用户名: 密码: 验证码:
塔里木盆地台盆区天然气生成动力学模拟与成藏研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对塔里木盆地台盆区海相天然气多源多期成藏的特点,本论文对台盆区主要烃源岩与原油进行了封闭金管高压釜热模拟实验,获取了可靠的天然气组分与碳同位素数据,开展了天然气生成与碳同位素分馏动力学模拟研究,并结合GC—MS与PVT模拟方法,研究了原油裂解气的生成机理与保存特征,探讨了原油裂解气与干酪根裂解气形成过程的差异性及两类气体的判识标准。在此基础上,利用动力学方法对典型海相天然气藏的成因与成藏模式进行了研究与探讨,对今后高成熟海相地区的天然气勘探具有重要的指导意义。本研究取得如下主要成果与认识:
     1、获取了典型干酪根与油样主要气态烃组分的生成与裂解动力学参数及甲烷碳同位素动力学参数。这些参数能较好拟合实验数据,可应用到地质条件下的生气与碳同位素动力学模拟。
     2、原油裂解成气与干酪根裂解成气的差异主要体现在前者早期的裂解气以C_(2-5)重烃为主,其后期裂解是原油裂解气甲烷的主要来源,而干酪根裂解气甲烷主要来自干酪根本身的裂解;(δ~(13)C_2-δ~(13)C_3)与δ~(13)C_1交汇图能有效区分两类裂解气,可作为区分两类气体的依据之一。
     3、原地原油裂解气藏的形成与保存主要受储层含油饱和度、盆地温压场、地质系统开放程度及构造作用等多个因素的综合控制。
     4、英南2井侏罗系气藏为干酪根裂解气与原油裂解气的混合气,干酪根裂解气主要来源于寒武—下奥陶地层,原油裂解气主要来源于中上奥陶统上部。气藏主要充注时间在第三纪之后,属于次生深源气藏。
     5、桑南地区天然气主要属干酪根裂解气、气源岩是位于LN46井至构造高部位的中下寒武统烃源岩。凝析油主要来源于早期寒武系古油藏的裂解及中上奥陶统烃源岩,气藏从三叠纪末期开始聚气,主成藏期在第三纪之后。
δ
    which, generally, is a function of oil saturation of reservoir, temperature, pressure, geological sealing degree and structural uplifting.4. The gases in YN2 gas pool are a mixture of kerogen gas and oil cracking gas. The kerogen gas results from the Cambrian-lower Ordovician strata while the oil cracking gas is mainly derived from the cracking of oil in paleo oil pools in the upper part of the mid-upper Ordovician strata. The YN2 gas pool was charged mainly after the Tertiary period and is a secondary gas pool with deeper sources.5. The gases in Sang-nan gas pools are mainly composed of kerogen gas from mid-lower Cambrian strata with major source areas from the slopes to the structural high, i.e. from LN46 and LN59 in the southwest and southeast slopes, respectively, to LG13 in the structural high. In addition to the mid-upper Ordovician source rocks, the cracking of Cambrian oils in paleo oil pools is an alternative source for the condensates. Approximately, the effective gas accumulation initiated at the end of Triassic period, but the major charging occurred after the Tertiary period.
引文
1.戴金星,裴锡古,戚厚发等.中国天然气地质学.北京:石油工业出版社,1992.
    2.戴金星,戚厚发.1985.鉴别煤型气和油成气若干指标的初步探讨.石油学报,6(2):1-12.
    3.刚文哲,高岗, 郝石生,等.1997.论乙烷碳同位素在天然气成因类型研究中的应用.石油实验地质,19(2):164~167.
    4.高晓林,李志坚,李敏.2004.应用PSRK状态方程预测高压汽液平衡.化学_丁业与工程,21(4):305-307
    5.顾乔元,潘文庆,曹淑玲,等.1999.轮南地区奥陶系油气成藏特征.新疆石油地质,20(3):210-212.
    6.黄第藩,刘宝泉,王庭栋,等.1996.塔里木盆地东部天然气的成因类型及其成熟度判识.中国科学D辑,26(4):751~755.
    7.黄志龙,张振英,张枝焕,等.2005.塔里木盆地台盆区天然气运聚动平衡研究.“十五”国家重点科技攻关后两年滚动课题报告(2004BA616A-02-01-01-01).
