用户名: 密码: 验证码:
克氏原螯虾Kazal型丝氨酸蛋白酶抑制因子基因克隆、表达及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
克氏原螯虾(红沼泽螯虾,也称淡水小龙虾,属节肢动物门,甲壳纲,十足目,蜊蛄科,原螯虾属)是一种在实验室内研究无脊椎动物先天免疫的良好模型,同时也是一种重要的经济动物。利用其开展先天免疫研究,特别是开展抗甲壳动物主要病原(白斑综合征病毒和弧菌)免疫机理研究,必将进一步丰富甲壳类动物的先天免疫理论,同时也可为甲壳动物疾病的防治提供重要的理论参考。
     白斑综合征病毒(WSSV)是对虾的主要病原之一,同时也是其他甲壳动物如淡水小龙虾、蟹及龙虾等的重要病原。为研究WSSV对小龙虾的感染规律,并为进一步开展小龙虾先天免疫研究提供必要的数据,本研究首先建立了以实时定量PCR为基础的WSSV定量方法。研究结果表明,使用该方法定量WSSV具有快速、灵敏及准确的特点,很好的解决了下一步WSSV感染实验感染剂量的问题。
     以前研究表明淡水小龙虾重要的免疫相关基因主要存在于血细胞和肝胰腺中。为了深入地研究小龙虾的先天免疫机制及抗WSSV机理,我们首先用一定量的WSSV感染小龙虾,感染96 h后,取含血细胞丰富的鳃和肝胰腺组织混合物提取mRNA,用于构建小龙虾的cDNA文库。对构建的cDNA文库进行测序、在线比对及序列整理,从中鉴定了四个具有全长cDNA序列的Kazal型丝氨酸蛋白酶抑制因子,分别命名为hcPcSPI1、hcPcSPI2、hpPcSPI3及hpPcSPI4。
     为研究这四个抑制因子的组织分布及进化关系,我们首先采用半定量RT-PCR方法检测这四个基因在RNA水平的组织分布。随后对这四个抑制因子做了全长及单结构域的同源性比较,并进一步分析与其它物种抑制因子的进化关系。研究结果显示hcPcSPI1和hcPcSPI2主要来源于血细胞,hpPcSPI3和hpPcSPI4主要分布于肝胰腺和心组织;同源性比较显示,这四个抑制因子同源性为42.47%,其中来源于肝胰腺的两个抑制因子的同源性为56.67%,而来源于血细胞的hcPcSPI1与hcPcSPI2同源性只有23.73%。进化树分析显示,与来源于对虾肝胰腺的七个抑制因子形成一个大的分支不同,hpPcSPI3和hpPcSPI4形成一个较小的分支。表明这两个抑制因子从进化关系上看与其它肝胰腺型抑制因子距离较远;而它们两个之间同源性较高,进化相对保守。另外,来源于甲壳动物血细胞的这些抑制因子形成了另一个较大的分支,但节点值较低,表明来源于甲壳动物血细胞的抑制因子进化较快。
     为研究这四个抑制因子是否参与抗WSSV的免疫反应,并进一步检测是否参与抗细菌的免疫反应,采用实时定量RT-PCR的方法检测了在WSSV或细菌刺激条件下四个抑制因子在转录水平上的变化规律。结果显示:在受到WSSV刺激时hcPcSPI2和hpPcSPI3表达量上调,hcPcSPI1的表达先下调而后逐渐恢复,而hpPcSPI4表达量没有变化;在受到革兰氏阴性细菌刺激后,四个抑制因子表达量均上调。以上结果表明:hcPcSPI1、hcPcSPI2和hpPcSPI3以不同的方式参与小龙虾的抗WSSV免疫反应;同时这四个抑制因子还可能均参与小龙虾的抗革兰氏阴性细菌的免疫反应。
     存在于甲壳动物血淋巴中的Kazal型丝氨酸蛋白酶抑制因子被认为参与调控宿主的免疫防御反应或对抗入侵病原微生物分泌的蛋白酶。因此,我们对来源于血细胞的两个抑制因子做了进一步的研究。
     对hcPcSPI1序列分析结果表明:该抑制因子具有三个Kazal结构域,其活性位点的氨基酸分别是L、L和E。该蛋白具有信号肽,并且在其第一与第二个结构域之间还含有一个RGD基序。在蛋白水平上hcPcSPI1主要存在于血细胞中,同时在其他组织如心、鳃和肠中也有少量分布。蛋白水平的进一步分析显示其在受到大肠杆菌刺激后表达上调,表明其可能参与抗大肠杆菌的免疫反应。为进一步研究该抑制因子的生物学及生理功能,首先对hcPcSPI1及其三个结构域分别进行原核表达及纯化。蛋白酶活性抑制实验表明:这四个蛋白对枯草蛋白酶A及蛋白酶K都具有抑制活性,而对胰凝乳蛋白酶和胰蛋白酶没有抑制活性。重组的hcPcSPI1能结合大肠杆菌、克雷伯氏菌、枯草芽孢杆菌、苏云金芽孢杆菌、金黄色葡萄球菌、白色念珠球菌和毕赤酵母;进一步研究显示只有结构域1可以结合大肠杆菌和金黄色葡萄球菌,另外两个结构域没有细菌结合活性。另外,重组的hcPcSPI1还能抑制枯草芽孢杆菌和苏云金芽孢杆菌的生长,结构域2和3对这种抑制活性起作用。以上结果表明hcPcSPI1在小龙虾的先天免疫反应中起着重要的作用。
     hcPcSPI2具有两个Kazal结构域,其活性位点的氨基酸分别是R和S。Westernblot结果显示hcPcSPI2只存在于半颗粒细胞中,而不存在于透明细胞和颗粒细胞中。hcPcSPI2在受到鳗弧菌刺激后表达量升高,并且可以释放到血淋巴中发挥作用。为了研究该抑制因子的抑制功能,对该抑制因子进行原核表达、纯化,检测其对五种蛋白酶的抑制活性。结果显示其对枯草蛋白酶和胰蛋白酶有一定的抑制活性。而进一步的酶抑制动力学研究表明该抑制因子为竞争性抑制因子,并且其Ki值分别为0.057μM和3.729μM。细菌生长抑制实验表明,该抑制因子对枯草芽孢杆菌及苏云金芽孢杆菌的生长均有抑制作用,其MIC50分别为30.4μM和25.0μM。这些研究结果表明hcPcSPI2可能在小龙虾的抗细菌免疫反应中发挥重要的作用。
It's well known that the crayfish has become an excellent animal model to study the innate immunity of the invertebrate, as well as an important economic animal. The studies on the innate immune responses of crayfish, especially on immune defense against the main crustacean-pathogens such as white spot syndrome virus (WSSV) or Vibrio anguillarum, will further enrich the knowledge of the innate immunity of crustaceans and provide important theory for controling the infectious diseases.
