用户名: 密码: 验证码:
半滑舌鳎(Cynoglossus semilaevis)TLR9及其信号传导相关基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半滑舌鳎(Cynoglossus semilaevis),为温水性近海底层鱼类,在我国沿海均有分布,尤以渤海、黄海为多。随着消费需求的增加,其养殖业迅速发展,已成为北方海水养殖业的重要组成部分。由于工厂化养殖规模的扩大,养殖环境不断恶化、半滑舌鳎抗病力下降,病害时有发生,造成巨大的经济损失。因此,深入研究半滑舌鳎免疫防御机制,探讨提高机体抗病力的有效途径和方法,改良种质和培育抗病品系,无疑是解决目前困扰半滑舌鳎工厂化养殖的有效途径。
     Toll样受体(TLRs)家族的研究源于果蝇Toll受体的发现,果蝇的Toll受体一方面参与发育时期体轴的形成,一方面参与抵御病毒、细菌和真菌感染,介导先天性免疫反应。TLRs是重要的模式识别受体(PRRs),参与识别病原体相关的分子模式(PAMPs),在天然免疫系统中起着非常重要的作用。哺乳动物中TLR信号通路还参与诱导树突状细胞成熟、参与免疫耐受、参与凋亡发生发展、介导非感染性因素的识别等,被视为联系先天性免疫和获得性免疫的桥梁。TLR9作为TLRs家族中的成员,主要针对性识别细菌或病毒基因组内非甲基化DNA(CpG DNA)序列,启动信号通路。本研究以同源克隆的方法获得了半滑舌鳎TLR9及其信号通路相关基因的全长cDNA,并通过研究TLR9及其信号通路相关基因在不同组织和发育时期以及灭活鳗弧菌刺激后的表达情况,初步了解TLR9及其信号通路相关基因在半滑舌鳎免疫识别中的作用。
     1半滑舌鳎TLR9基因的克隆及表达分析
     根据genebank中已提交的鱼类及哺乳类TLR9序列保守区域设计简并引物得到核心片段,通过RACE技术获得3’及5’末端,经拼接后得到半滑舌鳎TLR9 cDNA全序列。根据已得到的cDNA序列,设计跨ORF引物,以DNA为模板,获得半滑舌鳎TLR9基因全长。csTLR9基因序列包括3个外显子,2个内含子;其cDNA序列由23 bp 5’UTR,342 bp 3’UTR以及3186 bp ORF组成,其ORF编码1062个aa,包含胞外区14个富含亮氨酸的基序(LRR motif),跨膜区(TM)和胞内TIR结构域(TIR domain)。csTLR9与金头鲷和牙鲆TLR9同源性高于60%。Real time PCR结果显示csTLR9广泛表达于各个组织中,尤其是脾脏和性腺中表达量很高。免疫刺激试验表明,注射灭活鳗弧菌后,半滑舌鳎脾脏和头肾中TLR9的表达量没有显著变化。发育阶段TLR9表达分析发现母源性TLR9 mRNA的存在,且在变态时期TLR9表达量显著降低,暗示TLR9可能参与半滑舌鳎个体发育,在其发育过程中发挥了重要的作用。虽然存在物种间差异,但csTLR9无论是在序列上,还是在表达方面都表现出与其他鱼类及哺乳动物的相似性。
     2半滑舌鳎MyD88基因的克隆及表达分析
     MyD88是IL-1R/TLR超家族胞内信号传导中重要的接头蛋白。半滑舌鳎MyD88基因全长2855 bp,包含5个外显子,4个内含子;其cDNA包含110 bp 5’UTR,576 bp 3’UTR和编码285 aa的编码区。csMyD88与其他鱼类及哺乳类MyD88序列相似性很高,与牙鲆MyD88相似性高于70%。csMyD88包含一个TIR结构域,一个致死域(DD)及连接二者的中间区域(ID)。RT-PCR结果表明csMyD88在不同组织中的表达情况与TLR9类似,在所检测的12种组织中csMyD88都有表达,尤其在脾脏和性腺中表达水平很高。腹腔注射灭活鳗弧菌后,半滑舌鳎脾脏和头肾中MyD88的表达水平显著升高。在半滑舌鳎的发育过程中,csMyD88的表达量表现出随发育时期而变化的特征。csMyD88与其他脊椎动物在序列上及表达特征上的相似性,暗示脊椎动物MyD88在功能及作用机制上的保守性。
     3半滑舌鳎IRAK4基因的克隆及表达分析
     IRAK4在TLR/IL-1R超家族信号转导中具有重要的地位。IRAK4通过磷酸化IRAK1的KD区,激活IRAK1,将信号向下传导。通过拼接核心片段、3’及5’末端得到csIRAK4 cDNA全序列,包括5’UTR 168 bp,3’UTR 580 bp以及ORF 1401 bp。SMART分析表明csIRAK4包含一个典型S_TKc结构域(serine/threonine kinases catalytic domain)和一个致死域。csIRAK4与其他鱼类IRAK4同源性不高,低于50%。在所检测的12种组织中,半滑舌鳎IRAK4都存在表达,尤其是在脾脏、鳍、头肾以及性腺中表达水平很高。Real time PCR结果显示csIRAK4的表达水平在不同发育时期有显著性差异,这与发育时期TLR9及MyD88的表达趋势类似,暗示包含TLR9、MyD88和IRAK4在内的TLR9信号通路可能参与了半滑舌鳎的发育过程。
     4半滑舌鳎IL-1β基因的克隆及表达分析
     炎症反应是抵抗病原体入侵的第一道防线,IL-1β所属白介素-1家族是一簇炎前细胞因子,一旦免疫刺激发生,作为炎症反应中的重要部分,IL-1家族成员的表达量会显著增加,对抗微生物的入侵。例如,当TLR受体识别外来病原后,通过特定的信号通路最终将激活IL-1家族成员的大量表达。csIL-1βcDNA全长,包括5’UTR 130 bp,3’UTR 417 bp以及编码区741 bp,其中3’UTR中包含5个不稳定基序(ATTTA)以及1个加尾信号(AATAAA)。完整的ORF编码246 aa,含有一个典型的IL-1家族特征序列,但未发现interleukin-1- converting enzyme(ICE)识别位点。同源性比较结果显示csIL-1β与大菱鲆IL-1β有64%的同源性。组织表达分析表明csIL-1β与TLR9、MyD88、IRAK4类似,也具有广泛的表达谱,在12中检测组织中都有表达,尤其是免疫相关组织表达量高;不同的是csIL-1β在性腺中表达水平较低。腹腔注射后半滑舌鳎脾脏和头肾中IL-1β的表达量开始增加,并于注射后8 h达到最高点,随后逐渐降低,于注射后48 h恢复至注射前表达水平。
Half-smooth tongue sole (Cynoglossus semilaevis) is a large flatfish species widely distributed alone the coast of China. Because of its good taste and nutrition, C. semilaevis is considered as a commercially important marine fishery resource which is being widely cultured in china. Vibrio anguillarum, a kind of Gram-negative bacterium that causes hemorrhagic septicemia in fishis, is a significant threat to commercial production in marine aquaculture. The cloning of the immune related genes and the research of immune mechanism is helpful to select strains of fish with enhanced resistance to some major diseases.
