用户名: 密码: 验证码:
泉州湾潮间带沉积物中重金属元素的环境地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
闽东南沿海是我国人口密集、经济发展迅速的地区之一,近三十年来的经济改革和工业化发展,直接或间接排入近岸海域的污染物越来越多,由此带来的环境问题日渐突出。重金属因具有毒性大、来源广、非降解性和可通过食物链富集的特性,其污染问题倍受关注。近海沉积物是重金属的主要汇集场所,了解沉积物中重金属的含量、时空分布及其赋存形态,对于探寻近海海域重金属的来源、评价污染现状、预测对整个生态系统的影响具有重要的现实意义,是海洋污染防治和环境保护的重要环节,也是正确划分不同海区功能和保证海洋经济可持续发展的关键所在。
     本文以泉州湾潮间带沉积物为研究对象,分析了10种重金属元素(Fe、V、Cr、Mn、Co、Ni、Cu、Zn、Cd、Pb)的时空分布、来源、赋存形态及其生物可利用性,并采用基于重金属总量和形态分析两个体系的不同评价方法对研究区内重金属污染水平及其潜在生态风险进行了评价。得到的主要结论概括如下:
     泉州湾潮间带表层沉积物中各重金属元素的平均含量顺序:Fe(38900 mg/kg)﹥Mn(1248 mg/kg)﹥Zn(238 mg/kg)﹥Cr(98.6 mg/kg)﹥Cu(82.5 mg/kg)﹥V(81.9 mg/kg)﹥Pb(74.0 mg/kg)﹥Ni(27.0 mg/kg)﹥Co(12.0 mg/kg)﹥Cd(1.17 mg/kg)。其中Pb、Cr、Cu、Zn、Cd、Mn的区域总平均含量高于国内外大部分海湾、河口的平均值和福建省海岸带土壤环境背景值。由于受人类活动的影响程度不同,所研究的大多数重金属元素在晋江河口和泉州湾南岸表层沉积物中含量相对较高,而在泉州湾外湾表层沉积物中含量相对较低。相关分析、主成分分析和聚类分析结果表明,除Fe、Mn外,泉州湾潮间带表层沉积物中大多数重金属元素主要存在于细颗粒中,且与有机质结合紧密,而不易与S2-形成硫化物,也不易与碳酸盐结合;除Fe、Mn外的大多重金属元素具有人为同源性----工业废水、生活污水、固体废物和大气沉降等,而Fe、Mn主要来源于岩石的自然风化和侵蚀,受人类活动的影响相对较小。
     从柱状样中重金属分布情况来看,研究区域重金属总体上在1983~1995年之间污染最严重,从20世纪90年代中期以来,污染程度略呈减轻趋势。
     用改进的BCR逐步提取法(微波消解辅助)分析了泉州湾潮间带表层沉积物中重金属的赋存形态,结果表明,Mn、Cd、Cu、Pb、Co主要以可提取态(前三态之和)为主,而Fe、V、Cr、Zn、Ni主要以残渣态为主,尤其是V、Fe,残渣态占总量80%以上。在可提取态中,Mn、Cd、Zn的弱酸溶态,Cu、Pb、Co的可还原态,Cr、Ni的可氧化态比例相对较高。BCR四步形态之和与微波辅助提取重金属总量之间有着很好的一致性(回收率80%~119%),说明BCR法提取效果好,准确度较高。整个研究区内,表层沉积物中重金属的平均有效态(前三态之和,反映了可迁移性和生物可利用性)含量占总量的百分比顺序如下:Mn (77.69%) >Cu (75.81%) > Pb (71.51%) > Cd (64.11%) > Co (53.97%) > Cr (49.13%)> Ni (48.92%) > Zn (46.55%) > V (18.34%) > Fe (18.07%)。除Cr外,其它重金属的0.5mol/L盐酸可提取量占了BCR可提取量的绝大部分;除V外,其他重金属的0.5mol/L盐酸可提取量与BCR可提取量之间均呈显著正相关,但能否用相对简单的稀盐酸一步提法代替相对复杂的BCR顺序取法来评价沉积物中重金属的生物有效性尚需进一步探讨。
     基于沉积物中重金属总量,用5种评价方法对泉州湾潮间带表层沉积物中重金属污染进行了评价。以海洋沉积物质量标准(GB18668-2002)进行评价,泉州湾潮间带表层沉积物中各重金属平均含量均为二类沉积物质量,不能满足该区域应执行的一类标准。以地累积指数法进行评价,表层沉积物中V、Co、Ni、Fe为无污染水平,Cr、Mn、Zn、Pb为无-中等污染水平,Cu为中等污染水平,而Cd为强污染水平。以潜在生态风险指数法评价,研究区内各元素的平均潜在生态危害指数(Eir )顺序为:Cd > Cu > Pb > Ni > Co > Cr > Zn > Mn > V;沉积物中重金属综合潜在生态风险指数(RI)表明,研究区域总体上处于生态风险极高水平,Cd、Cu为重要污染因子;各分区重金属综合潜在生态风险顺序为:晋江河口>洛阳江河口>泉州湾南岸>泉州湾外湾。以生物效应浓度法评价,Cr、Ni、Cu、Zn、Cd、Pb的区域总平均含量均在其各自的ER-L与ER-M之间,说明泉州湾潮间带表层沉积物中以上元素对生物的负面效应中等。以综合响应因子法评价,从研究区总平均来看,沉积物重金属污染指示元素及其污染贡献大小顺序为:Cd>Cu >Zn>Mn>Cr,大多站位重金属污染严重。
     基于形态分析的次生相与原生相分布比值法对重金属污染程度进行评价,研究区沉积物中重金属元素Cu、Mn、Cd、Pb为重要污染因子;总体上洛阳江河口沉积物的污染程度为中度污染水平,而其它三个分区基本为轻度污染水平。
     以上评价方法各有其优缺点,尚需进一步探讨和完善,在进行沉积物重金属污染评价时应结合多种方法,取长补短,以保证评价结果的合理性和科学性。
Southeastern coast of Fujian province is one of thickly populated and fast economic developing district in China. After nearly three decades of economic reform and industrial development, a tremendous amount of waste was discharged to the coast, which resulted in serious environmental problems. Heavy metals are of considerable environmental concern due to their toxicity,wide sources, non-biodegradable properties and accumulative behaviors. Therefore, it is necessary to investigate the content, time-space distribution and speciation of heavy metals in coastal sediments where heavy metals accumulating. The result would make a great contribution to understand the heavy metal resources, pollution status and the effect to the ecosystem, and would have a great significance in protecting the marine environment and ensuring the sustainable development of marine economy.
     The spatial and temporal distribution, sources, speciation and bio-availability of ten heavy metals (Fe, V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) were analyzed in the intertidal sediments collected from Quanzhou bay, an important estuary in southeast of Fujian province. Several assessment methods, which based on two different assessment systems (total content and sequential extraction), were applied to assess the pollution and potential ecological risk of heavy metals in the surface sediments. The main conclusions were summed up as follows.
     The average content order of heavy metals in the intertidal surface sediments from Quanzhou Bay was as following: Fe(38900 mg/kg)> Mn(1248 mg/kg)> Zn(238 mg/kg)> Cr(98.6 mg/kg)> Cu(82.5 mg/kg)> V(81.9 mg/kg)> Pb(74.0 mg/kg)> Ni(27.0 mg/kg)> Co(12.0 mg/kg)> Cd(1.17 mg/kg). The average contents of Pb、Cr、Cu、Zn、Cd and Mn in the intertidal surface sediments from Quanzhou Bay were higher than those in most of other domestic and overseas bays and estuaries, and were higher than the background values of Fujian coastal soil. Most of the studied heavy metals presented comparatively higher contents in the surface sediments of Jinjiang estuary and southern coast of Quanzhou Bay, whereas lower in the surface sediments of outside Quanzhou Bay because of the different impact of human activities. The results of multi-statistic analysis (including correlation analysis, principal component analysis and hierarch cluster analysis) showed that most of the studied heavy metals (except Fe and Mn) in the intertidal surface sediments of Quanzhou Bay mainly existed in fine grains, and combined tightly with organic matter other than sulfide and carbonate. Fe and Mn mainly came from the natural efflorescence and erosion of rock, and were influenced comparatively slightly by human activities. But most of other studied heavy metals had the same anthropogenic resources--industrial waste water, life sewage, solid waste, atmospheric settlement, and so on.