     WSSV is one of the main pathogens of shrimp, and it's also the pathogen of the other crustaceans such as crayfish, crab, lobster, etc. In order to investigate the distribution of WSSV in the different tissues of the infected crayfish and further provide the required data for the following studies of innate immunity of crayfish, a quantitative PCR to quantify the amount of WSSV was developed. The results indicated that this method to quantify the number of WSSV was rapid, sensitive, and precise. This developed method well satisfied the need of the following WSSV infection experiment.
     For crayfish, the important immunity-related proteins are synthesized mainly in hemocytes and hepatopancreas, and some of them are further secreted into the circulating hemolymph to function. To investigate the mechanism of the defense against WSSV and other pathogens, the healthy crayfish were challenged by WSSV first. At 96h after challenge the gills full of hemocytes and hepatopanceas were collected to isolate the mRNA, and then the mRNA was transcribed into cDNA to construct the cDNA library. After randomly sequencing, four Kazal-type inhibitors, namely hcPcSPI1, hcPcSPI2, hpPcSPI3, and hpPcSPI4, with full-length cDNA sequence were identified from this cDNA library.
     To examine the tissue distribution of these four inhibitors, four pairs of primers for these four inhibitors were designed. Using the semi-quantitative RT-PCR the tissue distribution of these four inhibitors at mRNA level were detected. The results demonstrated that hcPcSPI1 and hcPcSPI2 mainly existed in hemocytes while hpPcSPI3 and hpPcSPI4 mainly distributed in hearts and hepatopancreas. Homology comparison indicated that the identity of these four inhibitors was 42.47%, hpPcSPI3 shared higher 56.67%identify with hpPcSPI4, and hcPcSPI1 only share 23.73% identity with hcPcSPI2. The phylogenectic tree constructed using the inhibitors of the crustaceans showed that hpPcSPI3 and hpPcSPI4, both derived from the hepatopancreas, are different from other hepatopancreas type inhibitors of shrimp, formed a small group. This indicates that hpPcSPI3 and hpPcSPI4 have a relatively distant evolutionary relationship with other inhibitors from hepatopancreas. In addition, the inhibitors from hemocytes seem hard to be grouped into one meaningful cluster since the Bootstrap values are very low, which reveals that these hemocyte type inhibitors, including hcPcSPI1 and hcPcSPI2, evolve rapidly.