    8.解启来,周中毅.塔里木盆地生油岩成熟度确定及成烃演化史研究.(96-111-01-03-03最终成果报告).
    9.金奎励主编.有机岩石学研究—以塔里木盆地为例.北京:地震出版社,1997.
    10.李剑,胡国艺,谢增业,等.2003a.克拉通地区精细气源对比.“十五”国家重点科技攻关专题报告(2001BA605A02-03-03-02).
    11.李剑,刘朝露,李志生,等.2003b.天然气组分及其碳同位素扩散分馏作用模拟实验研究,天然气地球科学,14(6):463~468.
    12.李剑,谢增业,罗霞,等.1999.塔里木盆地主要天然气藏的气源判识.天然气工业,38-43.
    13.李剑、张英等,2001.煤型气判识新方法及其应用.见:戴金星等主编,煤成烃国际学术研讨会文集,北京:石油工业出版社,p36-45
    14.李明诚,李伟,蔡峰,等.油气成藏保存条件的综合研究.石油学报,1997,18(2):41-48.
    15.李贤庆,肖贤明,庸永春,等.2005.塔里木盆地库车坳陷烃源岩生成甲烷的动力学参数及其应用.地质学报,79(1):133~142.
    16.李艳霞,钟宁宁,张枝焕,等.2005.塔里木盆地英南2气藏成藏机理.石油学报,26(2): 53~57.
    17.梁狄刚,张水昌,张宝民,等.2000.从塔里木盆地看中国海相生油问题.地球前缘(中国地质大学,北京),7(4):534-547.
    18.刘德汉,史继杨.1994.高演化碳酸盐烃源岩非常规评价方法探讨.石油勘探与开发,21(3):113-115.
    19.刘金钟,唐永春.1998.用干酪根生烃动力学方法预测甲烷生成量之一例.科学通报,43(11):1187-1191
    20.刘静江,刘慧荣,谭林等.2004.塔里木盆地轮南奥陶系古潜山油气成藏与分布。地质科学,39(4):532-542.
    21.刘玉魁,胡剑风,闵垒,等.2004.塔里木盆地英吉苏凹陷成藏机理分析.天然气工业,24(10):6-9.
    22.卢双舫,付晓泰,刘晓艳,等.1996.油成气的动力学模型及其标定.天然气工业,16(6):6-8.
    23.卢双舫,薛海涛,钟宁宁.2002.石油保存下限的化学动力学研究.石油勘探与开发,29(6):1-3
    24.马茂艳,姚多喜.利用流体包裹体研究油气成藏期次—以塔里术盆地英南2井为例.安徽理工大学学报(自然科学版),2004,24(4):1~5.
    25.米敬奎,肖贤明,刘德汉,等.2003.利用储层流体包裹体的PVT特征模拟天然气藏形成古压力—以鄂尔多斯盆地上古生界深盆气藏为例.中国科学(D辑),33(7):679-685
    26.聂采军,郑威,李梅.塔里木东北部英南2气藏天然气运移和聚集.地质科学,39(4):589-598.
    27.彭先芝,张干,陈繁忠,等.2004.好氧生物降解中烷烃单体稳定同位素分馏及其环境意义.科学通报,49(24):2605~2611.
    28.秦胜飞,贾承造,李梅.和田河气田东西部差异及其原因.石油勘探与开发,2002,29(5):16-18.
    29.曲佳燕,王振平,付晓泰,等.油减热破坏的化学动力学定量研究.河北工业大学学报,2003,32(4):35-40
    30.史鸿祥,徐志明,林峰,等.2005.塔里木盆地轮南油田油源分析及勘探前景.新疆石油地质, 26(6):623-626.
    31.帅燕华,邹艳荣,彭平安.塔里木盆地库车坳陷煤成气甲烷碳同位素动力学研究及其成藏意义.地球化学,2003,32(5):469~475.
    32.唐友军,张秋茶,肖中尧等.塔里木盆地英南2井天然气地球化学特征.天然气地球科学,2004,15(2):142-143.
    33.田辉,王招明,肖中尧,等.原油裂解成气动力学模拟及其意义.科学通报,2006,
    34.王飞宇,张宝民,梁狄刚,等.塔里木盆地古生界烃源岩热史及生烃史研究.中国石油天然气集团公司油气地球化学重点实验室,2001,内部资料.
    35.王飞宇,李谦,张水昌,等.2003.塔东地区侏罗系生烃史.新疆石油地质,25(1):19-21.