     The distribution of heavy metals in the core sediments showed that the highest polluted period was 1983~1995 on the whole. Since mid-1990s, the pollution degree of heavy metals presented appreciably light trend.
     The modified BCR-sequential extraction technique, assisted by microwave digestion, was used to determine the speciation (acid-soluble, reducible, oxidizable and residual fraction) of the studied heavy metals in the intertidal surface sediments from Quanzhou Bay. The results showed that Mn, Cd, Cu, Pb and Co mainly appeared in the extractable forms (the sum of the first three fractions), whereas Fe, V, Cr, Zn and Ni mainly appeared in the residual fraction, especially Fe and V presented more than 80% in the residual fraction. In the extractable forms, Mn, Cd and Zn presented comparatively higher percentages in the acid-soluble fraction, Cu, Pb and Co relatively higher in the reducible fraction, Cr and Ni relatively higher in the oxidizable fraction. Comparison of the sum of heavy metal contents in the four steps of BCR-sequential extraction procedure with the total digestion metal contents showed a good agreement for all elements,the recoveries for all metals ranged from 80% to 119%, indicating satisfactory accuracy and validation of the sequential extraction procedure. The mobility and bioavailability, based on the mean values of the relative abundance of the sums of the first three fractions, of the heavy metals in the surface sediments was in the following order: Mn (77.69%) >Cu (75.81%) > Pb (71.51%) > Cd (64.11%) > Co (53.97%) > Cr (49.13%)> Ni (48.92%) > Zn (46.55%) > V (18.34%) > Fe (18.07%). The extractable contents by 0.5 mol/L hydrochloric acid of most heavy metals (except Cr) accounted for the most of the extractable contents by BCR sequential procedure, and the extractable contents of most heavy metals (except V) by the two extracting methods presented significant positive correlation. But whether the comparatively simple one-step extracting method by dilute hydrochloric acid could be used instead of the relatively complex BCR sequential procedure to assess the bioavailability of heavy metals in sediments should be discussed further.
     Based on the total contents of heavy metals, five assessment methods were applied to assess the pollution degree and potential ecological risk of heavy metals in the intertidal surface sediments from Quanzhou Bay. The comparison of heavy metal contents from this study with that of Marine Sediment Quality (GB18668-2002) showed that the overall average contents of all studied heavy metals in the intertidal surface sediments from Quanzhou Bay met the secondary standard criteria but exceeded the recommended primary standard criteria. The results of geoaccumulation indices showed that Cd presented strong pollution, Cu presented moderate pollution, Cr, Mn, Zn, and Pb presented from low to moderate pollution, V, Co, Ni and Fe presented almost no pollution in most of the sites. According to the indices of potential ecological risk, the consequence of the average potential ecological risk index (Eir) for heavy metal was Cd > Cu > Pb > Ni > Co > Cr > Zn > Mn > V. On the whole, the comprehensive potential ecological risk index (RI) of the sediments presented very high degree. The potential ecological risk indices of the sediments for the different sampling area could be ranked in the following order: Jinjiang Estuary > Luoyang Estuary > Southern Coast of Quanzhou Bay > Outside Quanzhou Bay. According to the bio-effect concentration criteria, the average contents of Cr, Ni, Cu, Zn, Cd and Pb in the surface sediments of study area were all between the effects range low (ER-L) and the effects range media (ER-M), which indicating moderate negative bio-effect. According to the integrated response factors, the pollution indicator elements and their pollution contribution order were as follows Cd > Cu > Zn > Mn > Cr, and most sampling sites were polluted seriously by heavy metals.
     The result of the ratios of secondary phase and primary phase (RSP), based on the speciation analysis, showed that Cu, Mn, Cd and Pb were important pollution elements, and the pollution degree of heavy metals in the intertidal surface sediments from Luoyang Estuary was moderate whereas those in the other three study sub-areas were slight. Each of the above assessment methods has both strongpoint and shortcoming, and needs to be discussed and improved further. Therefore, several assessment methods should be combined to assess the pollution degree and potential ecological risk of heavy metals in sediments in order to ensure the rationality and scientificity of the assessment result.
引文
[1]陈静生,邓宝山,陶澍,等.环境地球化学[M].北京:海洋出版社, 1990, 196-201.
    [2]金相灿.沉积物污染化学[M].北京:中国环境科学出版社, 1992, 1-2.
    [3]时钟,陈吉余,虞志英.中国淤泥质潮滩沉积研究的进展[J].地球科学进展, 1996, 11(6): 555-562.
    [4]张经.中国河口地球化学的一些研究进展[J].海洋与湖沼, 1994, 25(4): 438-445.
    [5]刘昌岭,张经.颗粒态重金属通过河流与大气向海洋输送[J].海洋环境科学, 1996, 15(4): 68-76.
    [6]刘海洋,戴志军.中国近海污染现状分析及对策[J].环境保护科学, 2001, 27(4): 6-8.
    [7]陈振楼,许世远,柳林,等.上海滨岸潮滩沉积物重金属元素的空间分布与累积[J].地理学报, 2000, 55(6): 641-651.
    [8]刘俐,熊代群,高新华,等.海河及邻近海域表层沉积物重金属污染及其分布特征[J].海洋环境科学, 2006, 25(2): 40-44.
    [9] Broecker W S, Pen T H. Tracers in the Sea[M]. NY: Lamont-Doherty Geological Observatory Press, 1982,690.
    [10] Martino M, Turner A, Nimmo M, et al. Re-suspension, reactivity and recycling of trace metals in the Mersey Estuary, UK[J]. Mar Chem, 2002, 77: 171-186.
    [11] Basu A, Molinaroli E. Toxic metals in Venice lagoon sediments: Model, observation, and possible removal[J]. Environ Geol, 1994, 24: 203-216.
    [12]洪斌.微生物对砷的地球化学行为的影响[J].地球科学进展, 2006, 21(1): 77-83.
    [13]庄云龙,石秀春,张荣亮.重金属在沉积物系统中吸附行为的研究进展[J].四川环境, 2002, 21(2): 13-16.
    [14] Zee C V D, Raphorst W V, Epping E. Absorbed Mn2+ and Mn redox cycling in Iberian continental margin sediments (northeast Atlantic Ocean)[J]. J Mar Res, 2001, 59: 133-166.
    [15]刘景春,严重玲,胡俊.水体沉积物中酸可挥发性硫化物(AVS)研究进展[J].生态学报, 2004, 24(4): 812-818.
    [16]张向上,张龙军,吴玉科.潮间带沉积物中重金属的AVS归一化研究[J].青岛海洋大学学报(自然科学版), 2003, 33(3): 420-424.
    [17] Ford T E, Mitchel R. Microbial transport of toxic metals. In: Mitchel R ed. Environmental Microbiology[M]. New York: John Wiley-Liss, 1992, 83-101.
    [18]陈宗团,徐立,洪华生.河口沉积物-水界面重金属生物地球化学研究进展[J].地球科学进展, 1997, 12(5): 434-439.
    [19] Kot A, Namiesnik J. The role of speciation in analytical chemistry[J]. Trends Anal Chem, 2000, 19(2): 697-79.
    [20] Lamy I, Boutgeviset S, Bermond A. Soil cadmium mobility as a consequence of sewage sludge disposal[J]. J Environ Qual, 1993, 22: 731-737.
    [21] Campanella L, D'Orazio D, Petronio BM, et al. Proposal for a metal speciation study in sediment[J].Anal Chim Acta, 1995, 309: 387-393.
    [22] Ure A M, Quevauviller P, Muntau H, et al. Speciation of heavy metals in solids and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities[J]. Int J Environ Anal Chem, 1993, 51: 135-151.
    [23] Davidson C M, Thomas R P, Mackey S E, et al. Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments[J]. Anal Chim Acta, 1994, 291(3): 277-286.
    [24] Carmen I, Jose U, Ignacio G. Speciation of heavy metals in sediments from salt marshes on the Southern Atlantic Coast of Spain[J]. Mar Pollut Bull, 1997, 34(2): 123-128.
    [25] Rauret G., Lopez-Sanchez J F, Sahuquillo A. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. J Environ Monitor, 1999, 1: 57-61.
    [26]庄峙厦,洪华生,张洛平,等.香港维多利亚港Cu、Pb、Cd在各地球化学相中的分布特征[J].厦门大学学报(自然科学版), 1994, 33(6): 832-837.
    [27]韩春梅,王林山,巩宗强,等.土壤中重金属形态分析及其环境学意义[J].生态学杂志, 2005, 24(12): 1499-1502.