     In order to examine whether these four inhibitors were involved in the immune defense against WSSV, as well as defense against V. anguillarum for hpPcSPI3 and hpPcSPI4, real-time RT-PCR was used to detect the expression profiles of these inhibitors after WSSV or V. anguillarum challenge. The results indicated that after WSSV challenge, hcPcSPI2 and hpPcSPI3 were up-regulated, hcPcSPI1 first decreased and then gradually recovered, while there was no obvious change for hpPcSPI4. It's possible that hcPcSPI1, hcPcSPI2, and hpPcSPI3 participate in the immune defense against WSSV, and hpPcSPI3 and hpPcSPI4 were also involved in the anti-V.anguillarum immune response.
     In crustaceans, Kazal-type serine proteinase inhibitors in hemolymph are believed to function as regulators of the host-defense reactions or inhibitors against proteinases from microorganisms. In this paper, we further analyzed two Kazal-type serine proteinase inhibitors derived from hemocytes, namely hcPcSPI1 and hcPcSPI2, from the crayfish (Procambarus clarkia).
     We find that hcPcSPI1 is composed of a putative signal peptide, an RGD motif, and three tandem Kazal-type domains with the domain P1 residues L, L and E, respectively. Mainly, hcPcSPI1 was detected in hemocytes as well as in the heart, gills, and intestine at both the mRNA and protein levels. Quantitative real-time PCR analysis showed that hcPcSPI1 in hemocytes was upregulated by the stimulation of Esherichia coli (8099). In addition, hcPcSPI1 and its three independent domains were overexpressed and purified to explore their potential functions. All four proteins inhibited subtilisin A and proteinase K, but not a-chymotypsin or trypsin. Recombinant hcPcSPI1 could firmly attach to Gram-negative bacteria E. coli and Klebsiella pneumoniae; Gram-positive bacteria Bacillus subtilis, Bacillus thuringiensis and Staphylococcus aureus; fungi Candida albicans and Saccharomyce cerevisiae, and only domain 1 was responsible for the binding to E. coli and S. aureus. In addition, recombinant hcPcSPIl was also found to possess bacteriostatic activity against B. subtilis and B. thuringiensis. Domains 2 and 3 contributed mainly to these bacteriostatic activities. All results suggested that hcPcSPI1 might play important roles in the innate immunity of crayfish.
     The serine proteinase inhibitor hcPcSPI2 is composed of a putative signal peptide, and two tandem Kazal-rype domains with the domain PI residues L and E, respectively. The temporal expression profile of this inhibitor was studied with quantitative real-time PCR and the results suggest that hcPcSPI2 is likely to be involved in anti-F. anguillarum immune response. Western blot demonstrates that hcPcSPI2 only exists in semigranular cells. Besides, after V. anguillarum challenge, the hcPcSPI2 protein could also be detected in cell-free hemolymph. Subsequently, the biochemical characteristics and bacteriostatic activity of hcPcSPI2 were assayed. The results indicate that hcPcSPI2 shows weak inhibitory activity against subtilisin A and trypsin, and may trigger bacteriostatic activity towards B. subtilis and B. thuringiensis, with MIC50 of 30.4 and 25.0μM, respectively. These studies reveal that hcPcSPI2 may also play an important role in the anti-bacterial immunity of the crayfish.
引文
Abraham E. G., Pinto S. B., Ghosh A., Vanlandingham D. L., Budd A., Higgs S., Kafatos F. C., Jacobs-Lorena M. and Michel K. (2005) An immune-responsive serpin, SRPN6, mediates mosquito defense against malaria parasites. Proc Natl Acad Sci U S A 102,16327-32.
    Aderem A. and Underhill D. M. (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17,593-623.
