(2):14—16.
    [68]杨晓东,刘嘉材.水泥浆材灌入能力研究[C].中国水利水电科学院科学研究论文集(第27集).水利电力出版社,1987,184-191.
    [69]郑长成.岩体裂隙内稳定水泥浆液扩散范围的理论分析[J].水利与建筑工程学报,2006,4(2),1-5.
    [70]阮文军.注浆扩散与浆液若干基本性能研究[J].岩土工程学报,2005,27(1),69-73.
    [71]阮文军.浆液基本性能与岩体裂隙注浆扩散研究[D].长春:吉林大学博士论文,2003.
    [72]孙锋,陈铁林,张顶立,等.基于宾汉体浆液的海底隧道劈裂注浆机理研究[J].北京交通大学学报,2009,33(4):1-6.
    [73]Graf, Edward D. Compaction Grouting Technique and Observations, Journal of the Soil Mechanics and Foundations Division, ASCE,1969:1151-1158.
    [74]Brown, Douglas Rand Warner, James, Compaction Grouting, Journal of the Soil Mechanics and Foundations Division, ASCE,1973:589.
    [75]Baker,W.H, E. J. Cording, and H.H Macpherson, Compaction Grouting to Control Ground Movements During Tunneling, Underground Space,1982,7(3):205-213.
    [76]李向红.CCG注浆技术的理论研究与应用研究[博士后论文].上海:同济大学,2002.
    [77]徐志鹏.高压裂隙注浆试验台研制及塑性早强浆材注浆试验研究[D].北京:煤炭科学研究总 院,2009.
    [78]张改玲,湛铠瑜,隋旺华.水流速度对单裂隙化学注浆浆液扩散影响的试验研究[J].煤炭学报,2011,36(3):403-406.
    [79]经来旺,刘飞,张天勇.注浆法治理井壁破裂的机理研究[J].中国矿业,2005,]4(9):53-56,
    [80]李华茂,梁幸福,黄小光.椭圆形裂隙渗透注浆模拟试验研究[J].人民黄河,2010,32(4):128-129.
    [81]阮文军.基于浆液粘度时变性的岩体裂隙注浆扩散模型[J].岩石力学与工程学报,2005,24(15);2710-2714.
    [82]杨米加.随机裂隙岩体注浆渗流机理及其加固后稳定性分析[D].北京:中国矿业大学博士学位论文,1999.
    [83]杨米加.注浆理论的研究现状及发展方向[J].岩石学与工程学报,2001(6):839-841.
    [84]杨坪,陈安.均匀设计在室内大型注浆试验研究中的应用[J].探矿工程,2006(3):9-11
    [85]杨坪.砂卵(砾)石层模拟注浆试验及渗透注浆机理研究[D].长沙:中南大学博十论文,2005.
    [86]杨秀竹.静动力作用下浆液扩散理论与试验研究[D].长沙:中南大学博土论文,2005.
    [87]张霄.地下工程动水注浆过程中浆液扩散与封堵机理研究及应用[D].济南:山东大学博士论文,2010.
    [88]郝哲,王介强,何修人.岩体裂隙注浆的计算机模拟研究[J].岩土工程学报,1999,21(6):727-730.
    [89]杨米加,贺永年,陈明雄.裂隙岩体网络注浆渗流规律[J].水利学报,2001(7):41-46.
    [90]陈剑平.岩体随机不连续面三维网络数值模拟技术[J].岩土工程学报,2001,23(4):397-402.
    [91]张发明,汪小刚,贾志欣..3D裂隙网络随机模拟及其工程应用研究[J].现代地质,2002,16(1):100-103.
    [92]于青春,大西有三.岩体三维不连续裂隙网络及其逆建模方法[J].地球科学—中国地质大学学报,2003,28(5):522-526.
    [93]KULATILAKE P H S W, et al. Joint network modeling with a validation exercise in Stripa Mine Sweden[J]. Int J Rock Mech Sci & Geomech Abstr,1993(1):1-23.
    [94]罗平平,朱岳明,赵咏梅.岩体灌浆的数值模拟[J].岩土工程学报,2005,27(8):918-921.
    [95]李宁.灌浆的数值仿真分析模型探讨[J].岩石力学与工程学报,2002,21(3):326-330.
    [96]吴顺川.袖阀管注浆技术改性土体研究及效果评价[J].岩土力学,2007,28(7):1353-1358.
    [97]郑鹏武.齐岳山隧道注浆必要性的数值分析与论证[J].铁道建筑,2006,1,36-38.
    [98]冯志强,康红普,杨景贺.裂隙岩体注浆技术探讨[J].煤炭科学技术,2005,33(4):63-56.