    [28]陈静生.铜在沉积物各相中分配的实验模拟与数值模拟研究----以鄱阳湖为例.环境科学学报, 1987, 7(2): 140-149.
    [29]尚爱安,党志,梁重山.土壤/沉积物中微量重金属的化学萃取方法研究进展[J].农业环境保护, 2001, 20(4): 266-269.
    [30]冯素萍,鞠莉,沈永,等.沉积物中重金属形态分析方法研究进展[J].化学分析计量, 2006, 15(4): 72-74.
    [31] Ayyamperumal T, Jonathan M P, Srinivasalu S, et al. Assessment of acid leachable trace metals in sediment cores from River Uppanar, Cuddalore, Southeast coast of India[J]. Environ Pollut, 2006, 143: 34-45.
    [32] Jayaprakash M, Jonathan M P, Srinivasalu S, et al. Acid-leachable trace metals in sediments from an industrialized region (Ennore Creek) of Chennai City, SE coast of India: An approach towards regular monitoring[J]. Estuar Coast Shelf Sci, 2007, 22: 1-12.
    [33]李非里,刘丛强,宋照亮.土壤中重金属形态的化学分析综述[J].中国环境监测, 2005, 21(4): 21-27.
    [34] Tessier A, Campbell P G C, Bisson M, et al. Sequential extraction procedure for the speciation of particulate trace metals[J]. Anal Chem, 1979, 51(7): 844-851.
    [35] Ariza J L G, Giraldez I, Sanchez-Roads I, et al. Metal sequential extraction procedure optimized for heavily polluted and iron oxide rich sediments[J]. Anal Chim Acta, 2000, 414(2): 151-164.
    [36] Maher W A. Evaluation of a sequential extraction scheme to study associations of trace elements in estuarine and oceanic sediments[J]. Bull Environ Contain Toxic, 1984, 32: 339-344.
    [37] Forstner U, Ahlf W, Calmano W, et al. Sediment criteria development contributions from environmental geochemistry to water quality management[A]. In: Heling D, Rothe P, Forstner U, et al (eds) Sediments and environmental geochemistry: selected aspects and case histories[C]. Berlin Heidelberg: Springer-Verlag, 1990, 311-338.
    [38] Shuman L M. Fractionation method for soil microelements[J]. J Soil Sci, 1985, 140: 11-22.
    [39] Rauret G, Rubio R, Lopez–Sanchez J F. Optimization of Tessier procedure for metal solid speciation in river sediments[J]. Int J Environ Anal Chem, 1989, 36(2): 69-83.
    [40] Quevauviller Ph, Ure A, Muntau H, et al. Improvement of analytical measurements within the BCR-programme:single and sequential extraction procedures applied to soil and sediment analysis[J]. Int J Environ Anal Chem, 1993, 51(1-4): 129-134.
    [41] Petit M D, Rucandio M I. Sequential extractions for determination of cadmium distribution in coal fly ash, soil and sediment samples[J]. Anal Chim Acta, 1999, 401(1-2): 283-291.
    [42] Rauret G, Lopez–Sanchez J F, Sahuquillo A, et al. Improvement of the BCR three-step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. J Environ Monit, 1999, (1): 57-61.
    [43] Sahuquillo A, Rigol A, Rauret G. Overview of the use of leaching/extraction tests for risk assessment in contaminated soils and sediments[J]. Trends Anal Chem, 2003, 22(3): 152-159.
    [44] Perez-Cid B, Lavilla I, Bendicho C. Speeding up of a three-stage sequential extraction method for metal speciation using focused ultrasound[J]. Anal Chim Acta, 1998, 360: 35-41.
    [45] Pazos-Capeans P, Barciela-Alonso M C, Bermejo-Barrera A. Chromium available fractions in arousa sediments using a modified microwave BCR protocol based on microwave assisted extraction[J]. Talanta, 2005, 65: 678-685.
    [46] Chomchoei R, Shiowatana J, Pongsakul P. Continuous-flow system for reduction of metal readsorption during sequential extraction of soil[J]. Anal Chim Acta, 2002, 472: 147-155.
    [47] Davidson C M, Duncan A L, Ure A M, et al. A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in Industrially contaminated land [J]. Anal Chim Acta, 1998, 363(1): 45-55.
    [48] Pempkowiak J, Sikora A, Biernacka E. Speciation of heavy metal in marine sediments vs. their Bioaccumulation by mussels[J]. Chemosphere, 1999, 39(2): 313-321.
    [49] Ross A S, Filip M G T. Determination of Al, Cu, Fe, Mn, Pb and Zn in certified reference materials using the optimized BCR sequential extraction procedures[J]. Anal Chim Acta, 2002, 454: 249-257.
    [50] Katherine F M, Christine M D. Comparison of original and modified BCR sequential extraction procedures for the fraction of copper, iron, lead, manganese and zinc in soils and sediments[J]. Anal Chim Acta, 2003, 478: 111-118.
    [51] Davidson C M, Hursthouse A S, Tognarelli D M, et al. Should acid ammonium oxalate replace hydroxylammonium chloride in step 2 of the revised BCR sequential extraction procedure protocol for soil and sediment[J]. Anal Chim Acta, 2004, 508(2): 193-199.
    [52] Yuan C, Shi J, He B, et al. Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction[J]. Environ Int, 2004, 30: 769-783.
    [53] Adamo P, Arienzo M, Imperato M, et al. Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port[J]. Chemosphere, 2005, 61: 800-809.
    [54] Jeffery R B, Irene J H, Patricia C. Reproducibility of the BCR sequential extraction procedure in a long-term study of the association of heavy metals with soil components in an upland catchment in Scotland[J]. Sci Total Environ, 2005, 337: 191-205.
    [55] Cuong D T, Obbard J P. Metal speciation in coastal marine sediments from Singapore using a modified BCR-sequential extraction procedure[J]. Appl Geochem, 2006, 21(8): 1335-1346.
    [56]鲍永恩.辽河口海区沉积物与重金属环境背景值的关系[J].海洋环境科学, 1988, 7(2): 20-27.
    [57] Matschullat J, Ottenstein R, Reimann C. Geochemical background-can we calculate it[J]. Environ Geol, 2000, 39(9): 990-1000.
    [58]陈静生.水环境化学[M].北京:高等教育出版社, 1987, 302.
    [59] Taylor S R. Abundance of chemical elements in the continental crust: a new table[J]. Geochim. Cosmochim Acta, 1964, 28: 1273.
    [60] Hanson P J, Evans D W, Colby D R. Assessment of elemental contamination in estuarine and coastal environments based on geochemical and statistical modeling of sediments[J]. Mar Environ Res, 1993, 36: 237-266.
    [61] Cobelo-Garc A, Prego R. Heavy metal sedimentary record in a Galician Riva(NW Spain): background values and recent contamination[J]. Mar Pollut Bull, 2003, 46: 1253-1262.
    [62]陈静生,王飞越,陈江麟.论小于63μm粒级作为水体颗粒物重金属研究介质的合理性及有关粒级转换模型研究[J].环境科学学报, 1994, 14(4): 419-425.
    [63]刘素美,张经.沉积物中重金属的归一化问题----以Al为例[J].东海海洋, 1998, 16(3): 48-55.
    [64] Loring D H, Rantala R T T. Manual for the geochemical analyses of marine sediments and suspended particulate matter[J]. Earth Sci Rev, 1992, 32: 235-283.
    [65] Aloupi M, Angelidis M O. Normalization to lithium for the assessment of metal contamination in coastal sediment cores from the Aegean Sea, Greece[J]. Mar Environ Res, 2001, 52: 1-12.
    [66] Tam N F Y, Yao M W Y. Normalization and heavy metal contamination in mangrove sediments[J]. Sci Total Environ, 1998, 216: 33-39.
    [67]霍文毅,黄风茹,陈静生,等.河流颗粒物重金属污染评价方法比较研究[J].地理科学, 1997, 17(1): 81-86.
    [68]甘居利,贾晓平,林钦,等.用元素相关图法判断近海沉积物重金属污染[J].南海水产研究, 1999, (19): 32-36.
    [69]甘居利,贾晓平,林钦,等.近岸海域底质重金属生态风险评价初步研究[J].水产学报, 2000, 24(6): 533-538.
    [70]冯慕华,龙江平,喻龙,等.辽东湾东部浅水区沉积物中重金属潜在生态评价[J].海洋科学, 2003, 27(3): 52-56 .
    [71]崔毅,辛福言,马绍赛,等.乳山湾沉积物重金属污染及其生态危害评价[J].中国水产科学, 2005, 12(1): 83-89.
