用户名: 密码: 验证码:
海域地表水与地下水相互作用下水量与水质运移规律数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水与地表水的交互作用既是水资源研究的核心和热点,也是陆水相互作用中重要的物理过程。国际水文科学协会(IAHS)和国际水文地质学家协会(IAH)分别于1986年和1994年将地表水和地下水相互作用的问题正式提交会议讨论,于是地表水和地下水相互作用的研究便成了水文学及水文地质学方面研究的热点问题,然而,由于各种条件的限制,现有的模拟或者以单独研究地表水为主,或者以单独研究地下水为主,而且在模拟地表水与地下水耦合作用时,常常将地表水刻画成一维或者二维流,实际上,海域地表水体的流动往往是三维的。随着经济的快速增长和计算机速度的不断扩大,对数值模拟结果精度的要求越来越高,因此,本文旨在将地表水与地下水作为一个整体,进一步研究海域地表水与地下水相互作用下水量与数值分布规律的数值模拟问题。
     论文的第一部分在忽略海域地表水流动性的情况下研究地表水与地下水耦合数值模拟。首先,在忽略咸淡水密度差异的条件下,采用有限差分法建立控制方程的差分格式与半解析有限差分格式,讨论有限差分格式对时间网格剖分、空间网格剖分以及初始条件选择的敏感性,同时研究有限差分格式、半解析有限差分格式与解析解的联系与区别;其次,在考虑咸淡水密度差异的情况下,研究密度差异对地下水流场的影响;最后,通过算例对比分析传统有限差分法、半解析有限差分法和解析解,揭示这些模型的应用条件以及范围。结果表明
     (1)半解析数值解是采用解析法消去时间项,然后采用数值法计算空间项。数值实验结果表明,空间步长对半解析数值解的影响不敏感,对于传统的数值解,时间步长不同计算结果差异很大,因此,对于海潮波动的数值模拟,时间的剖分对数值结果的影响很大。
     (2)在潜水含水层中,当海潮波动相对含水层厚度比较小时,模型的线性化给计算结果带来的误差较小,可以忽略不计,反之,当波动比较大时,误差随着也增大。
     (3)求解海潮波动引起地下水流动的问题时,由于海潮的周期性,解析解和半解析数值解都不需要初始条件,然而,采用传统有限差分法求解非稳定流问题,初始条件必不可少,数值模拟结果表明采用平均海平面作为初始条件,效果最佳。
     (4)储水系数对海水入侵引起地下水流场变化比较敏感,储水系数越小,忽略咸淡水密度差异造成的误差越大。对于储水系数较大的潜水含水层,海水与淡水的密度差异只影响临海地区的流场,但是在远离海域的地方,流场几乎不受影响。
     (5)海水的浓度随着时间的推移慢慢向内陆延伸,但是由于水头海域水头的波动很小,因此浓度的传播很慢。
     论文的第二部分对应于本文的第三章,是在考虑地表水流动的情况下,研究海域地表水与地下水耦合数值模拟问题,其中,地表水采用三维的Navier-Stokes方程组来描述。本文在Katerina差分格式的基础上,分析其收敛性条件以及差分方程的特点,针对该差分方程的缺陷,推导了上游加权半隐式半显式差分格式,然后,提出了改进的方法——加权因子预测法,并推导了加权因子的计算公式,最后,通过两个数值算例,验证了改进法的合理性以及有效性,并研究了含水层性质对耦合流场下水质和水量空间分布的影响。结果表明
     (1)现有的半显式半隐式有限差分格式虽然计算量小,然而由于其收敛性条件难以把握,很容易造成部分区域质量不守恒或者波动现象,于是,本文提出了加权因子预测法,数值实验表明该法效果很好。
     (2)当含水层的渗透性较差和储水系数较大时,地表水与地下水的交互作用比较弱,即地表水水位的强烈变化在含水层中的衰减太快,反之,当储水系数比较小时,地表水与地下水的耦合作用强烈,地表水水位变化在含水层中的衰减变慢。
     论文的第三部分对应于本文的第四章,首先建立控制方程的有限差分格式,然后通过数值算例研究污染物在含水层与地表水中的迁移规律,结果表明:与地下水流动速度相比,地表水的流动速度很快,因此,溶质在含水层的传播速度慢,而当运移到地表水体时,传播速度很快。若某地区含水层受到了污染,则尽量将污染物圈定在某个区域内,比如加隔水墙,或者在被污染的含水层附近采用低渗透的介质使污染物的扩散减慢,同时在含水层中注入某些生物化学溶剂,使含水层慢慢净化。
     第四部分是应用实例,采用数值模拟手段研究雷州半岛地表水与地下水耦合作用下水质和水量的空间分布规律。首先通过分析总结现有的勘察资料,弄清楚该地区的水文地质背景,并概化出该地区的水文地质概念模型,然后,针对该模型,建立对应的数学模型与数值模型,最后,采用自制模拟程序,模拟该地区的水量与水质的分布规律。数值模拟结果表明,随着海水水位的波动,含水层的水头也在波动,然而,波动的范围很小,即只在距离海域100m处以内的含水层中的水流受影响,远离海岸的地方几乎不受海水潮汐动态的影响。对于海水入侵情况,在刚开始,海域的咸水入侵含水层,然而,随着时间的推移,咸水的入侵速度变慢,到14小时后,入侵基本结束,即咸淡水界面保持稳定。因此,在雷州半岛,如果没有高强度的开采,是不会导致海水入侵问题。
The studies of the interaction between the surface water and groundwater are the key and hot problems, which is also the important physical process in the interaction of the land and water. International Association of Hydrological Sciences (IAHS) in 1986 and International Association of Hydro geologists (IAH) in 1994 submited this topic into the congress, and then it came to the hot problems of the water resource in hydrology and hydrogeology. However, due to the limitation of the computer and other matters, the modeling of the interaction between the surface water and groundwater, always trended to either surface water modeling or groundwater modeling, and the surface water movement is described by the 1-D flow or 2-D flow. In fact, the sea water movement is 3-D. With the development of the economy and the computer, the accuracy of numerical simulation should be higher and higher. Therefore,3-D groundwater and 3-D surface water were coupled to simulate the spatial distribution of water quality and quantity with time in this paper.