    [99]阮文军,王文臣,胡安兵.新型水泥复合浆液的研制及其应用[J].岩土工程学报,2001,23(2):212-216.
    [100]葛家良.化学灌浆技术的发站与展望[J].岩石力学与工程学报,2006,25(增2):3 384-3 392.
    [101]Nolen-Hoeksema R C. Gordon R B. Optical detection of crack patterns in the opening-mode fracture of marble [J]. Int. J. Rock mech. Min. Sci. Geomech. Abdtr.,1987,24(4):135-144.
    [102]Wong T F. Micromechanics of faulting in Westerly granite [J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr.,1982,19(2):49-64.
    [103]Wong T F, Wong R H C, et al. Micromechanics and rock failure process analysis [J]. Key Engineering Materials,2004,261-263(1):39-44.
    [104]陈义斌,高鸣安,陈明祥,等.江娅工程孔口封闭帷幕灌浆高压下灌桨材料性能试验研究[J].岩石力学与工程学报,2001,20(增):1 809-1 813.
    [105]孙恒虎,宋存义.高水速凝材料及其应用[M].徐州:中国矿业大学出版社,1994:17-58.
    [106]冯志强.破碎煤岩体化学注浆加固机制分析及应用[J].煤炭科学技术,2008,36(10):32-35.
    [107]Hudson J A, Priest S D. Discontinuities and rock mass geometry [J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstra.,1979,16(2):339-362.
    [108]Priest S D, Hudson J A, Discontinuity spacings in Rock [J]. Int. J. Rock Mech. Min. Sci.& Geomech.Abstra.,1976,13(5):135-148.
    [109]Nemat-Nasser S, Horii H. Compression-induced nonlinear crack extension with application to splitting, exfoliation and rockburst [J]. J. Geophys. Res.,1982,87(B8):6805-6821.
    [110]Nemat-Nasser S, Obata M M. A microcrack model of dilatancy in brittle material [J]. Journal of applied mechanics,1988,55(2):24-35.
    [111]郑玉辉.裂隙岩体注浆浆液与注浆控制方法的研究[D].长春:吉林大学博十学位论文,2005.
    [112]孙斌堂,凌贤长,凌晨,等.渗透注浆浆液扩散与注浆压力分布数值模拟[J].水利学报.2007(11):1402-1407.
    [113]尹德操.均匀和分层粘性流体中直立圆柱体的绕流特性研究[硕士学位论文][D].上海:上海交通大学,2008
    [114]李兆敏,蔡国琰.非牛顿流体力学[M].东营:石油大学出版社,1998,32-45.
    [115]杨坪.砂卵(砾)石层模拟注浆试验及渗透注浆机理研究[D],长沙:中南大学博士论文,2005.
    [116]陈文芳.非牛顿流体力学[M].北京:科学出版社,1984,111-1]3.
    [117]李鑫钢,姜斌,余国琮.斜板间液-液两相的分离(1)*—液-液两相分层流动和液滴的运动[J].天津大学学报.1997,4:2-10.
    [118]伯德R B,斯图瓦特W E,莱特富特E N.传递现象[M].北京:化学工业出版社,1990,59.
    [119]李术才,张霄,张庆松,等.地下工程涌突水注浆止水浆液扩散机制和封堵方法研究[J].岩石力学与工程学报.2011(12):2377-2396
    [120]孙锋.海底隧道风化槽复合注浆堵水关键技术研究[D].北京:北京交通大学博十学位论文,2010.
    [121]杨米加,陈明雄,贺永年.裂隙岩体注浆模拟实验研究[J].实验力学.2001(1):105-112.
    [122]Horii H, Nemat-Nasser S. Compression-Induced Micro-crack Growth in Brittle Solid:Axial splitting and Shear Failure [J]. J. Geophys. Res.1985,90 (B4):3015-3125.
    [123]Horii H, Nemat-Nasser S. Overall moduli of solids with microcracks:Load-induced anaisotropy [J].J.Mechs. Solids.1983,31 (2),155-171.
    [124]Horii H, Nemat-Nasser S. Brittle failure in Compression:splitting and brittle-ductile transition [J]. Philosophical Transactions of the Royal Society of London, Series A,1986,319 (3):337-374.
    [125]Ashby M F, Hallam S D. The failure of brittle solids containing small cracks under compressive stress states [J]. Acta Metallurgica, 1986,34(1):497-510.
    [126]Sammis C G, Ashby M F. The failure of brittle porous solids under compressive stress states [J]. Acta metall,1986,34(3):511-526.
    [127]宋彦波,高全臣.有机高水材料注浆堵水机理研究[J].采矿与安全工程学报.2006(3):320-323.