     Toll-like receptors (TLRs) are considered as key sensors to trigger the host’s innate immune system and adaptive immune responses by recognizing various PAMPs and initiating signal transduction. TLR9, as a member of TLR family, mediates the recognition of unmethylated CpG dinucleotide motifs commonly found in both bacterial and viral genomes. In the current study, the TLR9 gene was isolated from one of flatfish species, C. semilaevis. In the 4588 bp genomic sequence, three exons, two introns, and 5’UTR of 23 bp and 3’UTR of 342 bp were identified. Putative amino acid sequence was 1062 residues long, including a typical conserved cytosolic Toll/interleukin-1 receptor (TIR) domain, 14 leucine-rich repeat (LRR) motifs, with greater than 60% identity to gilthead sea bream Sparus aurata and Japanese flounder Paralichthys olivaceus orthologs. Quantitative RT-PCR analysis indicated a broad expression of csTLR9, especially in spleen and gonads. No statistically significant changes were observed for csTLR9 mRNA levels in spleen and head kidney after inactive V. anguillarum immunisation. In C. semilaevis ontogeny, the expression of csTLR9 appeared to be developmentally regulated. The presence of maternal TLR9 mRNA and the dramatic decrease of TLR9 expression at metamorphic stage indicated TLR9 might be involved in C. semilaevis development. Comparing sequence and expression profile of csTLR9 with mammalian and other piscine TLR9s suggested that the main function of TLR9 might be conserved across vertebrates, although species-specific features were present.
     Myeloid differentiation factor 88 (MyD88) is a universal and crucial adaptor protein, which plays an essential role in the intracellular signaling elicited by IL-1R/TLR superfamily. In the present study, we report the full-length sequence of MyD88 gene in C. semilaevis. In the 2855 bp genomic sequence, five exons and four introns were identified. The cloned cDNA exhibited 110 bp of 5’UTR, 576 bp of 3’UTR and 858 bp of the entire open reading frame encoding a polypeptide of 285 amino acids. The protein sequence included a typical conserved cytosolic Toll/interleukin-1 receptor (TIR) domain, an intermediate domain (ID) and a death domain (DD), and shared greater than 70% identity with Japanese flounder P. olivaceu ortholog. RT-PCR analysis indicated a broad expression of csMyD88, especially in ovary and spleen. Quantitative RT-PCR analysis indicated that the csMyD88 mRNA levels were significantly increased in the spleen and head kidney after inactive V. anguillarum challenge and the expression of csMyD88 appeared to be developmentally regulated during C. semilaevis ontogeny. Although, species-specific differences were present, the similarity between mammalian and piscine MyD88s suggested that the main function of MyD88 might be conserved across vertebrates.
     IL-1 receptor-associated kinases (IRAKs) are important mediators in the signal transduction of IL-1R/TLR superfamily members. IRAK4 is able to phosphorylate IRAK1, and overexpression of dominant-negative IRAK4 is blocking the IL-1-induced activation and modification of IRAK1, suggesting a role of IRAK4 as a central element in the early signal transduction of IL-1R/TLR receptors, upstream of IRAK1. The IRAK4 cDNA encodes a protein with 466 amino acids and a calculated molecular mass of 52 kDa. Analysis of the deduced protein sequence revealed an N-terminal death domain and a central kinase domain (S_TKc domain). The overall sequence identity shared between csIRAK4 and other fish orthologs is low, between 40-50%. A broader analysis of a tissue cDNA panel by RT-PCR revealed different level of expressions in a wide variety of tissues. The strongest expression level was observed in spleen、fin、head kidney and gonads samples. The maternal mRNA of IRAK4 in unfertilised eggs and the dramatic decrease of IRAK4 expression level during metamorphosis suggested the important role of IRAK4 in C. semilaevis development.