     The first part of this thesis is on numerical simulation of the interaction between the groundwater and surface water as boundary condition of the aquifer, that is the movement of the surface water is ignored in the stress period. Firstly, the traditional finite difference scheme and semi finite difference scheme are established under the condition that the difference of density between the fresh water and salt water is ignored. The influences of the initial condition, time step and spatial step to the results of finite difference method are discussed, and the relations and difference among semi finite difference method, traditional finite difference method and analytical solution were studied. Secondly, the finite difference scheme was established if the density of salt water was considered. By comparing the numerical results from semi finite difference method, traditional finite difference method and analytical solution, the limitations and demerits of these models were obtained by numerical simulations. The results shows
     (1) The semi-analytical numerical solution of the groundwater level, which is numerical for the spatial variables and analytical for the time variable. The results from numerical experiments show that the dimension of spatial step does affect the numerical results very much, by comparing the traditional finite difference method, semi finite difference method and analytical method. In contrary, the time step dimension is an important factor to the accuracy of the numerical simulations.
     (2) If the tidal amplitude is small in relevant to the aquifer's thickness in the unconfined aquifer, the error caused by the linearization for the nonlinear model can be ignored, or the error is large.
     (3) The groundwater flow in coastal aquifer is simulated by the traditional finite difference method, the initial condition is necessary for the unsteady flow. The semi finite difference method and analytical method do not need it, due to the tidal period. By comparing the simulations among traditional finite difference method, semi finite difference method and analytical method, the results show the average sea level is better as the initial head for the unsteady flow.
     (4) The storage coefficient is a very sensitive factor for the groundwater level movement caused by the sea intrusion. If it is small, the error, caused by neglecting the difference between the fresh water and salt water, can not be ignored. However, as for the unconfined aquifer where the storage is small, the error exists in the area not far from sea water, and is small for the area far form sea water.
     (5) The sea water moves to the inland with time. Due to the fluctuant of sea water, it moves fast at the beginning, but slowly later.
     The second part corresponding to the chapter three is about the interaction between the groundwater and surface water whose movement has been considered by the 3-D Navier-Stokes equations. Firstly, the upstream weighted semi implicit finite difference scheme was established, based on the Katerina's numerical method. Secondly, the character of this finite difference scheme was analyzed, and then the improved finite difference method was presented——weighted factor predicting method, and the fomula of the weighted factor was derived. Lastly, the rationality of the improved method was verified by two numerical simulations, at the same time, the influence of the aquifer property to the water quality and quantity distribution spatially was simulated.The results show
     (1) The computation of Katerina's numerical method is small to simulate the surface water and groundwater interaction, but the convergent condition is difficult to be satisfied. If it can not be met, mass in region can not be balanced and the water level is fluctuant, more than the maximum or smaller than the minimum. Therefore, the improved numerical method was presented, and the numerical simulations show it is more reasonable.