    [72]丁喜桂,叶思源,高宗军.近海沉积物重金属污染评价方法[J].海洋地质动态, 2005, 21(8): 31-36.
    [73]张鑫,周涛发,杨西飞,等.河流沉积物重金属污染评价方法比较研究[J].合肥工业大学学报(自然科学版), 2005, 28(11): 1419-1423.
    [74]张秀芝,鲍征宇,唐俊红.富集因子在环境地球化学重金属污染评价中的应用[J].地质科技情报, 2006, 25(1): 65-72.
    [75]于文金,邹欣庆.灌河口潮滩重金属累积特征及污染评价[J].地球化学, 2007, 36(4): 425-433.
    [76]徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术, 2008, 31(2): 112-115.
    [77] Muller G. Index of geo-accumulation in sediments of Rhine River[J]. Geo J, 1969, 2: 108-118.
    [78] Hakanson L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Res, 1980, 14(8): 975-1001.
    [79] Kwon Y T, Lee C W. Application of multiple ecological risk indices for the valuation of heavy metal contaminationin in a coastal dredging area[J]. Sci Total Environ, 1998, 214: 203-210.
    [80] Fukue M, Nakamura T, Kato Y, et al. Degree of pollution for marine sediments[J]. Eng Geol, 1999, 53: 131-137.
    [81] Adami G, Barbieri P, Reisenhofer E. An improved index for monitoring metal pollutants in surface sediments[J]. Toxicol Environ Chem, 2000, 77: 189-197.
    [82] Adami G, Barbieri P, Reisenhofer E. An improved index for monitoring metal pollutants in surface sediments[J]. Toxicol Environ Chem, 2000, 77: 189-197.
    [83] Thompson P A, Kurias J, Mihok S. Derivation and use of sediment quality guidelines for ecological risk assessment of metals and radionuclides released to the environment from uranium mining and milling activities in Canada[J]. Environ Monit Assess, 2005, 110: 71-85.
    [84] Fukue M, Yanai M, Sato Y, et al. Background values for evaluation of heavy metal contamination in sediments[J]. J Hazard Mater, 2006, 136: 111-119.
    [85] Abrahim G M S, Parker R J. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand[J]. Environ Monit Assess, 2008, 136: 227–238.
    [86]李从先,李萍.淤泥质海岸的沉积和砂体[J].海洋与湖沼, 1982, 13(1): 59-65.
    [87]任美愕.中国淤泥质潮滩沉积研究的若干问题[J].热带海洋, 1985, 4: 6-14.
    [88]李淑媛,刘国贤,苗丰民.渤海沉积物中重金属分布及环境背景值[J].中国环境科学, 1994, 14: 370-376.
    [89]黄薇文,刘敏光.黄河口地区底质中重金属的分布特征、污染评价及其与泥沙引动的关系[[J].环境科学, 1985, 6(4): 20-34.
    [90]吴国元.长江河口南支南岸潮滩底质重金属污染与评价[J].海洋环境科学, 1994, 2: 57-61.
    [91]许世远,陶静,陈振楼,等.上海潮滩沉积物重金属的动力学累积特征[J].海洋与湖沼, 1997, 28(5): 509-515.
    [92]李任伟,李禾,李原,等.黄河三角洲沉积物重金属、氮和磷污染研究[J].沉积学报, 2001, 19(4): 622-630.
    [93]刘芳文,颜文,王文质,等.珠江口沉积物重金属污染及其潜在生态危害评价[J].海洋环境科学, 2002, 21(3): 34-38.
    [94]孟翊,刘苍字,程江.长江口沉积物重金属元素地球化学特征及其底质环境评价[J].海洋地质与第四纪地质, 2003, 23(3): 38-43.
    [95]陈江麟,刘文新,刘书臻,等.渤海表层沉积物重金属污染评价[J].海洋科学, 2004, 28(12): 16-21.
    [96]毕春娟.长江口滨岸潮滩重金属环境地球化学研究[D]:[博士学位论文].上海:华东师范大学资源与环境科学学院, 2004.
    [97]秦延文,孟伟,郑丙辉.渤海湾天津段潮间带沉积物柱状样重金属污染特征[J].环境科学, 2006, 27(2): 268-273.
    [98]曹红英,梁涛,王立军.近海潮间带水体及沉积物中重金属的含量及分布特征[J].环境科学, 2006, 27(1): 126-131.
    [99]孟伟,翟圣佳,秦延文,等.渤海湾潮间带(大沽口)柱状沉积物中的重金属来源判别[J].海洋通报, 2006, 25(1): 62-69.
    [100]谢陈笑,丁振华,高卫强,等.漳江口红树林区沉积物中Cu、Zn、Cr的分布及形态特征[J].厦门大学学报(自然科学版), 2006, 45(增刊): 100-104.
    [101] Zhang L P, Ye X, Feng H, et al. Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China[J]. Mar Pollut Bull, 2007, 54(7): 974–982.
    [102]黄小平,李向东,岳维忠.深圳湾沉积物中重金属污染累积过程[J].环境科学, 2003, 24(4): 144-149.
    [103]徐晓达,林振宏,李绍全.胶州湾的重金属污染研究[J].海洋科学, 2005, 29(1): 48-53.
    [104]范文宏,张博,陈静生,等.锦州湾沉积物中重金属污染的潜在生物毒性风险评价[J].环境科学学报, 2006, 26(6): 1001-1005.
    [105]吴建政,余晓玲,鲍鹏,等.芝罘湾近期沉积物中重金属元素记录[J].中国海洋大学学报, 2006, 36(1): 141-144.
    [106]李桂海.厦门海域现代沉积环境及重金属元素的环境地球化学研究[D]:[博士学位论文].青岛:中国海洋大学海洋地质学院,2007.
    [107]乔永民.粤东近岸海域沉积物重金属环境地球化学研究[D]: [博士学位论文].广州:暨南大学水生生物研究所,2004
    [108]袁旭音,刘红樱,许乃政,等.苏北沿海沉积物的化学组成和重金属特征[J].资源调查与环境. 2003, 24(3): 204-210.
    [109]张宇峰,武正华,王宁,等.海南南岸港湾海水和沉积物重金属污染研究[J].南京大学学报(自然科学版), 2002(1): 81-90.
    [110] Doschinsky A, Gerber H, Szemeitat A. Experiments on the influence of technical activities in the deep-sea on heavy metal cycles[J]. Isope Golden Co(USA), 1997, 1: 445-450.
    [111] Chepstow-Lusty A, Ehlers J, Linke G. The Evolution of the Island of Network, Elbe Estuary Sea[J]. J Coast Res, 1999, 15 (4): 1132-114
    [112] Emeis K C, Neumann T, Endler R, et al. Geochemical records of sediments in the Eastern Gotland Basin-products of sediment dynamic in a not-so-stagnant anoxic basin[J]. Appl Geochem, 1998, 13(3): 349-359.
    [113] Renner R M, Glasby G P, Szefer P. Endmember analysis of Heavy metal pollution in surficial sediments from the Gulf of Gdansk and the southern Baltic Sea of Poland[J]. Appl Geochem, 1998, 13(3): 313-318.
    [114] Birth G, Taylor S. Source of heavy metals in sediments of the port Jackson estuary, Australia[J]. Sci Total Environ, 1999, 227: 123-138.
    [115] Huan F, Cochran J K, Lwiza H, et al. Distribution of heavy metal and PCB contaminants in the sediments of urban estuary: the Hudson river[J]. Mar Environ Res, 1998, 45(1): 69-88.
    [116] DelValls T A, Forja J M, Gonzaèlez-Mazo E, et al. Determining contamination sources in marine sediments using multivariate analysis[J]. Trends Anal Chem, 1998, 17(4): 181 -192.
    [117] Stefano C, Giorgio F, Jadran F E, et al. Anthropogenic markers in the Holocene strait graphic sequence of the Gulf of Trieste(northern Adriatic Sea)[J]. Mar Geol, 2006, 230: 29-51.
    [118] Turner A, Millward G E, Tyler A O. The distribution and chemical composition of particles in a macro tidal estuary[J]. Estuar Coast Shelf Sci, 1994, 38: 1-17.
    [119] Yang M, Sanudo-Wihelmy S A. Cadmium and manganese distributions in the Hudson River estuary: Inter annual and seasonal variability[J]. Earth Planet Sci Lett, 1998, 160: 403-418.