     Interleukin-1 (IL-1) is a pleiotropic paracrine and endocrine signaling molecule and is produced by a variety of cell types. The major functions of IL-1βare activation of the proliferation of such lymphocytes as T cells and B cells, activation of cytotoxic activity in macrophage and natural killer (NK) cells, and induction of immunoglobulin (Ig) secretion. The full-length cDNA sequence of IL-1βfrom the C. semilaevis was determined by using PCR with primers designed from known fish IL-1βsequences followed by elongation of the 5’and 3’ends using RACE. The cDNA contains 130 bp 5’UTR, a single ORF of 741 bp that translates into a 247 aa molecule, 417 bp 3’UTR with five cytokine RNA instability motifs (ATTTA), and a polyadenylation signal (AATAAA) at 15 nucleotides upstream of the poly(A) tail. The deduced aa of csIL-1βshowed the highest identity (64%) with Scophthalmus maximus IL-1β. csIL-1βgene was strongly expressed in spleen, fin and head kidney and weakly expressed in muscle. After stimulation with V. anguillarum, we found a significantly increased level of IL-1βexpression in head kidney and spleen compared to that of blank control. In the head kidney and spleen of C. semilaevis stimulated by inactive V. anguillarum showed a peak level of IL-1βexpression at 8 h after intraperitoneal injection, and recovered at 48 h.
引文
刘云.牙鲆免疫系统形态结构、发育和感染病理反应的研究. 2003,中国海洋大学博士学位论文.
    王长法,张士璀,王勇军.补体系统的进化[J].海洋科学,2004,28(8): 55-58.
    杨先乐.鱼类免疫学研究进展[J].水产学报,1989,13(3): 272-284.
    钟明超,黄浙.鲇鱼淋巴样器官的发育[J].水产学报,1995,19(3): 262-327.
    刘作金,刘长安,龚建平. IRAK-4: TLR/IL-1R家族共同信号转导系统中的关键因子[J].生理科学进展,2005,36(3): 276-279.
    章卓,万敬员,周岐新. IRAK家族中TIR信号通路的关键因子[J].免疫学杂志,2006,22(3): 76-79.
    郭甫坤,吴曙光.白介素1信号转导研究进展[J].国外医学分子生物学分册,2001,23 (1): 13-15.
    Abdollahi-Roodsaz S, Joosten LA, Koenders MI, Devesa I, Roelofs MF, Radstake TR, Heuvelmans-Jacobs M, Akira S, Nicklin MJ, Ribeiro-Dias F, van den Berg WB (2008) Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J.Clin.Invest 118:205-216
    Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406:782-787
    Barton GM, Kagan JC, Medzhitov R (2006) Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat.Immunol. 7:49-56
    Bauer AK, Dixon D, DeGraff LM, Cho HY, Walker CR, Malkinson AM, Kleeberger SR (2005) Toll-like receptor 4 in butylated hydroxytoluene-induced mouse pulmonary inflammation and tumorigenesis. J.Natl.Cancer Inst. 97:1778-1781
    Bell JK, Mullen GE, Leifer CA, Mazzoni A, Davies DR, Segal DM (2003) Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol. 24:528-533
    Belvin MP, Anderson KV (1996) A conserved signaling pathway: the Drosophilatoll-dorsal pathway. Annu.Rev.Cell Dev.Biol. 12:393-416
    Bird S, Wang T, Zou J, Cunningham C, Secombes CJ (2002) The first cytokine sequence within cartilaginous fish: IL-1 beta in the small spotted catshark (Scyliorhinus canicula). J.Immunol. 168:3329-3340
    Biswas A, Banerjee P, Mukherjee G (2007) Porin of Shigella dysenteriae activates mouse peritoneal macrophage through Toll-like receptors 2 and 6 to induce polarized type I response. Mol Immunol. 44(5):812-820
    Boldin MP, Mett IL, Varfolomeev EE, Chumakov I, Shemer-Avni Y, Camonis JH, Wallach D (1995) Self-association of the "death domains" of the p55 tumor necrosis factor (TNF) receptor and Fas/APO1 prompts signaling for TNF and Fas/APO1 effects. J.Biol.Chem. 270:387-391
    Bolker JA, Hakala TF, Quist JE (2005) Pigmentation development, defects, and patterning in summer flounder (Paralichthys dentatus). Zoology.(Jena) 108:183-193
    Buonocore F, Prugnoli D, Falasca C, Secombes CJ, Scapigliati G (2003) Peculiar gene organisation and incomplete splicing of sea bass (Dicentrarchus labrax L) interleukin-1beta. Cytokine 21:257-264
    Burns K, Janssens S, Brissoni B, Olivos N, Beyaert R, Tschopp J (2003) Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J.Exp.Med. 197:263-268
    Burns K, Martinon F, Esslinger C, Pahl H, Schneider P, Bodmer JL, Di MF, French L, Tschopp J (1998) MyD88, an adapter protein involved in interleukin-1 signaling. J.Biol.Chem. 273:12203-12209
    Cao Z, Henzel WJ, Gao X (1996) IRAK: a kinase associated with the interleukin-1 receptor. Science 271:1128-1131
    Chantanachookhin CST, Tanaka M (1991) Comparative study of the ontogeny of the lymphoid organs in three species of marine fish. Aquaculture. 99: 143-155
    Chaves-Pozo E, Liarte S, Fernandez-Alacid L, Abellan E, Meseguer J, Mulero V, Garcia-Ayala A (2008) Pattern of expression of immune-relevant genes in thegonad of a teleost, the gilthead seabream (Sparus aurata L.). Mol.Immunol. 45:2998-3011
    Chen ZJ (2005) Ubiquitin signalling in the NF-kappaB pathway. Nat.Cell Biol. 7:758-765
    Chuang T, Ulevitch RJ (2001) Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. Biochim.Biophys.Acta 1518:157-161
    Chuang TH, Ulevitch RJ (2000) Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur.Cytokine Netw. 11:372-378
    Colonna M (2006) Toll-like receptors and IFN-alpha: partners in autoimmunity. J.Clin.Invest 116:2319-2322