    36.王国林,王廷栋,李宇平等,2003.塔里木盆地典型气藏解剖及大中型天然气田的分布规律.塔里木油田公司,“十五”国家重点科技攻关专题报告(2001BA605A-02-03-03).
    37.王红军,张光亚,胡云杨等,2003.塔里木海相克拉通盆地天然气藏成藏史研究.“十五”国家重点科技攻关专题报告(2001BA605A02-03-03-03).
    38.王红军,周兴熙.塔里木盆地典型海相天然气气藏成藏模式.石油学报,2001,20(1):14-18.
    39.王廷栋,徐志明,林峰,等.2005.克拉通区大中型气田成藏条件分析.“十五”国家重点科技攻关后两年滚动课题报告(2004BA616A-02-01-03-01).
    40.肖贤明,李贤庆.2003.塔里木盆地前陆区天然气生烃运移动力学研究.中科院广州地化所、塔里木油田分公司,“十五”国家重点科技攻关专题报告(2001BA605A-02-03-01).
    41.肖中尧,卢玉红,吴懿,等.2005.塔里木东部满东1井志留系天然气成因与成藏期初步分析.地质科学,40(2):262-273.
    42.谢增业,李剑,卢新卫.1999.塔里木盆地海相天然气乙烷碳同位素分类与变化的成因探讨.石油勘探与开发,26(6):27-29.
    43.谢增业,田世澄,魏国齐,等.2005.川东北飞仙关组储层沥青与古油藏研究.天然气地球科学,16(3):283-288
    44.谢增业,魏国齐,李剑,等.2004.川东北飞仙关组鲕滩储层沥青与天然气成藏过程.天然气工业,24(12):17-19
    45.熊永强,耿安松,刘金钟.2004a.煤成甲烷碳同位素分馏的动力学模拟.地球化学,33(6):545~550.
    46.熊永强,耿安松,王云鹏,等.2001.干酪根二次生烃动力学模拟实验研究.中国科学(D辑),31(4):315~320.
    47.熊永强,张海组,耿新华,等.2004b.正十八烷的裂解及其地球化学意义.科学通报,49(增刊Ⅰ):72-75.
    48.杨晓宁,王国林,张丽娟等.塔里木盆地英南2井侏罗系气藏性质.新疆石油地质,2003,24(3):218-220.
    49.尹长河,王廷栋,王顺玉,等.威远、资阳震旦系干酪根与油裂解气的鉴别.沉积学报,2001,19(1):156-160.
    50.张宝民,赵孟军,肖中尧,等.塔里木盆地优质气源岩特征.新疆石油地质,,2000,21(1):33-37.
    51.张海祖,熊永强,刘金钟,等.2005.正十八烷的裂解动力学研究(Ⅰ):气态烃组分及其碳同位素演化特征.地质学报,79(4):569~574.
    52.张水昌,梁狄刚,张宝民,等.塔里木盆地海相油气的生成.北京:石油工业出版社,2004a
    53.张水昌,王飞宇,钟宁宁等,2003.塔里木盆地大中型气田成气机理研究.中国石油勘探开发研究院、塔里木油田分公司,“十五”国家重点科技攻关专题报告(2001BA605A-02-03-02).
    54.张水昌,赵文智,王飞宇,等.2004b.塔里木盆地东部地区古生界原油裂解气成藏历史分析—以英南2气藏为例.天然气地球科学,15(5):441~451.
    55.张一伟,金之钧,刘国臣,等.塔里木盆地环满加尔地区主要不整合形成过程及剥蚀量研究.地学前缘(中国地质大学,北京),7(4):449-457.
    56.赵孟军,卢双舫.2000.原油二次裂解气—天然气重要的生成途径.地质论评,46(6):645-650
    57.赵孟军,曾凡刚,秦胜飞,等.2001.塔里木发现和证实两种裂解气.天然气工业,21(1):35~38.
    58.赵孟军,张水昌,刘丰忠.2003.油藏演化的两个极端过程.石油勘探与开发,30(5):21-23.
    59.赵孟军,周兴熙,卢双舫.1999.塔里木盆地—富含天然气的盆地.天然气工业,19(2):13-18.
    60.赵文智,王兆云,何海清,等.2005a.中国海相碳酸盐岩烃源岩成气机理.中国科学D辑,35(7):638~648.