     (2) If the permeability of the aquifer is low, and storage is high, the interaction between the surface water and groundwater is strong, in the contrary, it is not strong and the surface water level fluctuant decrease drastically.
     The third part corresponding to the chapter four is about the contaminant transport numerical simulation under the flow field of the groundwater-surface water. Firstly, the finite difference scheme of the solute transport governing equation was established, and then its law in the surface water and groundwater coupling flow field is simulated by the numerical experiments. Results show:the velocity of the surface water flow is very fast, comparing with groundwater flow velocity, so the contaminant moves faster in the surface water than in the groundwater. If some region was polluted, the contaminant should be limited in small zone by some measures, such as impermeable wall, and some biochemistry solvents could be injected into the aquifer, simultaneously, in order to purify the groundwater.
     The fourth part is about the practical application. Using the numerical method, the special distributions of the water quality and water quantity were simulated under the interaction of surface water and groundwater in Lei Zhou Peninsula. Firstly, the hydraulic background in this area should be made clear through arranging and analyzing the data from the field investigation. Secondly, hydrageological conceptual model was generalized, and the corresponding mathematic model and numerical model were built. Lastly, the special distribution of the water quality and water quantity was simulated by computer programs written by myself. The results show hydraulic head in aquifer in 100m from sea changes with the fluctuant of surface water, and it is almost not affected by the sea water tidal movement in the aquifer more than 100m from sea. As for the sea water intrusion, salt water moves into the aquifer in the beginning, but the interface of the salt water and fresh water does not move later. In Leizhou Peninsula, if the exploitation is not strong, the sea water does not move into the aquifer.
引文
[1]余美,芮孝芳.防治土壤盐碱化地表水地下水联合管理模型[J].水资源保护.2007,23(4):6-9;
    [2]Wang W K, LI J T, Wang Z, et al. Evolution of the Relationship between river and groundwater and several scientific problems [J]. Journal of jilin university (Earth science Edition).2007,37(2):231-238;
    [3]Talyer, Francis. Surface water and groundwater:understanding the importance of their connections [J]. Australian Journal of Earth Sciences.2009,56(2009):1-2;
    [4]沈振荣,张瑜芳,杨诗秀,等.水资源科学实验与研究[M].北京:中国科学技术出版社,1992:415-418;
    [5]胡俊锋,王金生,滕彦国.地下水与河水相互作用的研究进展[J].水文地质工程地质.2004,1:108-113;
    [6]胡立堂,王忠静,赵建世,等.地表水和地下水相互作用及集成模型研究[J].水利学报.2007,38(1):54-59;
    [7]邓洁,魏加华,邵景力.河渠与地下水相互转化耦合模型研究进展[J].南水北调与水利科技.2008,6(2):75-79;
    [8]曾献奎,卢文喜,王伟卓,等.地下水与地表水耦合模拟模型研究与展望[J].人民黄河.2009,31(11):47-49;
    [9]徐力刚,张奇,左海军.地表水地下水的交互与耦合模拟研究现状与进展[J].水资源保护.2009,25(5):82-102;
    [10]Theis C V. The effect of a well on the flow of a nearby stream [J]. American Geophysical Union Transactions.1941,22 (3):734-738;
    [11]Hantush M S. Wells near st reams with semi pervious beds [J]. Journal of Geophysical Research.1969,70(12):829-2838;
    [12]郑红梅.天津市平原区地下水数值模拟研究:[学位论文].中国地质大学(北京):中国地质大学(北京),2007,22;
    [13]崔亚莉,邵景力,李慈君.玛纳斯河流域地表水、地下水转化关系研究[J].水文地质工程地质.2001,2:9-13;
    [14]Eric M L, Ayman A A, Graham E F. Review of the integrated groundwater and surface-water model (IGSM) [J]. Ground water.2003,41(2):238-246;
    [15]陈崇希.地下水资源评价的原则和勘探思想的探讨.首届地下水资源评价学术会议论文选编——地下水资源评价理论与方法研究.北京:地质出版社,1982;
    [16]陈崇希,裴顺平,王逊.非完整河的数值模拟方法及建模中的若干问题[J].勘察科学技 术.1999,4:327-339;
    [17]刘国东.傍河地下水与河水脱节机理研究[J].长春科技大学学报.1998,2(1):64-69;
    [18]钱会,郑西来,樊秀峰.傍河取水越河稳定渗流问题的三维数值模拟研究[J].水利学报.1999,3:32-37;
    [19]谭杰,王杰,杨操静.浅谈地下水水流模拟中河流的处理方法[J].地下水.2006,28(4):28-30;
    [20]杜慧丽,周志芳,王锦国.潜水非完整河附近地下水运动数值模拟[J].水电能源科学.2007,5(2):16-19;
    [21]王文科,李俊亭,王钊,等.河流与地下水关系的演化及若干科学问题[J].吉林大学学报(地球科学版).2007,37(2):231-238;
    [22]沈媛媛,蒋云钟,雷晓辉,等.地下水数值模拟中人为边界的处理方法研究[J].水文地质工程地质.2008,6:12-15;
    [23]刘佩贵,束龙仓.傍河水源地地下水水流数值模拟的不确定性[J].吉林大学学报(地球科学版).2008,38(4):639-643;
    [24]杨丽君.河流与地下水关系演化的数值模拟研究:[学位论文].长安大学:长安大学,2008.