    Corripio-Miyar Y, Bird S, Tsamopoulos K, Secombes CJ (2007) Cloning and expression analysis of two pro-inflammatory cytokines, IL-1 beta and IL-8, in haddock (Melanogrammus aeglefinus). Mol.Immunol. 44:1361-1373
    Cuesta A, Esteban MA, Meseguer J (2008) The expression profile of TLR9 mRNA and CpG ODNs immunostimulatory actions in the teleost gilthead seabream points to a major role of lymphocytes. Cell Mol.Life Sci. 65:2091-2104
    Dalmo RA, Ingebrigtsen K, Bogwald J (1997) Non-specific defence mechanisms in fish, with particular reference to the reticulo endothelial system (RES). Fish Dis. 20:241-273
    Davidson G A, Lin SH, Secombes CJ (1997) Detection of specific and constitutive antibody secreting cells in the gills, head kidney and peripheral blood leucocytes of dab (Limanda limanda). Vet Immunol Immunopathol. 58:363-374
    Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103:351-361
    Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87:2095-2147
    Du X, Poltorak A, Wei Y, Beutler B (2000) Three novel mammalian toll-like receptors:gene structure, expression, and evolution. Eur.Cytokine Netw. 11:362-371
    Engelsma MY, Stet RJ, Schipper H, Verburg-van Kemenade BM (2001) Regulation of interleukin 1 beta RNA expression in the common carp, Cyprinus carpio L. Dev.Comp Immunol. 25:195-203
    Feinstein E, Kimchi A, Wallach D, Boldin M, Varfolomeev E (1995) The death domain: a module shared by proteins with diverse cellular functions. Trends Biochem.Sci. 20:342-344
    Findlay C, Tatner MF (1994) Comparative study of T-lymphocyte and B-lymphocyte in rainbow trout (Oncorhynchus mykiss) following their separation by nylon wool adherence and lactin agglutination technique. Comparative Haematology International. 4:55-60
    Franch R, Cardazzo B, Antonello J, Castagnaro M, Patarnello T, Bargelloni L (2006) Full-length sequence and expression analysis of Toll-like receptor 9 in the gilthead seabream (Sparus aurata L.). Gene 378:42-51
    Frantz S, Kelly RA, Bourcier T (2001) Role of TLR-2 in the activation of nuclear factor kappaB by oxidative stress in cardiac myocytes. J.Biol.Chem. 276:5197-5203
    Frasnelli ME, Tarussio D, Chobaz-Peclat V, Busso N, So A (2005) TLR2 modulates inflammation in zymosan-induced arthritis in mice. Arthritis Res.Ther. 7:R370-R379
    Fujiki K, Shin DH, Nakao M, Yano T (2000) Molecular cloning and expression analysis of carp (Cyprinus carpio) interleukin-1 beta, high affinity immunoglobulin E Fc receptor gamma subunit and serum amyloid A. Fish.Shellfish.Immunol. 10:229-242
    Goldstein DR (2004) Toll-like receptors and other links between innate and acquired alloimmunity. Curr.Opin.Immunol. 16:538-544
    Grace MF, Manning MJ (1980) Histogenesis of the lymphoid organ in rainbow trout: J. Developmental Comparative Immunology. 4:255-264
    Grontvedt RN, Espelid S (2003) Immunoglobulin producing cells in the spotted wolffish (Anarhichas minor Olafsen): localization in adults and during juveniledevelopment. Dev.Comp Immunol. 27:569-578
    Hacker H, Vabulas RM, Takeuchi O, Hoshino K, Akira S, Wagner H (2000) Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J.Exp.Med. 192:595-600
    Haines BP, Gupta R, Jones CM, Summerbell D, Rigby PW (2005) The NLRR gene family and mouse development: Modified differential display PCR identifies NLRR-1 as a gene expressed in early somitic myoblasts. Dev.Biol. 281:145-159 Hansen JD, Zapata AG (1998) Lymphocyte development in fish and amphibians. Immunol.Rev. 166:199-220
    Hardiman G, Rock FL, Balasubramanian S, Kastelein RA, Bazan JF (1996) Molecular characterization and modular analysis of human MyD88. Oncogene 13:2467-2475
    Hashimoto C, Hudson K L, Anderson K V (1988) The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity,appears to encode a transmembrane protein. Cell. 52:269-279
    Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099-1103
    Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev. 18:2195-2224 He W, Liu Q, Wang L, Chen W, Li N, Cao X (2007) TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol.Immunol. 44:2850-2859
    Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat.Immunol. 3:196-200
    Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740-745
    Hochrein H, Schlatter B, O'Keeffe M, Wagner C, Schmitz F, Schiemann M, Bauer S, Suter M, Wagner H (2004) Herpes simplex virus type-1 induces IFN-alphaproduction via Toll-like receptor 9-dependent and -independent pathways. Proc.Natl.Acad.Sci.U.S.A 101:11416-11421
    Hoffmann JA, Reichhart JM (2002) Drosophila innate immunity: an evolutionary perspective. Nat.Immunol. 3:121-126
    Honda K, Ohba Y, Yanai H, Negishi H, Mizutani T, Takaoka A, Taya C, Taniguchi T (2005) Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 434:1035-1040
    Honda K, Yanai H, Mizutani T, Negishi H, Shimada N, Suzuki N, Ohba Y, Takaoka A, Yeh WC, Taniguchi T (2004) Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc.Natl.Acad.Sci.U.S.A 101:15416-15421
    Hong S, Zou J, Crampe M, Peddie S, Scapigliati G, Bols N, Cunningham C, Secombes CJ (2001) The production and bioactivity of rainbow trout (Oncorhynchus mykiss) recombinant IL-1 beta. Vet.Immunol.Immunopathol. 81:1-14
    Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J.Immunol. 168:4531-4537
    Hozono Y, Ueta M, Hamuro J, Kojima K, Kawasaki S, Yamazaki K, Kinoshita S (2006) Human corneal epithelial cells respond to ocular-pathogenic, but not to nonpathogenic-flagellin. Biochem.Biophys.Res.Commun. 347:238-247
    Hultmark D (1994) Macrophage differentiation marker MyD88 is a member of the Toll/IL-1 receptor family. Biochem.Biophys.Res.Commun. 199:144-146
    Huttenhuis HB, Grou CP, Taverne-Thiele AJ, Taverne N, Rombout JH (2006) Carp (Cyprinus carpio L.) innate immune factors are present before hatching. Fish.Shellfish.Immunol. 20:586-596
    Imagawa T, Hashimoto Y, Kon Y (l991) (Cyprinus carpio L) Immunoglobulin containing cells in the head kidney of after bovine serum albumin ininjection. Fish Shellfish Immunology. 1:173-185
    Ingerslev HC, Cunningham C, Wergeland HI (2006) Cloning and expression of TNF-alpha, IL-1beta and COX-2 in an anadromous and landlocked strain of Atlantic salmon (Salmo salar L.) during the smolting period. Fish.Shellfish.Immunol. 20:450-461
    Ishii KJ, Akira S (2005) Innate immune recognition of nucleic acids: beyond toll-like receptors. Int.J.Cancer 117:517-523
    Ishii KJ, Akira S (2006) Innate immune recognition of, and regulation by, DNA. Trends Immunol. 27:525-532
    Itoh N, Nagata S (1993) A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J.Biol.Chem. 268:10932-10937
    Ivison SM, Khan MA, Graham NR, Bernales CQ, Kaleem A, Tirling CO, Cherkasov A, Steiner TS (2007) A phosphorylation site in the Toll-like receptor 5 TIR domain is required for inflammatory signalling in response to flagellin. Biochem.Biophys.Res.Commun. 352:936-941
    Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat.Immunol. 5:987-995
    Janssens S, Beyaert R (2002) A universal role for MyD88 in TLR/IL-1R-mediated signaling. Trends Biochem.Sci. 27:474-482
    Janssens S, Beyaert R (2003) Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol.Cell 11:293-302
    Jarrous N, Kaempfer R (1994) Induction of human interleukin-1 gene expression by retinoic acid and its regulation at processing of precursor transcripts. J.Biol.Chem. 269:23141-23149
    Jault C, Pichon L, Chluba J (2004) Toll-like receptor gene family and TIR-domain adapters in Danio rerio. Mol.Immunol. 40:759-771
    Joosten LA, Koenders MI, Smeets RL, Heuvelmans-Jacobs M, Helsen MM, Takeda K, Akira S, Lubberts E, van de Loo FA, van den Berg WB (2003) Toll-like receptor 2 pathway drives streptococcal cell wall-induced joint inflammation: critical role of myeloid differentiation factor 88. J.Immunol. 171:6145-6153
    Josefsson S, Tatner MF (1993) Histogenesis of the lymphoid organs in seabream (Sparus aurata L .). Fish Shellfish Immunol. 3: 35-49
    Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O, Akira S (2004) Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat.Immunol. 5:1061-1068
    Kerfoot SM, Long EM, Hickey MJ, Andonegui G, Lapointe BM, Zanardo RC, Bonder C, James WG, Robbins SM, Kubes P (2004) TLR4 contributes to disease-inducing mechanisms resulting in central nervous system autoimmune disease. J.Immunol. 173:7070-7077
    Kindrachuk J, Potter J, Wilson HL, Griebel P, Babiuk LA, Napper S (2008) Activation and regulation of toll-like receptor 9: CpGs and beyond. Mini.Rev.Med.Chem. 8:590-600
    Kirk P, Bazan JF (2005) Pathogen recognition: TLRs throw us a curve. Immunity. 23:347-350
    Kopp E, Medzhitov R, Carothers J, Xiao C, Douglas I, Janeway CA, Ghosh S (1999) ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes Dev. 13:2059-2071
    Kudo S, Yazawa S (1995) Binding of bacterial toxins to glycoproteins in the envelopes of rainbow trout eggs. Histochem.J. 27:300-308
    Lange S, Dodds AW, Magnadottir B (2004) Isolation and characterization of complement component C3 from Atlantic cod (Gadus morhua L.) and Atlantic halibut (Hippoglossus hippoglossus L.). Fish Shellfish Immunol. 16:227-239
    Lee DS, Hong SH, Lee HJ, Jun LJ, Chung JK, Kim KH, Jeong HD (2006) Molecular cDNA cloning and analysis of the organization and expression of the IL-1beta gene in the Nile tilapia, Oreochromis niloticus. Comp Biochem.Physiol A Mol.Integr.Physiol 143:307-314
    Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973-983
    Li C, Zienkiewicz J, Hawiger J (2005) Interactive sites in the MyD88 Toll/interleukin (IL) 1 receptor domain responsible for coupling to the IL1beta signaling pathway. J.Biol.Chem. 280:26152-26159
    Lin SH, Davidson G, Secombes CJ, Ellis AE (2000) Use of a lipid-emulsion carrier for immunisation of dab (Limanda limanda) by bath and oral routes: an assessment of systemic and mucosal antibody responses. Aquaculture.181:11-24
    Li S, Strelow A, Fontana EJ, Wesche H (2002) IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc.Natl.Acad.Sci.U.S.A 99:5567-5572
    Liu B, Dai J, Zheng H, Stoilova D, Sun S, Li Z (2003) Cell surface expression of an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune diseases. Proc.Natl.Acad.Sci.U.S.A 100:15824-15829