    61.赵文智,王兆云,张水昌,等.2005b.有机质“接力成气”模式的提出及其在勘探中的意义.石油勘探与开发,32(2):1~7.
    62.赵文智,王兆云,张水昌,等.2006.油裂解生气是海相气源灶高效成气的重要途径.科学通报,51(5):589-595
    63.周兴熙,王红军.1999.塔里木盆地克拉通区天然气碳同位素与成熟度关系探讨.地球化学,28(6):571~579.
    64.朱光有,张水昌,梁英波,等.川东北地区飞仙关组高含H_2S天然气TSR成因的同位素证据.中国科学D辑地球科学,35(11):1037-1046.
    65. Ahsan A, Karisen D A, Patience R L. 1997. Petroleum biodegradation in the Tertiary reservoirs of the North Sea. Marine and Petroleum Geology, 14(1): 55-64.
    66. Barker B. 1990. Calculated volume and pressure changes during the thermal cracking of oil to gas in reservoirs. AAPG Bulletin, 74(8): 1254-1261
    67. Behar F, Kressmann S, Rudkiewicz. J L, et al. 1992. Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking. Org geochem, 19 (1-3):173-189
    68. Berner U, Faber E, Scheeder G, et al. 1995. Primary cracking of algal and land plant kerogens: Kinetic modeling of kerogen and oil cracking. Chem Geol,, 126(3-4): 233-245
    69. Berner, U., Faber, E., and Stahl, W. 1992. Mathematical simulation of the carbon isotopic fractionation between huminitic coals and related methane. Chem. Geol., 94:315-319
    70. Braun, R.L., Burnham, A.K., 1998. KinticsGUl.exe, Version 1. 11.
    71. Claypool G E, Mancini E A. Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, Southwest Alabama. AAPG Bull, 1989,73(10):904-924
    72. Clayton C J. Effect of maturity on carbon isotope ratios of oils and condensates[J]. Organic Geochemistry, 1991,17(6):887-899.
    73. Clayton, C. 1991. Carbon isotope fractionation during natural gas generation from kerogen. Mar. Petrol. Geol., 8: 232-240.
    74. Cramer, B., 2004. Methane generation from coal during open system pyrolysis investigated by isotope specific, Gaussian distributed reaction kinetics. Organic Geochemistry, 35(4),379-392.
    75. Cramer, B., Faber, E., Gerling, P., Krooss, B.M., 2001. Reaction kinetics of stable carbon isotopes in natural gas—insights from dry, open system pyrolysis experiments, Energy & Fuels, 15(3), 517-532.
    76. Cramer, B., Krooss, B.M., Littke, R., 1998. Modeling isotope fractionation during primary cracking of natural gas: a reaction kinetic approach. Chemical Geology, 149(3-4), 235-250.
    77. Dahl, J.E., Moldowan, J.M., Peters, K.E.,et al. 1999. Diamondoid hydrocarbon as indicators of natural cracking. Nature , 39:54-57.
    78. Dieckmann A., Ondark R, Cramer B, et al. 2006. Deep basin gas: New insights from kinetic modeling and isotopic fractionation in deep-formed gas precursors. Marine and Petroleum Geology, 23:183-199.
    79. Dieckmann V, Schenk B, Horsfield B. 2000. Assessing the overlap of primary and secondary reactiojs by closed- versus open- system pyrolysis of marine kerogens. Journal of Analytical and Applied Pyrolysis, 56: 33-46.
    80. Dieckmann V, Schenk B, Horsfield B. 1998. Kinetics of petroleum generation and cracking by programmed-temperature closed-system pyrolysis of Toarcian Shales. Fuel, 77(1-2):23-31
    81. Dieckmann, V. Fowler, M. Horsfield, B. 2004. Predicting the composition of natural gas generated by the Duvernay Formation (Western Canada Sedimentary Basin) using a compositional kinetic approach. Organic Geochemistry,35 :845-862
    82. Domine F, Dessort D, Brevart, O. Towards a new method of geochemical kinetic modeling: implications for the stability of crude oils. Organic Geochemistry, 1998, 28, 597-612
    83. Domine, F., Bounaceur, R., Scacchi, G., et al. Up to what temperature is petroleum satble? New insights from a 5200 free radical reaction model. Organic Geochemistry, 2002, 33:1487-1499.
    84. Domine, F., Dessort, D., Brevart, O. Toward a new method of geochemical kinetic modeling: implications for the stability of crude oils. Organic Geochemistry, 1997, 28:597-612.