    [25]Merrit L M, Konikow L F. Documentation of a computer program to simulate lake-aquifer interaction using the MODFLOW ground-water flow model and the MOC3D solute transport model [R]. U. S. Geological Survey, Water-Resources Investigation Report.2000: 4100-4167;
    [26]束龙仓,CHEN X H.河流-含水层系统中水文要素的变化过程分析[J].河海大学学报(自然科学版).2003,31(3):251-254;
    [27]束龙仓,刘波,刘猛,等.傍河水源地水位降落漏斗的扩展分析[J].河海大学学报(自然科学版).2006,34(1):629;
    [28]薛禹群,吴吉春.地下水数值模拟在我国回顾与展望[J].水文地质工程地质.1997, 24(4):21-24;
    [29]Freeze R A. Role of subsurface flow in generating surface runoff-Base flow contributions to channel flow [J]. Water Resources Research.1972,8 (3):609-623;
    [30]Swain E D, Wexler E J. A coupled surface-water and groundwater flow model (Modbranch) for simulation of stream-aquifer interaction [R]. U. S. Geological Survey, Techniques of Water Resources Investigations (Book 6, Chapter A6).1996;
    [31]Querner E P. Description and application of the combined surface and groundwater flow model MOGROW [J]. Journal of Hydrology.1997,192(1-4):158-188;
    [32]Bradford S F, Katopodes N D, Nonhydrostatic model for surface irrigation. Journal of Irrigation and Drainage Engineering [J].1998,124(4):200-212;
    [33]Restrepo J I, Montoya A M, Obeysekera J. A wetland simulation module for the Modflow groundwater model [J]. Ground Water.1998,36(5):764-770;
    [34]Jobson H E, Harbaugh A W. Modifications to the diffusion analogy surface water flow model (Daflow) for coupling to the modular finite-difference groundwater flow model (Modflow) [R]. U. S. Geological Survey, Open File Report.1999:99-217;
    [35]Vanderkwaak J E. Numerical simulation of flow and chemical transport in integrated surface-subsurface hydrologic systems:[Ph.D. Thesis]. University of Waterloo, Waterloo, Ontario,1999;
    [36]李致家,谢悦波.地下水水流与河网水流的耦合模型[J].水利学报.1998,4:43-47;
    [37]蒋业放,张兴有.河流与含水层水力耦合模型及其应用[J].地理学报.1999,54(6):526-533;
    [38]Merrit L M, Konikow L F. Documentation of a computer program to simulate lake-aquifer interaction using the MODFLOW ground-water flow model and the MOC3D solute transport model [J]. U. S. Geological Survey, Water-Resources Investigation Report.2000:4100-4167;
    [39]Graham N, Refsgaard A. MIKE SHE:A distributed, physically based modeling system for surface water/groundwater interactions [J]. In:Proceedings of Modflow 2001 and other Modeling Odysseys, Golden, Colorado.2001:321-327;
    [40]Morita M, Yen B C. Modeling of conjunctive two-dimensional surface three-dimensional subsurface flows [J]. Journal of Hydraulic Engineering.2002,128(2):184-200;
    [41]Hussein M, Schwartz F W. Modeling of flow and contaminant transport in coupled stream-aquifer systems [J]. Journal of Contaminant Hydrology.2003,65 (1-2):41-64;
    [42]Prudic D E, Konikow L F, Banta E R. A new stream flow-routing (SFR1) package to simulate stream-aquifer interaction with Modflow 2000 [J]. U. S. Geological Survey. Open File Report. 2004:2004-1042;
    [43]Panday S, Huyakorn P S. A fully-coupled physically-based spatially distributed model for evaluating surface/subsurface flow [J]. Advances in Water Resources.2004,27(4):361-382;
    [44]Sparks T. Integrated modeling of 2-D surface water and groundwater flow with contaminant transport [J]. In:Proceedings of XXXI IAHR Congress, Seoul, Korea.2004;
    [45]Gunduz O, Aral M M. River networks and groundwater flow:a simultaneous solution of a coupled system [J]. Journal of Hydrology.2005,301(1-4):216-234;
    [46]张志忠,武强.河水与地下水耦合模型的建立与应用[J].辽宁工程技术大学学报.2004,23(4):449-452;
    [47]武强,孔庆友,张自忠,等.地表河网-地下水水流系统耦合模拟Ⅰ:模型[J].水利学报.2005,36(5):588-597;
    [48]武强,徐军祥,张自忠,等.地表河网-地下水水流系统耦合模拟Ⅱ:应用实例[J].水利学报.2005,36(6):754-758;
    [49]Liang D, Falconer R A, Lin B. Coupling surface and subsurface flows in a depth averaged flood wave model [J]. Journal of Hydrology.2007,337:147-158;
    [50]Hu L T, Wan Z J, Tian W, et al. Coupled surface water-groundwater model and its application in the Arid Shi yang River basin, China [J]. Hydrology Process.200923:2033-2044.