    Lord KA, Hoffman-Liebermann B, Liebermann DA (1990) Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene 5:1095-1097
    Lye E, Mirtsos C, Suzuki N, Suzuki S, Yeh WC (2004) The role of interleukin 1 receptor-associated kinase-4 (IRAK-4) kinase activity in IRAK-4-mediated signaling. J.Biol.Chem. 279:40653-40658
    Manson FDS, Fletcher TC, Gcbday GW (1992) Localisation of chitinolytic enzymes in blood of turbot, and their possible roles in defence. J Fish Bio1. 40: 919-927
    Marsland BJ, Nembrini C, Grun K, Reissmann R, Kurrer M, Leipner C, Kopf M (2007) TLR ligands act directly upon T cells to restore proliferation in the absence of protein kinase C-theta signaling and promote autoimmune myocarditis. J.Immunol. 178:3466-3473
    Marta M, Andersson A, Isaksson M, Kampe O, Lobell A (2008) Unexpected regulatory roles of TLR4 and TLR9 in experimental autoimmune encephalomyelitis. Eur.J.Immunol. 38:565-575
    Marty RR, Dirnhofer S, Mauermann N, Schweikert S, Akira S, Hunziker L, Penninger JM, Eriksson U (2006) MyD88 signaling controls autoimmune myocarditisinduction. Circulation 113:258-265
    Mastellos D, Lambris JD (2002) Complement: more than a 'guard' against invading pathogens? Trends Immunol. 23:485-491
    McGettrick AF, O'Neill LA (2004) The expanding family of MyD88-like adaptors in Toll-like receptor signal transduction. Mol.Immunol. 41:577-582
    Medvedev AE, Lentschat A, Wahl LM, Golenbock DT, Vogel SN (2002) Dysregulation of LPS-induced Toll-like receptor 4-MyD88 complex formation and IL-1 receptor-associated kinase 1 activation in endotoxin-tolerant cells. J.Immunol. 169:5209-5216
    Medzhitov R, Janeway CA, Jr. (1997) Innate immunity: impact on the adaptive immune response. Curr.Opin.Immunol. 9:4-9
    Meijer AH, Gabby Krens SF, Medina R, I, He S, Bitter W, Ewa Snaar-Jagalska B, Spaink HP (2004) Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish. Mol.Immunol. 40:773-783
    Merino-contreras ML, Guzman-murillo MA, Ruiz-bustos E, Romeroa MJ, Cadena-Roab MA, Ascencio F (2001) Mucosal immune response of spotted sand bass Paralabrax maculatofasciatus (Steindachner, 1868) orally immunised with an extracellular lectin of Aeromonas veronii. Fish.Shellfish.Immunol.11:115-126
    Milas L, Mason KA, Ariga H, Hunter N, Neal R, Valdecanas D, Krieg AM, Whisnant JK (2004) CpG oligodeoxynucleotide enhances tumor response to radiation. Cancer Res. 64:5074-5077
    Miller NW, Rycyzyn MA, Wilson MR, Warr GW, Naftel JP, Clem LW (1994) Development and characterization of channel catfish long term B cell lines. J Immunol. 126: 2180-2189
    Moore JD, Ototake M, Nakanishi T (1998) Particulate antigen uptake during immersion immunisation of fish: the effectiveness of prolonged exposure and the roles of skin and gill. J Fish Shellfish Immunol. 8: 393-407
    Muraille E, De TC, Brait M, De BP, Leo O, Carlier Y (2003) Genetically resistant mice lacking MyD88-adapter protein display a high susceptibility to Leishmania major infection associated with a polarized Th2 response. J.Immunol.170:4237-4241
    Nishiya T, Kajita E, Horinouchi T, Nishimoto A, Miwa S (2007) Distinct roles of TIR and non-TIR regions in the subcellular localization and signaling properties of MyD88. FEBS Lett. 581:3223-3229
    Nusslein-Volhard C, Lohs-Schardin M, Sander K, Cremer C (1980) A dorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila. Nature 283:474-476
    Okada N, Takagi Y, Seikai T, Tanaka M, Tagawa M (2001) Asymmetrical development of bones and soft tissues during eye migration of metamorphosing Japanese flounder, Paralichthys olivaceus. Cell Tissue Res. 304:59-66
    Okamoto M, Oshikawa T, Tano T, Ahmed SU, Kan S, Sasai A, Akashi S, Miyake K, Moriya Y, Ryoma Y, Saito M, Sato M (2006) Mechanism of anticancer host response induced by OK-432, a streptococcal preparation, mediated by phagocytosis and Toll-like receptor 4 signaling. J.Immunother. 29:78-86
    O'Neill LA (2003) The role of MyD88-like adapters in Toll-like receptor signal transduction. Biochem.Soc.Trans. 31:643-647
    O'Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat.Rev.Immunol. 7:353-364
    O'Neill LA, Dunne A, Edjeback M, Gray P, Jefferies C, Wietek C (2003) Mal and MyD88: adapter proteins involved in signal transduction by Toll-like receptors. J.Endotoxin.Res. 9:55-59
    Opsal MA, Vage DI, Hayes B, Berget I, Lien S (2006) Genomic organization and transcript profiling of the bovine toll-like receptor gene cluster TLR6-TLR1-TLR10. Gene 384:45-50
    
    Ortuno J, Esteban MA, Meseguer J (1999) Effect of high dietary intake of vitamin C on non-specific immune response of gilthead seadream(Sparus aurata L.). Fish Shellfish Immunology. 5:429-443
    Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T (2003) TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat.Immunol. 4:161-167
    Oshiumi H, Tsujita T, Shida K, Matsumoto M, Ikeo K, Seya T (2003) Prediction of the prototype of the human Toll-like receptor gene family from the pufferfish, Fugu rubripes, genome. Immunogenetics 54:791-800