    85. Galimov, E.1988. Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks. Chemical Geology, 71: 77-95.
    86. Gaveau B, Letolle R, Monthioux M. Evaluation of kinetic parameters from ~(13)C isotopic effect during coal pyrolysis. Fuel, 1987, 66 : 228-231.
    87. GeolsoChem Corporation. GOR-Isotope. Version 1.48, 2003.
    88. Hanson A D, Zhang S C, Moldowan J M, et al. 2000. Molecular organic geochemistry of the Tarim Basin, Northwest China. AAPG Bulletin, 84: 1109-1128.
    89. Hill, R.H., Tang, Y., Kaplan, I.R.2003. Insights into oil cracking based on laboratory experiments. Organic Geochemistry 34:1651 -1672.
    90. Horsfield B, Schenk H.J, Mills N, et al. 1992. Closed-system programmed-temperature pyrolysis for simulating the conversion of oil to gas in a deep petroleum reservoir. Organic Geochemistry, 19(1-3): 191-204
    91. Huang, W., Otten GA. 2001. Cracking kinetics of crude oil and alkanes determined by diamond anvil cell-fluorescence spectroscopy pyrolysis: technique development and preliminary results. Organic geochemistry, 32:817-830.
    92. Hunt J M. Petroleum Geochemistry and Geology, 2nd Ed. New York: W H Freeman and Co., 1996. 743-744
    93. Jackson, K J, Burnham, A K, Braun, R L, et al. Temperature and pressure dependence of n-hexadecane cracking. Org Geochem, 1995, 23(10): 941-953
    94. James A T. 1983. Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components. AAPG Bulletin, 67: 1176-1191.
    95. James A T et al.,1984, Microbial alteration of subsurface natural gas accumulations, AAPG Bulletin, 68:957-960
    96. Jenden, P.D., Drazan, D. J., Kaplan, I. R., 1993. Mixing of thermogenic natural gases in northern Appalachian basin. AAPG Bulletin, 77(6), 980-998.
    97. Jenden, P.D., Newell, K.D., Kaplan, I.R., Watney, W.L., 1988. Composition and stable-isotope geochemistry of natural gases from Kansas, Midcontinent, U.S.A. Chemical Geology,71(1-4):117-147
    98. Johnson, V.G, Graham, D.L., Reidel, S.P., 1993. Methane in Columbia River Basalt Aquifers: Isotopic and geohydrologic evidence for a deep coal-bed gas source in the Columbia Basin, Washington. AAPG Bulletin, 77(7): 1192-1207.
    99. Kenneth J. Jackson, Alan K.Burnham, Robert L. Braun. 1995. Temperature and pressure dependence of n-hexadecane cracking. Organic Geochemistry 23(10):941-953.
    100. Kuo L., Michael G E. Multicomponent oil-cracking kinetics model for modeling preservation and composition of reservoired oil. Org Geochem, 1994,21(8-9):911-925
    101. Lakshmanan C C, White N. 1994. A new distributed activation energy model using Weibull distribution for the representation of complex kinetics. Energy&Fuel, 8:1158-1167.
    102. Littke, R., Krooss, B., Idiz, E., Frielingsdorf, J., 1995. Molecular nitrogen in natural gas accumulations: Generation from sedimentary organic matter at high temperatures. AAPG Bulletin, 79(3), 410-430.
    103. Liu D, Xiao X, Xiong Y, et al. Origin of natural sulphur-bearing immiscible inclusions and H2S in oolite gas reservoir, Eastern Sichuan. Science in China: Series D Earth Sciences, 2006, 49(3):242-257.
    104. Lorant F, Prinzhofer A, Behar F, et al. Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases. Chemical Geology, 1998, 147(3-4): 249~264.
    105. MacDonald, G J.1983.The many origins of natral gas. Journal of Petroleum Geology, 5(4):341-362.
    106. McCain Jr, W D, Bridges B. Volatile oils and retrograde gases-What's the difference? Pet Eng Int, 1994,66(1): 35-36
    107. Michels R, Raoult N E, Mansuy L, et al. 2002. Understanding of reservoir gas composition in natural case using stepwise seimi-open artificial maturation. Marine and Petroleum Geology, 19:589-599.