    [51]王中根,刘昌明,黄友波.SWAT模型的原理、结构及应用研究[J].地理科学进展.2003, 22(1):79-85;
    [52]陈军锋,陈秀万.SWAT模型的水量平衡及其在梭磨河流域的应用[J].北京大学学报(自然科学版).2004,40(2):265-270;
    [53]梁犁丽,汪党献,王芳.SWAT模型及其应用进展研究[J].中国水利水电科学研究院学报.2007,5(2):125-131;
    [54]李艳平,李兰,朱灿,等.地表水地下水的交互作用与耦合模拟[J].长江科学院院.2006,23(5):17-20;
    [55]王宏,娄华君,田廷山,等.SWAT/GMS联合模型在华北平原地下水库研究中的应用[J].Global Geology.2005,24(4):368-372;
    [56]谢新民,郭洪宇,唐克旺,等.华北平原区地表水与地下水统一评价的二元耦合模型研究[J].水利学报.2002,12:95-100;
    [57]李丽娇,张奇.一个地表-地下径流耦合模型在西苕溪流域的应用[J].水土保持学报.2008,22(4):56-61;
    [58]Sophocleous M A, Koelliker J K, Govindaraju R S, et al. Integrated numerical modeling for basinwide water management:The case of the Rattlesnake Creek basin in south-central Kansas [J]. Journal of Hydrology.1999,214:179-196;
    [59]束龙仓,鲁程鹏,李伟.考虑参数不确定性的地表水与地下水交换量的计算方法[J].水文地质工程地质,2008,5:68-71;
    [60]卢小慧.应用地表水-地下水耦合模型研究不同尺度的水文响应-以丹麦Skjern流域和中国华北平原为例:[学位论文].中国地质大学:中国地质大学,2009;
    [61]Markstrom S L, Niswonger R G, Regan R S, et al. GSFLOW-coupled ground-water and surface-water FLOW model based on the integration of the precipitation-runoff modeling system (PRMS) and the modular ground-water flow model (MODFLOW-2005). United States Geological Survey, Techniques and Methods (Book 6, Section D, Chapter 1).2008;
    [62]Bailly-Comte V, Jourde H, Pistre S. Conceptualization and classification of groundwater-surface water hydrodynamic interactions in karst watersheds:Case of the karst watershed of the Coulazou River (Southern France). Journal of Hydrology.2009,376: 456-462;
    [63]Cho J, Mostaghimi S, Kang M S. Development and application of a modeling approach for surface water and groundwater interaction. Agricultural Water Management.2010,97: 123-130;
    [64]Jacob C E. Flow of groundwater [M]. In:Rouse H. Engineering Hydraulics. New York:John Wiley & Sons Inc.1950,321-386;
    [65]Bear J. Dynamics of fluids in porous media [M]. New York:Elsevier,1972;
    [66]Nielsen P. Tidal dynamics of the water-table in beaches [J]. Water Resour Res.1990,26(9): 2127-2134;
    [67]Li G, Chen C. Determining the length of confined aquifer roof extending under the sea by the tidal method [J]. Journal of Hydrogeology.1991,123:97-104;
    [68]Jiao J J, and Tang Z H. An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer [J], Water Resources Research.1999,35(3):747-751;
    [69]Tang Z H, and Jiao J J. A two-dimensional analytical solution for groundwater flow in a leaky confined aquifer system near open tidal water [J]. Hydrology Process.1999,15: 573-585;
    [70]Jiao J J, Tang Z H. Reply to comment by R. E. Volker and Q. Zhang on "An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer" by J. J. Jiao and Z. Tang [J], Water Resource Research.2001,37(1):187-188;
    [71]Li H L, Jiao J J. Tide-induced groundwater fluctuation in a coastal leaky confined aquifer system extending under the sea [J]. Water Resource Research.2001,37(5):1165-1171;
    [72]Li H L, Jiao J J. Analytical studies of groundwater-head fluctuation in a coastal confined aquifer overlain by a semi-permeable layer with storage [J]. Advance in Water Resources. 2001,24:565-573;
    [73]Li H, Jiao J J. Analytical solutions of tidal groundwater flow in coastal two-aquifer system [J]. Advanced Water Resource.2002a,25(4):417-426;