    Palladino MA, Johnson TA, Gupta R, Chapman JL, Ojha P (2007) Members of the Toll-like receptor family of innate immunity pattern-recognition receptors are abundant in the male rat reproductive tract. Biol.Reprod. 76:958-964
    Park KH, Jeong HD (1996) Enhanced resistance against Edwardsiella tarda infection in tilapia(Oreochromis niloticus)by administration of protein bound polysaccharide. Aquaculture.143:135-143
    Pelegrin P, Garcia-Castillo J, Mulero V, Meseguer J (2001) Interleukin-1beta isolated from a marine fish reveals up-regulated expression in macrophages following activation with lipopolysaccharide and lymphokines. Cytokine 16:67-72
    Peng SL (2005) Signaling in B cells via Toll-like receptors. Curr.Opin.Immunol. 17:230-236
    Petrie-Hanson L, Ainsworth AJ (2000) Differential cytochemical staining characteristics of channel catfish leukocytes identify cell populations in lymphoid organs. Vet.Immunol.Immunopathol. 73:129-144
    Picchietti S, Taddei AR, Scapigliati G, Buonocore F, Fausto AM, Romano N, Mazzini M, Mastrolia L, Abelli L (2004) Immunoglobulin protein and gene transcripts in ovarian follicles throughout oogenesis in the teleost Dicentrarchus labrax. Cell Tissue Res. 315:259-270
    Poltorak A, Smirnova I, He X, Liu MY, Van HC, McNally O, Birdwell D, Alejos E, Silva M, Du X, Thompson P, Chan EK, Ledesma J, Roe B, Clifton S, Vogel SN, Beutler B (1998) Genetic and physical mapping of the Lps locus: identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol.Dis. 24:340-355
    Prothmann C, Armstrong NJ, Rupp RA (2000) The Toll/IL-1 receptor binding protein MyD88 is required for Xenopus axis formation. Mech.Dev. 97:85-92
    Qian Y, Commane M, Ninomiya-Tsuji J, Matsumoto K, Li X (2001) IRAK-mediated translocation of TRAF6 and TAB2 in the interleukin-1-induced activation ofNFkappa B. J.Biol.Chem. 276:41661-41667
    Qiu L, Song L, Yu Y, Xu W, Ni D, Zhang Q (2007) Identification and characterization of a myeloid differentiation factor 88 (MyD88) cDNA from Zhikong scallop Chlamys farreri. Fish.Shellfish.Immunol. 23:614-623
    Rehli M (2002) Of mice and men: species variations of Toll-like receptor expression. Trends Immunol. 23:375-378
    Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF (1998) A family of human receptors structurally related to Drosophila Toll. Proc.Natl.Acad.Sci.U.S.A 95:588-593
    Rombout JH, Huttenhuis HB, Picchietti S, Scapigliati G (2005) Phylogeny and ontogeny of fish leucocytes. Fish.Shellfish.Immunol. 19:441-455
    Rutz M, Metzger J, Gellert T, Luppa P, Lipford GB, Wagner H, Bauer S (2004) Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur.J.Immunol. 34:2541-2550
    Saegusa S, Totsuka M, Kaminogawa S, Hosoi T (2004) Candida albicans and Saccharomyces cerevisiae induce interleukin-8 production from intestinal epithelial-like Caco-2 cells in the presence of butyric acid. FEMS Immunol.Med.Microbiol. 41:227-235
    Salaun B, Coste I, Rissoan MC, Lebecque SJ, Renno T (2006) TLR3 can directly trigger apoptosis in human cancer cells. J.Immunol. 176:4894-4901
    Scanga CA, Aliberti J, Jankovic D, Tilloy F, Bennouna S, Denkers EY, Medzhitov R, Sher A (2002) Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells. J.Immunol. 168:5997-6001
    Scapigliati G, Buonocore F, Bird S, Zou J, Pelegrin P, Falasca C, Prugnoli D, Secombes CJ (2001) Phylogeny of cytokines: molecular cloning and expression analysis of sea bass Dicentrarchus labrax interleukin-1beta. Fish.Shellfish.Immunol. 11:711-726
    Sebastiani G, Leveque G, Lariviere L, Laroche L, Skamene E, Gros P, Malo D (2000) Cloning and characterization of the murine toll-like receptor 5 (Tlr5) gene:sequence and mRNA expression studies in Salmonella-susceptible MOLF/Ei mice. Genomics 64:230-240
    Seppola M, Larsen AN, Steiro K, Robertsen B, Jensen I (2008) Characterisation and expression analysis of the interleukin genes, IL-1beta, IL-8 and IL-10, in Atlantic cod (Gadus morhua L.). Mol.Immunol. 45:887-897
    Sepulcre MP, Lopez-Castejon G, Meseguer J, Mulero V (2007) The activation of gilthead seabream professional phagocytes by different PAMPs underlines the behavioural diversity of the main innate immune cells of bony fish. Mol.Immunol. 44:2009-2016
    Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J (2003) Triggering the interferon antiviral response through an IKK-related pathway. Science 300:1148-1151
    Shen B, Manley JL (1998) Phosphorylation modulates direct interactions between the Toll receptor, Pelle kinase and Tube. Development 125:4719-4728
    Shiraki R, Inoue N, Kawasaki S, Takei A, Kadotani M, Ohnishi Y, Ejiri J, Kobayashi S, Hirata K, Kawashima S, Yokoyama M (2004) Expression of Toll-like receptors on human platelets. Thromb.Res. 113:379-385
    Shyun Li, Astrid Strelow, Elizabeth J. Fontana, Holger Wesche (2002) IRAK-4: A novel member of the IRAK family with the properties of an IRAK-kinase. PNAS. 99 (8): 5567-5572
    Silver KL, Crockford TL, Bouriez-Jones T, Milling S, Lambe T, Cornall RJ (2007) MyD88-dependent autoimmune disease in Lyn-deficient mice. Eur.J.Immunol. 37:2734-2743