    [120] Alessandro B, Giovanni B, Nicola C, et al. Heavy metals in marine sediments of Taranto Gulf (Ionian Sea, Southern Italy).[J]. Mar Chem, 2006, 99: 227–235.
    [121] Feng H, Cochran J K, Hirschberg D J. Transport and sources of metal contaminants over the course of tidal cycle in the turbidity maximum zone of the Hudson river estuary[J]. Water Res, 2002, 36: 733-743.
    [122] Bubatutty Y, Chacko J. Chemical partitioning and bioavailability of lead and nickel in an estuarine system[J]. Environ Toxicol Chem, 1995, 14(3): 427-434.
    [123] Marchand C, Lallier-Verges E, Baltzer F. et al. Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana [J]. Mar Chem, 2006, 98: 1-17.
    [124] Rob F, Nolting M, Willem H. Distribution of trace and major element and pore water of the Lena Delta and Laptev Sea[J]. Mar Chem, 1996, 53(3-4): 285-299.
    [125] Sangmin Hyun, Chang-Hoon Lee, Taehee Lee. Anthropogenic contributions to heavy metal distributions in the surface sediments of Masan Bay, Korea[J]. Mar Pollut Bull, 2007, 54: 1031-1071.
    [126] Alessandro B, Giovanni B, Nicola C, et al. Heavy metals in marine sediments of Tarantula Gulf (Ionian Sea, Southern Italy)[J]. Mar Chem, 2006, 99: 227-235.
    [127] Ernst W H O. Bioavailability of heavy metals and decontamination of soils by plants[J]. Appl Geochem, 1996, 11:163-167.
    [128] Donnini F, Dinelli E, Sangiorgi F, et al. A biological and geochemical integrated approach to assess the environmental quality of a coastal lagoon (Ravenna, Italy)[J]. Environ Int, 2007, 33(7): 919-928.
    [1]黄宗国.海洋河口湿地生物多样性[M].北京:海洋出版社, 2004, 75-77.
    [2]林永源.晋江河口及泉州湾湿地生物分布特点[J].台湾海峡, 2005, 24(2): 183-188.
    [3]李朝新,刘焱光,刘振夏,等.泉州湾泥沙运移与冲淤变化[J].海洋科学进展, 2008, 26(1): 26-34.
    [4]泉州市统计局编. 2006泉州统计年鉴[G]. 2006, 42-72.
    [5]袁建军,谢嘉华.泉州湾近岸海域水质状况调查与评价[J].台湾海峡, 2003, 22(1): 14-18.
    [6]袁建军,谢嘉华.泉州湾海洋生态环境质量评价[J].福建环境, 2002, 19(6): 45-46.
    [7]黄宗国.海洋河口湿地生物多样性[M].北京:海洋出版社, 2004, 80-81.
    [8]陈世希,王渊源.泉州湾及邻近岸海湾潮间带底若干项数据的计算机分析[J].台湾海峡, 1998, 17(1): 29-33.
    [9]刘碧云.泉州湾重要湿地的现状评价与保护对策研究[J].林业勘察设计(福建), 2005, (2):21-24.
    [10]蔡清海,钱小明,方民杰,等.福建泉州湾环境质量评价[J].福建水产, 2005, (2):33-37.
    [11]卢振彬,杜琦,许翠娅,等.福建泉州湾贝类养殖容量评估[J].热带海洋学报, 2005, 24(4):22-29
    [12] Loring D H, Rantala R T T. Manual for the geochemical analyses of marine sediments and suspended particulate matter[J]. Earth Sci Rev, 1992, 32: 235-283.
    [13] Janaki-Raman D, Jonathan M P, Srinivasalu S, et al. Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: Application of acid leachable technique[J]. Environ Pollut, 2007, 145: 245-257.
    [14] Tam N F Y, Wong Y S. Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps[J]. Environ Pollut, 2000, 110: 195-205.
    [15] Adamo P, Arienzo M, Imperato M, et al. Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port[J]. Chemosphere, 2005, 61: 800-809.
    [16] Ayyamperumal T, Jonathan M P, Srinivasalu S, et al. Assessment of acid leachable trace metals in sediment cores from River Uppanar, Cuddalore, Southeast coast of India[J]. Environ Pollut, 2006, 143(1): 34-45.
    [17] Jayaprakash M, Jonathan M P, Srinivasalu S, et al. Acid-leachable trace metals in sediments from an industrialized region (Ennore Creek) of Chennai City, SE coast of India: An approach towards regular monitoring[J]. Estuar Coast Shelf Sci, 2007, 22: 1-12.
    [18] Cuong D T, Obbard J P. Metal speciation in coastal marine sediments from Singapore using a modified BCR-sequential extraction procedure[J]. Appl Geochem, 2006, 21(8): 1335-1346.
    [1] Williams T P, Bubb F M, Lester J N. Metal accumulation within Salt marsh environments: a review[J]. Mar pollut bull, 1994, 28(5): 277-290.
    [2] Feng H, Cochran J K, Hirschberg D J. Transport and sources of metal contaminants over the course of tidal cycle in the turbidity maximum zone of the Hudson river estuary[J]. Water Res, 2002, 36: 733-743.
    [3] Fox W M, Johnson M S, Jones S R, et al. The use of sediment cores from stable and developing salt marshes to reconstruct historical contamination profiles in the Mersey Estuary, UK[J]. Mar Environ Res, 1999, 47: 311-329.
    [4] Lee S V, Cundy A B. Heavy metal contamination and mixing processes in sediments from the Humber Estuary, Eastern England[J]. Estuar Coast Shelf Sci, 2001, 53: 619-636.
    [5] Zoumis T, Schmidt A, Grigorova L. Contaminants in sediments: remobilization and demobilization[J]. Sci Total Environ, 2001, 266: 195-202.
    [6] Guevara S R, Rizzo A, Sanchez R. Heavy metal inputs in northern Patagonia lakes from short sediment core analysis[J]. J Radioanal Nucl Chem, 2005, 265: 481-493.
    [7]许爱玉,骆炳坤,陈松.泉州湾表层沉积物中重金属的地球化学特征[J].台湾海峡, 1989, 8(4): 383-388.
    [8]杨春霖,欧阳通,张珞平,等.厦门西海域表层沉积物中重金属的赋存形态[J].厦门大学学报(自然科学版), 2007, 46(1): 89-93.
    [9]叶歆,景有海,余新田,等.厦门西海域拟疏浚沉积物中重金属含量及潜在生态危害评价[J].台湾海峡, 2006, 25(2): 202-208.
    [10]徐茂泉,李超,裴红娜,等.厦门海沧周边海域表层沉积物中重金属的地球化学特征[J].厦门大学学报(自然科学版), 2001, 40(3): 758-763.
    [11]李桂海.厦门海域现代沉积环境及重金属元素的环境地球化学研究[D].青岛:中国海洋大学海洋地质学院, 2007, 52.
    [12]陈松,许爱玉.台湾海峡西部海域沉积物中重金属的地球化学特征[J].台湾海峡, 1993, 12(3): 280-286.
    [13] Lee C L, Fang M D, Hsich M T. Characterization and distribution of metals in surficial sediments in Southeastern Taiwan[J]. Mar pollut bull, 1998, 36(6): 464-471.
    [14]王贵,张丽洁.海湾河口沉积物重金属分布特征及形态研究[J].海洋地质态, 2002, 18(12): 1-5.
    [15]殷效彩,杨永亮,余季金,等.胶州湾表层沉积物重金属分布研究[J].青岛大学学报(自然科学版), 2001, 14(1): 76-80.
    [16] Alessandro B, Giovanni B, Nicola C, et al. Heavy metals in marine sediments of Taranto Gulf (Ionian Sea, Southern Italy)[J]. Mar Chem, 2006, 99: 227-235.
    [17]中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社, 1999, 108.
    [18]刘用清.福建省海岸带土壤环境背景值研究及其应用[J].海洋环境科学, 1995, 14(2): 68-73.
    [19] Facchinelli A, Sacchi E, Mallen L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils[J]. Environ pollut, 2001, 114(3): 313-324.
    [20]刘恩峰,沈吉.太湖表层沉积物重金属元素的来源分析[J].湖泊科学, 2004, 12(2): 113-119.
    [21]杨永强.珠江口及近海沉积物中重金属元素的分布、赋存形态及其潜在生态风险评价[D].广州:中国科学院广州地球化学研究所, 2007, 36.
    [22]孟伟,翟圣佳,秦延文,等.渤海湾潮间带(大沽口)柱状沉积物中的重金属来源判别[J].海洋通报, 2006, 25(1): 62-69.