    108. Peter J.Ortoleva, 1994. Summary of Published Literature on Anomalous Pressure: Implication for Study of Pressure of Compartments. Basin Compartments and Seals AAPG Memoir 61, p.27—38.
    109. Price, L.C., 1995. Origins, characteristics, controls, and economic viabilities of deep-basin gas resources. Chem Geol, 1995, 126(3-4): 335-349
    110. Prinzhofer A A, Huc A. Y. Genetic and post-genetic molecular and isotopic fractionations in natural gases. Chemical Geology, 1995, 126(3-4): 281-290.
    111. Prinzhofer, A. A. and Pernaton, E. Isotopically light methane in natural gas: bacterial imprint or diffusive fractionation? Chem. Geol., 1997, 142: 193-200.
    112. Rice, D.D., Claypool, GE., 1981. Generation, accumulation, and resource potential of biogenic gas. AAPG Bulletin 65, 5-25.
    113. Rooney, M.A, Claypool, G E., Chung, H.M.,1995. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chemical Geology, 126 (3-4), 219-232.
    114. Schenk H J, Di Primio R, Horsfield B. The conversion of oil into gas in petroleum reservoirs. Part Ⅰ : Comparative kinetic investigation of gas generation from crude oils of lacustrine, marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis. Org Geochem, 1997, 26(7-8): 467-481
    115. Scheoll M., 1993. Isotope analysis of gas in gas field and gas storage operations. SPE Production Engineering, 8: 337-344.
    116. Smith J W, Rigby D, Gould K W, Hart G An isotopic study of hydrocarbon generation processes. Organic geochemistry, 1985, 8(5):341-347.
    117. Snowdon L R. 2000. Natural gas composition in a geological environment and the implications for the processes of generation and preservation. Organic Geochemistry, 32:913-931.
    118. Stahl, J. W. and Carey, B.D. Source-rock identification by isotope analyses of natural gases from fields in the Val Verde and Delaware Basins, West Texas. Chem. Geol., 1975, 16: 257-267.
    119. Tang Y, Perry J K, Jenden P D, et al. 2000. Mathematical modeling of stable carbon isotope ratios in natural gases. Geochimica et Cosmochimica Acta, 64 (15): 2673-2687.
    120. Tang Y, Jenden P D, Nigrini A, et al. 1996. Modeling early methane generation in coal. Energy &Fuels, 10(3): 659-671.
    121. Tang Y, Stauffer M. Multiple cold pyrolysis gas chromatography: a new technique for modeling hydrocarbon generation. Organic Geochemistry, 1994,22(3-5):863-872.
    122. Tsuzuki, N., Takeda, N., Suzuki, M., et al. 1999. The kinetic modeling of oil cracking by hydrothermal pyrolysis experiments. International Journal of Coal Geology, 39:227-250.
    123. Vieth A, Wilkes H. 2006. Deciphering biodegradation effects on light hydrocarbons in crude oils using their stable carbon isotopic composition: A case study from the Gullfaks oil field, offshore Norway. Geochimica et Cosmochimica Acta, 70: 651-665.
    124. Waples, D.W., 2000. The kinetics of in-reservoir oil destruction and gas formation: constraints from experimental and empirical data, and from thermodynamics. Organic Geochemistry, 31(3), 553-575.
    125. Xiao X M, Zeng Q H, Tian H, et al. Origin and accumulation model of the AK-1 gas pool from the Tarim basin, China. Organic Geochemistry, 2005,36(9): 1285-1298.
    126. Xiong Y, Geng A, Liu J. Kinetic-simulating experiment combined with GC-IRMS analysis: application to identification and assessment of coal-derived methane from Zhongba Gas Field (Sichuan Basin, China). Chemical Geology, 2004,213(4):325~338.
    127. Zhao W, Zhang S, Wang F, Chen J, Xiao Z, Song F. Gas accumulation from oil cracking in the eastern Tarim Basin: A case study of the YN2 gas field. Organic Geochemistry, 2005, 36(12):1602~1616.
    128. Zhao W, Zhang S, Wang F, et al. Gas accumulation from oil cracking in the eastern Tarim Basin: A case study of the YN2 gas field. Organic Geochemistry, 2005, 6(12):1602~1616.
    129. Zou Y R, Wang L, ShuaiY, et al. EasyDelta: A spreadsheet for kinetic modeling of the stable carbon isotope composition of natural gases. Computers & Geosciences, 2005, 31(7):811-819.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700