    Slack JL, Schooley K, Bonnert TP, Mitcham JL, Qwarnstrom EE, Sims JE, Dower SK (2000) Identification of two major sites in the type I interleukin-1 receptor cytoplasmic region responsible for coupling to pro-inflammatory signaling pathways. J.Biol.Chem. 275:4670-4678
    Solem ST, Stenvik J (2006) Antibody repertoire development in teleosts--a review with emphasis on salmonids and Gadus morhua L. Dev.Comp Immunol. 30:57-76
    Song Y L (1977) Evolution of the lymphoid system II.Evidence for immunoglobulindeterminants on all rainbow trout lymphcytes and demonstration of mixed leukocyte reaction. Eur J tmmuno1. 7:881-887
    Stathopoulos A, Levine M (2002) Linear signaling in the Toll-Dorsal pathway of Drosophila: activated Pelle kinase specifies all threshold outputs of gene expression while the bHLH protein Twist specifies a subset. Development 129:3411-3419
    Strandskog G, Skjaeveland I, Ellingsen T, Jorgensen JB (2008) Double-stranded RNA- and CpG DNA-induced immune responses in Atlantic salmon: comparison and synergies. Vaccine 26:4704-4715
    Su SB, Silver PB, Grajewski RS, Agarwal RK, Tang J, Chan CC, Caspi RR (2005) Essential role of the MyD88 pathway, but nonessential roles of TLRs 2, 4, and 9, in the adjuvant effect promoting Th1-mediated autoimmunity. J.Immunol. 175:6303-6310
    Suzuki N, Suzuki S, Duncan GS, Millar DG, Wada T, Mirtsos C, Takada H, Wakeham A, Itie A, Li S, Penninger JM, Wesche H, Ohashi PS, Mak TW, Yeh WC (2002) Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 416:750-756
    Szabo C (2003) Role of flagellin in the pathogenesis of shock and acute respiratory distress syndrome: therapeutic opportunities. Crit Care Med. 31:S39-S45
    Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K, Ninomiya-Tsuji J, Matsumoto K (2000) TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol.Cell 5:649-658
    Takano T, Kondo H, Hirono I, Endo M, Saito-Taki T, Aoki T (2007) Molecular cloning and characterization of Toll-like receptor 9 in Japanese flounder, Paralichthys olivaceus. Mol.Immunol. 44:1845-1853
    Takano T, Kondo H, Hirono I, Saito-Taki T, Endo M, Aoki T (2006) Identification and characterization of a myeloid differentiation factor 88 (MyD88) cDNA and gene in Japanese flounder, Paralichthys olivaceus. Dev.Comp Immunol. 30:807-816
    Takeshita F, Suzuki K, Sasaki S, Ishii N, Klinman DM, Ishii KJ (2004)Transcriptional regulation of the human TLR9 gene. J.Immunol. 173:2552-2561
    Tartaglia LA, Ayres TM, Wong GH, Goeddel DV (1993) A novel domain within the 55 kd TNF receptor signals cell death. Cell 74:845-853
    Tauszig-Delamasure S, Bilak H, Capovilla M, Hoffmann JA, Imler JL (2002) Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nat.Immunol. 3:91-97
    Trede NS, Langenau DM, Traver D, Look AT, Zon LI (2004) The use of zebrafish to understand immunity. Immunity. 20:367-379
    Uematsu S, Sato S, Yamamoto M, Hirotani T, Kato H, Takeshita F, Matsuda M, Coban C, Ishii KJ, Kawai T, Takeuchi O, Akira S (2005) Interleukin-1
    receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-{alpha} induction. J.Exp.Med. 201:915-923
    van DD, Medzhitov R, Shaw AC (2006) Triggering TLR signaling in vaccination. Trends Immunol. 27:49-55
    van der Sar AM, Stockhammer OW, van der LC, Spaink HP, Bitter W, Meijer AH (2006) MyD88 innate immune function in a zebrafish embryo infection model. Infect.Immun. 74:2436-2441
    Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:346-351
    Wang ZY, Yang D, Chen Q, Leifer CA, Segal DM, Su SB, Caspi RR, Howard ZO, Oppenheim JJ (2006) Induction of dendritic cell maturation by pertussis toxin and its B subunit differentially initiate Toll-like receptor 4-dependent signal transduction pathways. Exp.Hematol. 34:1115-1124
    Watters TM, Kenny EF, O'Neill LA (2007) Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol.Cell Biol. 85:411-419
    Weber CH, Vincenz C (2001) The death domain superfamily: a tale of two interfaces? Trends Biochem.Sci. 26:475-481
    Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z (1997) MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity. 7:837-847
    Xu Y, Tao X, Shen B, Horng T, Medzhitov R, Manley JL, Tong L (2000) Structuralbasis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408:111-115
    Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K, Akira S (2002) Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J.Immunol. 169:6668-6672
    Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301:640-643 Yin Z, Kwang J (2000) Carp interleukin-1 beta in the role of an immuno-adjuvant. Fish.Shellfish.Immunol. 10:375-378
    Zarember KA, Godowski PJ (2002) Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J.Immunol. 168:554-561
    Zhang YW, Davis EG, Blecha F, Wilkerson MJ (2008) Molecular cloning and characterization of equine Toll-like receptor 9. Vet.Immunol.Immunopathol. 124:209-219
    Zou J, Cunningham C, Secombes CJ (1999) The rainbow trout Oncorhynchus mykiss interleukin-1 beta gene has a differ organization to mammals and undergoes incomplete splicing. Eur.J.Biochem. 259:901-908

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700