    [23]Chatterjee M, Silva Filho E V, Sarkar S K, et al. Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance[J]. Environ Int, 2007, 33: 346-356.
    [24] Mil-Homens M, Stevensb R L, Abrantes F. Heavy metal assessment for surface sediments from three areas of the Portuguese continental shelf[J]. Continental Shelf Res, 2006, 26: 1184-1205.
    [25] Sabine D, Lyn C N, Lorenzo G, et al. Evidence for declining levels of heavy-metals in the Severn Estuary and Bristol Channel, U.K. and their spatial distribution in sediments[J]. Environ Pollut, 2006, 143: 187-196.
    [26]马统一.经济应用数学----概率论与数理统计[M].北京:高等教育出版社, 2004, 319
    [27]张丽洁,王贵.近海沉积物重金属研究及环境意义[J].海洋地质动态, 2003, 19(3): 6-9.
    [28]弓晓峰,黄志中,张静,等.鄱阳湖湿地重金属形态分布及植物富集研究[J].环境科学研究, 2006, 19(3): 34-40.
    [29]高会旺,张英娟,张凯.大气污染物向海洋的输入及其生态环境效应[J].地球科学进展, 2002, 17(3): 326-330.
    [30]夏汉平.土壤-植物系统中的镉研究进展[J].应用与环境生物学报, 1997, 3(3): 289-298.
    [31] Rubio B, Nombela M A, Vilas F. Geochemistry of major and trace elements insediments of the Ria de Vigo (NW Spain): an assessment of metal pollution[J]. Mar Pollut Bull, 2000, 40: 968-980.
    [32] Marchand C, Lallier-Verges E, Baltzer F, et al. Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana[J]. Mar Chem, 2006, 98: 1-17.
    [33] Urasa I T, Macha S F. Speciation of heavy metals in soils, sediments, and sludge using DC-plasma atomic emission spectrometry coupled with ion chromatograph[J]. Int J Environ Anal Chem, 1996, 64(2): 83-95.
    [34] Alagarsamy R. Distribution and seasonal variation of trace metals in surface sediments of the Mandovi estuary, west coast of India[J]. Estuar Coast Shelf Sci, 2006, 67: 333-339.
    [35] Clark MW, McConchie D, Lewis DW, et al., Redox stratification and heavy metal partitioning in Avicennia-dominated mangrove sediments: a geochemical model[J], Chem Geol, 1998, 149: 147-171.
    [36]鲁斐,李磊.主成分分析在辽河水质评价中的应用[J].水利科技与经济, 2006, 12(10): 660-662.
    [37]李玉,俞志明,宋秀贤.运用主成分分析(PCA)评价海洋沉积物中重金属污染来源[J].环境科学, 2006, 27(1): 137-141.
    [38]王晓鹏.河流水质综合评价之主成分分析方法[J].数理统计与管理, 2001, 20(4): 49-52.
    [39]张妍,尚金城,于相毅.主成分----聚类复合模型在水环境管理中的应用[J].水科学进展, 2005, 16(4): 592-595.
    [40]张样伟,王敦春.河流水质主要污染物组分识别的主成分分析[J].水利水电技术, 1994, (6): 1-5.
    [41]刘瑞民,沈珍瑶.大宁河流域生态环境综合评价及其演绎[J].北京师范大学学报(自然科学版), 2006, 42(2): 200-203.
    [42]邱东.多指标评价方法的系统分析[M].北京:中国统计出版社, 1991, 17-31.
    [43]孟伟,翟圣佳,秦延文,等.渤海湾潮间带(大沽口)柱状沉积物中的重金属来源判别[J].海洋通报, 2006, 25(1): 62-69.
    [44] Del Vall T A, Forja J M, Gonza Elez-Mazo E, et al. Determining contamination sources in marine sediments using multivariate analysis[J]. Trends Anal Chem, 1998, 17: 181-19.
    [45] Krzysztof Loska, Danuta Wiechula. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir[J]. Chemosphere, 2003, 51: 723-733.
    [46] Simeonov V, Massart D L, Andreev G M, et al. Assessment of metal pollution based on multivariate statistical modeling of‘hot spot’sediments from the Black Sea[J]. Chemosphere, 2000, 41: 1411-1417.
    [47] Stefano C, Giorgio F, Jadran F, et al. Anthropogenic markers in the Holocene stratigraphic sequence of the Gulf of Trieste (northern Adriatic Sea)[J]. Mar Geol, 2006, 230: 29-51.
    [48] Alessandro B, Giovanni B, Nicola C, et al. Heavy metals in marine sediments of Taranto Gulf (Ionian Sea, Southern Italy)[J]. Mar Chem, 2006, 99: 227-235.
    [49] Kucuksezgin F, Kontas A, Altay O, et al. Assessment of marine pollution in Izmir Bay: Nutrient, heavy metal and total hydrocarbon concentrations[J]. Environ Int, 2006, 32: 41-51.
    [1] Zhang H, Shan B Q. Historical records of heavy metal accumulation in sediments and the relationship with agricultural intensification in the Yangtze-Huaihe region, China[J]. Sci Total Environ, 2008, 399: 113-120.
    [2] Graney J R, Eriksen T M. Metals in pond sediments as archives of anthropogenic activities: a study in response to health concerns[J]. Appl Geochem, 2004, 19: 1177-1188.
    [3] Eades L J, Farmer J G, MacKenzie A B, et al. Stable lead isotopic characterisation of the historical record of environmental lead contamination in dated freshwater lake sediment cores from northern and central Scotland[J]. Sci Total Environ, 2002, 292: 55-67.
    [4] Ruiz-Fernandez A C, Paez-Osuna F, Urrutia-Fucugauchi J, et al. Historical trace metal fluxes in the Mexico City Metropolitan Zone as evidenced by a sedimentary record from the Espejo delos Lirios lake[J]. J Environ Monit, 2004, 6: 473-480.
    [5] Ng A, Patterson C C. Changes of lead and barium with time in California off shore basin sediments[J]. Geochim Cosmochim Acta, 1982, 4: 2307-2321.
    [6] Forstner U, Wittmann G T. Metal Pollution in the aquatic environment[M]. Berlin: Springer Verlag, 1983, 486.
    [7] Teksoz G, Yetis U, Tuneel G, Bakas T. Pollution chronology of the golden horn sediments[J]. Mar Pollut Bull, 1991, 22: 447-451.
    [8] Fung Y S, and Lo C K. Determination of heavy metal profiles in dated sediment cores from Sai Kung Bay Hong Kong[J]. Environ Int, 1997, 23(3): 317-335.
    [9] Brack K, Stevens R L. Historical pollution trends in a disturbed estuarine sedimentary environment, SW Sweden[J]. Environ Geol, 2001, 40: 1017-1029.
    [10] Adamo P, Arienzo M, Imperato M, et al. Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port[J]. Chemosphere, 2005, 61: 800–809.
    [11] Marchand C, Lallier-Verges E, Baltzer F, et al. Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana[J]. Mar Chem, 2006, 98: 1-17.
    [12] Willams T P, Bubb J M, Lester J N. Metal accumulation within salt marsh environments: A review[J]. Mar Pollut Bull, 1994, 28(5): 277-290.
    [13] Di Toro D M, Mahony J D, Hansen D J, et al. Toxicity of cadmium in sediments: the role of acid volatile sulfide[J]. Environ Toxicol Chem, 1990, 9: 1487-1502.
    [14] DiToro D M, Zarba C S. Technical basis for establishing sediment quality criteria for non-ionic organic chemicals by using equilibrium partitioning[J]. Environ Toxicol Chem, 1991, 10: 1541-1583.
    [1] Zhang H, Shan B Q. Historical records of heavy metal accumulation in sediments and the relationship with agricultural intensification in the Yangtze-Huaihe region, China[J]. Sci Total Environ, 2008, 399: 113-120.
    [2] Graney J R, Eriksen T M. Metals in pond sediments as archives of anthropogenic activities: a study in response to health concerns[J]. Appl Geochem, 2004, 19: 1177-1188.
    [3] Eades L J, Farmer J G, MacKenzie A B, et al. Stable lead isotopic characterisation of the historical record of environmental lead contamination in dated freshwater lake sediment cores from northern and central Scotland[J]. Sci Total Environ, 2002, 292: 55-67.