    [74]Li H L, Jiao J J, Luk M, et al. Tide-induced groundwater level fluctuation in coastal aquifers bounded by L-shaped coastlines [J]. Water Resource Research.2002b,38:361-368;
    [75]Li H L, Jiao J J. Influence of the tide on the mean watertable in an unconfined, anisotropic, inhomogeneous coastal aquifer [J]. Advances in Water Resources.2003a,26(1):9-16;
    [76]Li H L, Li G Y, Cheng J M, et al. Tide-induced head fluctuations in a confined aquifer with sediment covering its outlet at the sea floor [J]. Water Resources Research.2007a,43:1029;
    [77]Xia Y Q, Li H L, Boufadel, M.C, et al. Tidal wave propagation in a coastal aquifer:Effects of leakages through its submarine outlet-capping and offshore roof [J]. Journal of Hydrology. 2007,337:249-257;
    [78]Li H L, Li L, Lock D, et al. Modeling tidal signals enhanced by a submarine spring in a coastal confined aquifer extending under the sea [J]. Advances in Water Resources.2007b,30: 1046-1052;
    [79]Guo Q N, Li H L, Boufadel M C, et al, Tide-induced groundwater head fluctuation in coastal multi-layered aquifer systems with a submarine outlet-capping [J]. Advanced Water Resource. 2007,1:3-10;
    [80]Li G H, Li H L, Boufadel M C. The enhancing effect of the elastic storage of the seabed aquitard on the tide-induced groundwater head fluctuation in confined submarine aquifer systems [J]. Journal of Hydrology.2008,350(1-2):83-92;
    [81]Ren Y K, Tang Z H, Zhao L C. Tide-induced groundwater head fluctuation in a coastal aquifer system with a submarine outcrop covered by a thin silt layer [J]. Hydrol. Process. 2008,22:605-610;
    [82]Sun P P, Li, H L, Boufadel, M C. An analytical solution and case study of groundwater head response to dual tide in an island leaky confined aquifer [J]. Water Resources Research.2008, 361:339-348;
    [83]Li G H, Li H L, Boufadel M C. The enhancing effect of the elastic storage of the seabed aquitard on the tide-induced groundwater head fluctuation in confined submarine aquifer systems [J]. Journal of Hydrology.2008,350 (1-2):83-92:1016-1037;
    [84]Geng X L, Li H L, Boufadel M C, et al. Tide-induced head fluctuations in a coastal aquifer: effects of the elastic storage and leakage of the submarine outlet-capping [J]. Hydrogeology Journal.2009:10040-10439;
    [85]King J N, Mehta A J, Dean R G. Analytical models for the groundwater tidal prism and associated benthic water flux [J]. Hydrogeology Journal.2010,18:203-215;
    [86]Li H L, Jiao J J, Tang Z H. Semi-numerical simulation of groundwater flow induced by periodic forcing with a case-study at an island aquifer [J]. Journal of Hydrology,2006,327: 438-446;
    [87]Liu S, Li H L, Boufadel M C. Numerical simulation of the effect of the sloping submarine outlet-capping on tidal groundwater head fluctuation in confined coastal aquifers [J]. Journal of Hydrology.2008,361:339-348;
    [88]尹泽生,林文盘,杨小军.海水入侵研究的现状与问题[J].地理研究.1991,10(3):78-87;
    [89]薛禹群,谢春红,吴吉春.海水入侵研究.水文地质工程地质[J].1992,19(6):29-34;
    [90]邱汉学,张维冈.海水入侵问题理论与实践[J].海洋湖沼通报,1993,4:20-27;
    [91]赵全生,王建华.海水入侵数学模型研究综述[J].地下水,1994,16(3):122-126;
    [92]李国敏,陈崇希.海水入侵研究现状与展望.地学前缘[J].1996,3(1-2):161-169;
    [93]聂晶,赵全升,杨天行.海水入侵数学模型研究现状与发展趋势[J].鞍山师范学院学报.2002,4(3):16-18;
    [94]郭占荣,黄奕普.海水入侵问题研究综述[J].水文.2003,23(3):10-16;
    [95]成建梅,黄丹红,胡进武.海水入侵模拟理论与方法研究进展[J].水资源保护.2004,2:3-9;
    [96]郑丹,王大国,韩光.潮汐循环作用下海水入侵模型的现状及展望[J].辽宁工程技术大学学报.2009.28:240-243.