    [128]何泳生.中化—798浆液与水的关系[J].化学通讯.1987:25-28.
    [129]王一新,李华茂.注浆模拟试验的研究现状[J].河南科技.2008(9): 74-75.
    [130]车得福,李会雄.多相流及其应用[M].西安:西安交通大学出版社555-565.
    [131]Kachanov M L.A microcrack model of rock in elasticity part Ⅰ:friction sliding on microcracks [J]. Mechanics of materials,1982a,23 (1):19-27.
    [132]Kachanov M L. A microcrack model of rock in elasticity part Ⅱ:propagation on microcracks [J]. Mechanics of materials,1982b,23 (1):29-41.
    [133]Kachanov L M. Introduction to Continuum Damage Mechanics [M]. Dordrecht:Martinus Nijh of publishers,1986:1-234.
    [134]Reyes O. Experimental study and analytic modeling of compressive fracture in brittle materials [D]. Cambridge:Mass. Inst. Of Technol.,1991:20-108.
    [135]Reyes O, Einstein H H. Fracture mechanism of fractured rock-a fracture coalescence model [A]. In: Einstein. Proc.7th Int. Conf. On Rock Mech. [C], New York:Elservier,1991:333-340.
    [136]胡敏良.流体力学[M],武汉:武汉工业大学出版社,2000.96-99.
    [137]王梦恕.对岩溶地区隧道施工水文地质超前预报的意见[J].铁道勘查,2004,(1):7-9,18.
    [138]李术才,李树忱,张庆松,等.岩溶裂隙水与不良地质情况超前预报研究[J].岩石力学与工程学报,2007,26(2):217-225.
    [139]刘招伟,何满潮,王树仁.圆梁山隧道岩溶突水机制及防治对策研究[J].岩土力学,2006,27(2):228—232.
    [140]王锦国,周志芳.裂隙介质溶质运移试验研究[J].岩石力学与工程学报,2005,24(5):829-833.
    [141]陈建生,杨松堂,刘建刚等.环境同位素和水化学在堤坝渗漏研究中的应用[J].岩石力学与工程学报,2004,23(12):209]-2095.
    [142]Ayenew T. Environmental isotope-based integrated hydrogeological study of some Ethiopian rift lakes[J]. Journal of Radioanalytical and Nuclear Chemistry,2003,257(1):11-16.
    [143]牛建立,段琦.水文地球化学方法在研究矿区水文地质条件中的应用[J].煤田地质与勘探,2004.32(2),39-42.
    [144]刘光尧.同位素示踪测井[M].南京:江苏科学技术出版社,1999.
    [145]Bill X Hu, Jiang Xiaowei, Wan Li. Integration of tracer test data to refine geostatistical hydraulic conductivity fields using sequential self-calibration method[J].Journal of China University of Geosciences,2007,18(3):242-256.
    [146]Worthington R H Stephen, Smart Christopher C. Empirical determination of tracer mass for sink to spring tests in karst[C].Beck F Barry. Sinkholes and the Engineering and Environmental Impacts on Karst, Geotechnical Special Publication No.122. Reston, VA:American Society of Civil Engineers,2003:287-295.
    [147]王康,张仁铎,周祖昊,等.多孔介质中非均匀流动模式示踪试验与弥散限制聚合分形模拟的应用[J].水利学报,2006,38(6):690-693.
    [148]鲁程鹏,束龙仓,苑利波,等.基于示踪试验求解岩溶含水层水文地质参数[J].吉林大学学报(地球科学版),2007,7.39(4):717-721.LU
    [149]Shen B, Barton N. The disturbed zone around tunnels in jointed rock masses [J]. Int. J. Rock Mech. Min. Sci.,1997,34(1):117-125.
    [150]Shen B, Stephansson O, Einstein H H et al. Coalescence of fractures under shear stress experiments [J]. Journal of Geophysical Research,1995,100(6):5975-5990.
    [151]Shen B, Stephansson O. Numerical analysis of model Ⅰ and model Ⅱ propagation of fractures [J]. Int. J. Rock Mech. Min.Sci.,1993,25(3):35-69.
    [152]Shen B. The mechanism of fracture coalescence in compression experimental study and numerical simulation [J]. Engineering Fracture Mechanics,1995,51(1):73-85.
    [153]Bobet A, Einstein H H. Fracture coalescence in rock-type material under uniaxial and biaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(7): 863-888.
    [154]李江腾,古德生,曹平,等.岩石断裂韧度与抗压强度的相关规律[J].中南大学学报(自然科学版),2009,40(6):1695-1699.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700