    [4] Ruiz-Fernandez A C, Paez-Osuna F, Urrutia-Fucugauchi J, et al. Historical trace metal fluxes in the Mexico City Metropolitan Zone as evidenced by a sedimentary record from the Espejo delos Lirios lake[J]. J Environ Monit, 2004, 6: 473-480.
    [5] Ng A, Patterson C C. Changes of lead and barium with time in California off shore basin sediments[J]. Geochim Cosmochim Acta, 1982, 4: 2307-2321.
    [6] Forstner U, Wittmann G T. Metal Pollution in the aquatic environment[M]. Berlin: Springer Verlag, 1983, 486.
    [7] Teksoz G, Yetis U, Tuneel G, Bakas T. Pollution chronology of the golden horn sediments[J]. Mar Pollut Bull, 1991, 22: 447-451.
    [8] Fung Y S, and Lo C K. Determination of heavy metal profiles in dated sediment cores from Sai Kung Bay Hong Kong[J]. Environ Int, 1997, 23(3): 317-335.
    [9] Brack K, Stevens R L. Historical pollution trends in a disturbed estuarine sedimentary environment, SW Sweden[J]. Environ Geol, 2001, 40: 1017-1029.
    [10] Adamo P, Arienzo M, Imperato M, et al. Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port[J]. Chemosphere, 2005, 61: 800–809.
    [11] Marchand C, Lallier-Verges E, Baltzer F, et al. Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana[J]. Mar Chem, 2006, 98: 1-17.
    [12] Willams T P, Bubb J M, Lester J N. Metal accumulation within salt marsh environments: A review[J]. Mar Pollut Bull, 1994, 28(5): 277-290.
    [13] Di Toro D M, Mahony J D, Hansen D J, et al. Toxicity of cadmium in sediments: the role of acid volatile sulfide[J]. Environ Toxicol Chem, 1990, 9: 1487-1502.
    [14] DiToro D M, Zarba C S. Technical basis for establishing sediment quality criteria for non-ionic organic chemicals by using equilibrium partitioning[J]. Environ Toxicol Chem, 1991, 10: 1541-1583.
    [1] Rauret G, Lopez-Sanchez J F, Sahuquillo A. Improvement of the BCR three-step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. J Environ Monit, 1999, 1: 57-61.
    [2] Caruso J A, Klaue B, Michalke B, et al. Group assessment: elemental speciation[J]. Ecotoxicol Environ Safety, 2003, 56: 32-44.
    [3]杨震,章惠珠,孔莉.长江南京段沉积物中铜、镉形态对水生生物富集的影响[J].中国环境科学, 1995, 16(3): 200-203.
    [4] Tessier A, Campbell P G C, Auclair J C, et al. Relationship between the partitioning of the trace metals in sediments and their accumulations in the tissue of the freshwater mollusk elliptio complanata in a mining area[J]. Can J fish Quat Sci, 1984, 41: 1463-1472.
    [5] Christine G, Sylvaine T, Michel A. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures[J]. Trends Anal Chem, 2002, 21: 451-467.
    [6] Jayaprakash M, Jonathan M P, Srinivasalu S, et al. Acid-leachable trace metals in sediments from an industrialized region (Ennore Creek) of Chennai City, SE coast of India: An approach towards regular monitoring[J]. Estuar Coast Shelf Sci, 2007, 22: 1-12.
    [7] Ayyamperumal T, Jonathan M P, Srinivasalu S. Assessment of acid leachable trace metals in sediment cores from River Uppanar, Cuddalore, Southeast coast of India[J]. Environ Pollu, 2006, 143: 34-45.
    [8] Janaki-Raman D, Jonathan M P, Srinivasalu S, et al. Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: Application of acid leachable technique[J]. Environ Pollut, 2007, 145: 245-257.
    [9] Tessier A, Campbell P G C, Bisson M, et al. Sequential extraction procedure for the speciation of particulate trace metals[J]. Anal Chem, 1979, 51(7): 844-851.
    [10] Ure A M., Quevauviller, Muntau H, et al. Speciation of heavy metals in solids and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities[J]. Int J Environ Anal Chem, 1993, 51: 135-151.
    [11] Davidson C M, Duncan A L, Ure A M, et al. A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in Industrially contaminated land [J]. Anal Chim Acta, 1998, 363(1): 45-55.
    [12] Pempkowiak J, Sikora A, Biernacka E. Speciation of heavy metal in marine sediments vs. their Bioaccumulation by mussels[J]. Chemosphere, 1999, 39(2): 313-321.
    [13] Ross A S, Filip M G T. Determination of Al, Cu, Fe, Mn, Pb and Zn in certified reference materials using the optimized BCR sequential extraction procedures[J]. Anal Chim Acta, 2002, 454: 249-257.
    [14] Katherine F M, Christine M D. Comparison of original and modified BCR sequential extraction procedures for the fraction of copper, iron, lead, manganese and zinc in soils and sediments[J]. Anal Chim Acta, 2003, 478: 111-118.
    [15] Yuan C G, Shi J B, Liu J F, et al. Speciation of heavy metals in marine sediments from the East Chine Sea by ICP-MS with sequential extraction[J]. Environ Int, 2004, 30 (6): 769-783.
    [16] Adamo P, Arienzo M, Imperato M, et al. Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port[J]. Chemosphere, 2005, 61: 800-809.
    [17] Cuong D T, Obbard J P. Metal speciation in coastal marine sediments from Singapore using a modified BCR-sequential extraction procedure[J]. Appl Geochem, 2006, 21(8): 1335-1346.
    [18]李宇庆,陈玲,仇雁翎,等.上海化学工业区土壤重金属元素形态分析[J].生态环境, 2004, 13(2): 154-155.
    [19]隆茜,张经.陆架区沉积物中重金属研究的基本方法及其应用[J].海洋湖沼通报, 2002, 3(3): 25-35.
    [20] Mcgrath S P, Cegrarra J. Chemical extractability of heavy metals during and after long-term applications of sewage sludge to soil[J]. J Soil Sci, 1992, 43: 313-323.
    [21] Singh A K, Benerjee D K. Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River-A tributary of the lower Ganga, India[J]. Environ Geol, 1999, 39(1): 91-98.
    [22] Wartel M, Skiker M, Auger Y, et al. Interaction of manganese(II) with carbonates in seawater: assessment of the solubility product of MnCO3 particles[J]. Mar Chem, 1990, 29: 1099-1114.
    [23] Wartel M, Skiker M, Auger Y, et al. Seasonal variation of Mn2+ adsorption on to calcareous surfaces in the English Channel, and its implication on the manganese distribution coefficient[J]. Mar Chem, 1991, 36: 85-105.
    [24] Bougheriet A, Ouddane B, Fischer J C, et al. Variability of dissolved Mn and Zn in the Seine estuary and chemical speciation of these metals in suspend matter[J]. Water Res, 1992, 26: 1359-1378.
    [25] Bougheriet A, Wartel M, Cordier C, et al. Chemical speciation of some particulate elements in the English Channel, and impact of human activities on the magnetic behavior of suspended matter[J]. Mar pollut Bull, 1994, 28:541-556.
    [26] Liu Enfeng, Shen Ji, Liu Xingqi. Geochemical features of heavy metals in core sediments of northwestern Taihu Lake, China[J]. Chinese J Geochem, 2005, 24(1): 73-81.
    [27] Tokalioglu S, Kartal S, Elci L. Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure[J]. Anal Chim Acta, 2000, 413: 33-40.
    [28] Caplat C, Texier H, Barillier D, et al. Heavy metals mobility inharbour contaminated sediments: the case of Port-en-Bessin[J]. Mar Pollut Bull, 2005, 50(5): 504-511.
    [29] Bird G, Brewer P A, Macklin M G, et al. The solid state partitioning of contaminant metals and As in river channel sediments of the mining affected Tisa drainage basin, northwestern Romania and eastern Hungary[J]. Appl Geochem, 2003, 18(10): 1583-1595.
    [30] Guhathakurta H, Anilava K. Heavy metal concentration in water, sediment, shrimp (Penaeus monodon) and mullet (Liza parnia) in some brackish water ponds of Sunderban, India[J]. Mar Pollut Bull, 2000, 40(11): 914-920.
    [31] Morillo J, Usero J, Raquel Rojas. Fractionation of metals and As in sediments from a biosphere reserve (Odiel salt marshes) affected by acidic mine drainage[J]. Environ Monit Assess, 2008, 139(1-3): 329-337.
    [32] Prechthai T, Parkpian P, Visvanathan C, et al. Assessment of heavy metal contamination and its mobilization from municipal solid waste open dumpling site[J]. J Hazard Mater, 2008, 156: 86-94.