    [97]韩再生.秦皇岛市洋河、戴河滨海平原海水入侵的控制与治理[J].现代地质.1990,4(2):105-116;
    [98]艾康洪,陈崇希.漫尾岛咸淡水界面运移部面二维流水质模型模拟研究[J].勘察抖学技术.1994,6:8-15
    [99]张俊栋,刘文莉.抚宁沿海海水人侵动态模拟与预测[J].河北水利科技.1995,16(4):31-36;
    [100]李国敏,陈崇希,沈照理,等.涠洲岛海水入侵模拟[J].水文地质工程地质.1995,5:1-6;
    [101]薛禹群,吴吉春,谢春红,等.莱州湾沿岸海水入侵与咸水入侵研究[J].科学通报.1997,42(22):2361-2340;
    [102]成建梅,陈崇希,吉孟瑞,等.山东烟台夹河中、下游地区海水入侵三维水质数值模拟研究[J].地学前缘.2001,8(1):179-185;
    [103]梁池生,周训,陈明佑,等.雷州半岛防海水入侵最优地下水开采方案探讨[J].现代地质.2002,16(4):429-435;
    [104]李杨,唐仲华,罗美芳.近岸地下水位波动数值研究[J].地下水.2006,28(6):101-103;
    [105]Katerina S, Anastasios I S, Aikaterini N. Development and verification of a 3-D integrated surface water-groundwater model [J]. Journal of Hydrology.2009,375:410-427;
    [106]McDonald M G, Harbaugh A W. A modular three-dimensional finite-difference groundwater flow model [R]. Techniques of Water Resources Investigations 06-A1, U.S.Geological Survey. 1988;
    [107]吴剑锋,朱学愚.由MODFLOW浅谈地下水水流数值模拟软件的发展趋势[J].工程勘察.2000,2:12-15;
    [108]蒋亚萍,陈余道.MODFLOW-套水文地质学实用计算软件[J].广西地质.12(3),1999:75-78;
    [109]Markstrom S L, Niswonger R G, Regan R S, et al. GSFLOW-Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005) [R]. Techniques of Water Resources Investigations 06-D1, U. S. Geological Survey,2008;
    [110]Cosner O J, Harsh J F. Digital-model simulation of the glacial-outwash aquifer, Otter Creek-Dry Creek basin, Cortland County[R]. New York:U.S. Geological Survey Water-Resources Investigations Report 78-71.1978:34;
    [111]Morgan D S. Geohydrology and numerical model analysis of groundwater flow in the Goose Lake Basin, Oregon and California:U.S. Geological Survey Water-Resources Investigations Report 87-4058 [R].1988:92;
    [112]Danskin W R. Evaluation of the hydrologic system and selected water-management alternatives in the Owens Valley, California:U.S. Geological Survey Water-Supply Paper 2370-H [R].1998:175;
    [113]Lindgren R J, Landon M K. Effects of ground-water withdrawals on the Rock River and associated valley aquifer, eastern Rock County, Minnesota:U.S. Geological Survey Water-Resources Investigations Report 98-4157 [R].1999:103;
    [114]Leavesley G H, Lichty R W, Troutman B M, et al. Precipitation-runoff modeling system—User's manual [R]. U.S. Geological Survey Water-Resources Investigations Report 83-4238.1983:207;
    [115]Markstrom S L, Regan R S, Niswonger R G, et al. GSFLOW—a basin-scale model for coupled simulation of groundwater and surface-water flow—part A [R]. Concept for modeling surface-water flow with the U.S. Geological Survey precipitation-runoff modeling system;
    [116]Swain E D, Howie B, Dixon J. Description and Field Analysis of a Coupled Ground-Water/Surface-Water Flow Model (MODFLOW/BRANCH) with Modifications for Structures and Wetlands in Southern Dade County[R]. Florida Water-Resources Investigations Report 96-4118;
    [117]Walton R, Wexler E J, Chapman R, et al. MODNET:An Integrated Groundwater/Open Channel Flow Model Joint Conference on Water Resource Engineering and Water Resources Planning and Management [R].2000;
    [118]Jobson H E. Users manual for an open channel stream flow model based on the diffusion analogy [R]. U. S. Geology Survey, Water Resources Investigations Report:89-4133;