    [33]戴维明.长江口悬浮固体中重金属元素的形态研究[J].上海环境科学, 1994, 13(11): 7-9.
    [34] Wises S B O, Macleod C, Lester J N. A recent history of metal accumulation in the sediments of the Thames Estuary, United Kingdom[J]. Estuar, 1997, 20(3): 483-493.
    [35] Cacador I, Vale C, Catarino F. Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root-sediment system of Spartina maritima and Halimione portulacoides from Tagus estuary salt marshes[J]. Mar Environ Res, 2000, 49: 279-290.
    [36] Tretry J H, Metz S. A decline in lead transport by the Mississippi[J]. Riv Sci, 1985, 230: 439-441.
    [37] Zachara J M, Resch C T, Smith S C. Influence of humic substances on Co2+ sorption by a subsurface mineral separate and its mineralogic components[J]. Geochim Cosmochim Acta, 1994, 58: 533-566.
    [38]吴攀,刘丛强,张国平,等.碳酸盐岩矿区河流沉积物中重金属的形态特征及潜在生态风险[J].农村生态环境, 2004, 20(3): 28-31.
    [39]乔永民.粤东近岸海域沉积物重金属环境地球化学研究[D].广州:暨南大学水生生物研究所, 2004,85.
    [40]莫争,王春霞,陈琴,等.重金属Cu、Pb、Zn、Cr、Cd在土壤中的形态分布和转化[J].农业环境保护, 2002, 21(1): 9-12.
    [41] Mao M Z. Speciation of metals in sediments along the Le An River, CERP Final Report[R]. France: Imprimerie Jouve Mayenne, 1996, 55-57.
    [1]丁喜桂,叶思源,高宗军.近海沉积物重金属污染评价方法[J].海洋地质动态, 2005, 21(8): 31-36.
    [2]何孟常,王子健,汤鸿霄.乐安江河流沉积物重金属生物有效性评价[J].环境科学, 1999, 20(1): 7-10.
    [3]廉雪琼.广西近岸海域沉积物中重金属污染评价[J].海洋环境科学, 2002, 21(3): 39-42.
    [4]陈江麟,刘文新,刘书臻,等.渤海表层沉积物重金属污染评价[J].海洋科学, 2004, 28(12): 16-21.
    [5]丘耀文,朱良生.海陵湾沉积物中重金属污染及其潜在生态危害[J].海洋环境科学, 2004, 23(1): 22-24.
    [6]周秀艳,王恩德,朱恩静.辽东湾河口底泥中重金属的污染评价[J].环境化学, 2004, 23(3): 321-325.
    [7]于文金,邹欣庆.灌河口潮滩重金属累积特征及污染评价[J].地球化学, 2007, 36(4): 425-433.
    [8] Kwon Y T, Lee C W. Application of multiple ecological risk indices for the evaluation of heavy metal contamination in a coastal dredging area[J]. Sci Total Environ, 1998, 214(1-13): 203-210.
    [9]国家海洋局,国家海洋环境监测中心. GB18668-2002海洋沉积物质量[S].北京:中国标准出版社, 2002.
    [10]福建省人民政府.《福建省海洋功能区划》, 2005.
    [11]泉州市海洋与渔业局.《泉州市海洋功能区划》, 2007年6月.
    [12] Muller G. Index of geo-accumulation in sediments of Rhine River[J]. Geo J, 1969, 2: 108-118.
    [13]霍文毅,黄风茹,陈静生,等.河流颗粒物重金属污染评价方法比较研究[J].地理科学, 1997,17(1): 81-86.
    [14]尚英男,倪师军,张成江.应用地质累积指数评价成都市河流表层沉积物重金属污染[J].广东微量元素科学, 2005,12(10): 12-16.
    [15]王国平,刘景双,汤洁.无尾河下游湿地重金属污染评价[J].农村生态环境, 2004, 20(2): 50-54.
    [16] Zhang L P,Ye X, Feng H, et al. Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China[J]. Mar Pollut Bull, 2007, 54: 974-982.
    [17] Alessandro B, Giovanni B, Nicola C, et al. Heavy metals in marine sediments of Taranto Gulf (Ionian Sea, Southern Italy)[J]. Mar Chem, 2006, 99: 227-235.
    [18] Chen C W, Kao C M, Chen C F, et al. Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan[J]. Chemosphere, 2007, 66: 1431-1440.
    [19] Chatterjee M, Silva Filho E V, Sarkar S K, [J]. Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance[J]. Environ Int, 2007, 33: 346-356.
    [20] Abrahim G M S & Parker R J. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand[J]. Environ Monit Assess, 2008, 136: 227-238.
    [21] Forstner U, Ahlf W, Calmano W, et al. Sediment criteria development contributions from environmental geochemistry to water quality management[A]. In: Heling D, Rothe P, Forstner U, et al(eds) Sediments and environmental geochemistry: selected aspects and case histories[C]. Berlin Heidelberg: Springer-Verlag, 1990, 311-338.
    [22]赵一阳,鄢明才.中国浅海沉积物地球化学[M].北京:中国科学出版社, 1994, 174-176.
    [23]刘用清.福建省海岸带土壤环境背景值研究及其应用[J].海洋环境科学, 1995, 14(2): 68-73.
    [24] Hakanson L. An ecological risk index for aquatic pollution control. a sedimentological approach[J].Water Res, 1980, 14(8): 975-1001.
    [25]甘居利,贾晓平,林钦,等.近岸海域底质重金属生态风险评价初步研究[J].水产学报, 2000, 24(6): 533-538.
    [26]陈静生,王忠,刘玉机.水体金属污染潜在危害应用沉积学方法评价[J].环境科学, 1989, 9(1): 16-25.
    [27]刘芳文,颜文,王文质,等.珠江口沉积物重金属污染及其潜在生态危害评价[J].海洋环境科学, 2002, 21(3): 34-38.
    [28]刘成,王兆印,何耘,等.环渤海湾诸河口潜在生态风险评价[J].环境科学研究, 2002, 15(5): 33-37.
    [29]崔毅,辛福言,马绍赛,等.乳山湾沉积物重金属污染及其生态危害评价[J].中国水产科学, 2005, 12(1): 83-89.
    [30]范文宏,张博,陈静生,等.锦州湾沉积物中重金属污染的潜在生物毒性风险评价[J].环境科学学报, 2006, 26(6): 1001-1005.
    [31] Vladimir D, Sigurd R. Heavy metal pollution in sediments of the Pasvik River drainage[J]. Chemosphere, 2001, 42: 9-18.
    [32]徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术, 2008, 31(2): 112-115.
    [33] Long E R, Morgan L G. The potential for biological effects of sediment-sorbed contaminants tests in the National Status and Trends Program[R]. NOAA Technical Memorandum, NOSOMA 52, 1990, 8-60.
    [34] Long E R, Macdonald D D, Smith S L, et al. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments[J]. Environ Manag, 1995, 19: 81-97.
    [35] Long E R, Morgan L G. Predicting the toxicity of sediment-associated trace metals with simultaneously extracted trace metal: acid-volatile sulfide concentrations and dry weight-normalized concentrations: a critical comparison[J]. Environ Toxicol Chem, 1998, 17(5): 972-974.
    [36] Fukue M, Nakamura T, Kato Y. Degree of pollution for marine sediments[J]. Eng Geol, 1999, 53: 131-137.
    [37] Fukue M, Yanai M, Sato Y, et al. Background values for evaluation of heavy metal contamination in sediments[J]. J Hazard Mater, 2006, 136: 111-119.
    [38] Adami G, Barbieri P, Reisenhofer E. An improved index for monitoring metal pollutants in surface sediments[J]. Toxicol Environ Chem, 2000, 77: 189-197.
    [39] Adamo P, Arienzo M, Imperato M, et al. Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port[J]. Chemosphere, 2005, 61: 800-809.
    [40] Tessier A, Campbell P G C, Auclair J C, et al. Relationship between the partitioning of the trace metals in sediments and their accumulations in the tissue of the freshwater mollusk elliptio complanata in a mining area[J]. Can J fish Quat Sci, 1984, 41: 1463-1472.
    [41]陈静生.铜在沉积物各相中分配的实验模拟与数值模拟研究—以鄱阳湖为例[J].环境科学学报, 1987, 7(2): 140-149.
    [42] Lamy I, Boutgeviset S, Bermond A. Soil cadmium mobility as a consequence of sewage sludge disposal[J]. J Environ Qual, 1993, 22: 731-737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700