    [119]Jobson H E, Harbaugh A W. Modifications to the diffusion analogy surface-water flow model (DAFLOW) for coupling to the modular finite-difference groundwater flow model (MODFLOW) [R]. U. S. Geology Survey, Open-file Report, Virginia.1999:99-217;
    [120]Philip W G, Manuel R R, Colleen H G, et al. The Soil and Water Assessment Tool:Historical Development, Applications, and Future Research Directions Working Paper[R].2007;
    [121]Sophocleous M A, Koelliker J K, Govindaraju R S, et al. Integrated numerical modeling for basin wide water management:The case of the Rattlesnake Creek basin in south central Kansas [J]. Journal of Hydrology.1999,214(124):179-196;
    [122]Sophocleous M A, Perkins S P. Methodology and application of combined watershed and groundwater models in Kansas [J]. Journal of Hydrology.2000,236(324):185-201;
    [123]Demetriou C, Punthakey J F. Evaluating sustainable groundwater management options using the MIKE SHE integrated hydrogeological modeling package [J]. Environmental Modeling & Software.1999,14:129-140;
    [124]Singh R, Subramanian K, Refsgaard J C. Hydrological modeling of a small watershed using MIKE SHE for irrigation planning [J]. Agricultural Water Management.1999,41:149-166;
    [125]Dik P E. SIMGRO. User's guide Alterra Report 913.2 Alterra [R], Green World Research, Wageningen.2004;
    [126]Querner E. P. Description and application of the combined surface and groundwater flow model MOGROW [J]. Journal of Hydrology.1997,192:158-188;
    [127]槐文信,赵明登,童汉毅.河道及近海水流的数值模拟[M].武汉:科学出版社,2004:180-183;
    [128]Casulli V, Cheng R T. Semi-implicit finite difference methods for three dimensional shallow water flow [J]. International Journal for Numerical Methods in Fluids.1992,15(6):629-648;
    [129]薛禹群.地下水动力学原理[M].北京:地质出版社,1986:20-28;
    [130]陈崇希,唐仲华.地下水水流动问题数值方法[M].武汉:中国地质大学出版社,1990,82-86;
    [131]陈崇希,林敏.地下水动力学[M].武汉:中国地质大学出版社,1999:20-33;
    [132]孙纳正.地下水水流的数学模型和数值方法[M].北京:地质出版社,1981:42-56;
    [133]任福安.海洋动力学[M].大连:大连海事大学出版社,2001:48-55;
    [134]Merrit L M, Konikow L F. Documentation of a computer program to simulate lake-aquifer interaction using the MODFLOW ground-water flow model and the MOC3D solute transport model [R]. United States Geological Survey, Water-Resources Investigation Report 4100-4167,2000;
    [135]McDonald M G, Harbaugh A W, Orr B R, et al. A method of converting no-flow cells to variable-head cells for the U.S. Geological Survey modular finite-difference ground-water flow model [R]. U.S. Geological Survey Open-File Report 91-536,1992:99;
    [136]Kipp K L. Guide to the revised heat and solute transport simulator:HST3D version2 [R]. U. S. Geological Survey, Water-Resources Investigations Report.1997:97-4157;
    [137]Nanou-Giannarou K, Helmig R. Simulation of 3-D groundwater flow with free surface [R]. Wissenschaftlicher Bericht 4, Technische Universitat Carolo Wilhelmina zu Braunschweig, Institut fur Computer Anwendungen im Bauingenieurwesen, Braunschweig.1998;
    [138]陈崇希,李国敏.地下水溶质运移理论及模型[M].武汉:中国地质大学出版社.1996:10-20;
    [139]王秉忱,杨天行,王宝金,等.地下水污染地下水水质模拟方法[M].北京师范学院出版社,1985:3-9;
    [140]张羽,牛生杰,吴德平,等.雷州半岛气象灾害及防御对策[J].海洋预报.2006,23:22-29;
    [141]余钟波,黄勇.地下水水文学[M].北京:科学出版社.2008:20-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700