    Aketagawa J., Miyata T., Ohtsubo S., Nakamura T., Morita T., Hayashida H., Miyata T., Iwanaga S., Takao T. and Shimonishi Y. (1986) Primary structure of Jimulus anticoagulant anti-lipopolysaccharide factor. J Biol Chem 261,7357-65.
    Amparyup P., Kondo H., Hirono I., Aoki T. and Tassanakajon A. (2008) Molecular cloning, genomic organization and recombinant expression of a crustin-like antimicrobial peptide from black tiger shrimp Penaeus monodon. Mol Immunol 45,1085-93.
    Amsterdam D. (1996) Susceptibility testing of antimicrobials in liquid media.4th Ed. In:Loman, V. (Ed.), Antibiotics in Laboratory Medicine. Williams and Wilkins, Baltimore, MD, pp.52-111.
    Anggraeni M. S. and Owens L. (2000) The haemocytic origin of lymphoid organ spheroid cells in the penaeid prawn Penaeus monodon. Dis Aquat Organ 40,85-92.
    Armstrong P. B. (2001) The contribution of proteinase inhibitors to immune defense. Trends Immunol 22,47-52.
    Aspan A., Huang T. S., Cerenius L. and Soderhall K. (1995) cDNA cloning of prophenoloxidase from the freshwater crayfish Pacifastacus leniusculus and its activation. Proc Natl Acad Sci U S A 92, 939-43.
    Athel C. B. (1973) A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem J 137,143-44.
    Augustin R., Siebert S. and Bosch T. C. (2009) Identification of a kazal-type serine protease inhibitor with potent anti-staphylococcal activity as part of Hydra's innate immune system. Dev Comp Immunol 33,830-7.
    Bachere E., Gueguen Y., Gonzalez M., de Lorgeril J., Gamier J. and Romestand B. (2004) Insights into the anti-microbial defense of marine invertebrates:the penaeid shrimps and the oyster Crassostrea gigas. Immunol Rev 198,149-68.
    Ballarin L., Scanferla M., Cima F. and Sabbadin A. (2002) Phagocyte spreading and phagocytosis in the compound ascidian Botryllus schlosseri:evidence for an integrin-like, RGD-dependent recognition mechanism. Dev Comp Immunol 26,345-54.
    Barracco M. A., de Lorgeril J., Gueguen Y. and Bachere E. (2005) Molecular characterization of penaeidins from two Atlantic Brazilian shrimp species, Farfantepenaeus paulensis and Litopenaeus schmitti. FEMS Microbiol Lett 250,117-20.
    Bartlett T. C., Cuthbertson B. J., Shepard E. F., Chapman R. W., Gross P. S. and Warr G. W. (2002) Crustins, homologues of an 11.5-kDa antibacterial peptide, from two species of penaeid shrimp, Litopenaeus vannamei and Litopenaeus setiferus. Mar Biotechnol (NY) 4.278-93.
    Bode W. and Huber R. (1992) Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem 204,433-51.
    Bolognesi M., Gatti G., Menagatti E., Guarneri M., Marquart M. and Papamokos E. (1982) Three-dimensional structure of the complex between pancreatic secretory trypsin inhibitor (Kazal type) and trypsinogen at 1.8 A resolution. Structure solution, crystallographic refinement and preliminary structural interpretation. J Mol Biol 162,839-68.
    Boman H. G. (2000) Innate immunity and the normal microflora. Immunol Rev 173,5-16.
    Brites D., McTaggart S., Morris K., Anderson J., Thomas K., Colson I., Fabbro T., Little T., Ebert D. and DuPasquier L. (2008) The Dscam Homologue of the Crustacean Daphnia is Diversified by Alternative Splicing Like in Insects. Mol Biol Evol 25,1429-39.
    Brownie J., Shawcross S., Theaker J., Whitcombe D., Ferrie R., Newton C. and Little S. (1997) The elimination of primer dimer accumulation in PCR. Nucleic Acids Res 25,3235-41.
    Bustin S. A. (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25,169-93.
    Campos I. T., Amino R., Sampaio C. A., Auerswald E. A., Friedrich T. and Lemaire H. G. (2002) Infestin, a thrombin inhibitor presents in Triatoma infestans midgut, a Chagas' disease vector: gene cloning, expression and characterization of the inhibitor. Insect Biochem Mol Biol 32,991-7.
    Cao J. X., Dai J. Q., Dai Z. M., Yin G. L. and Yang W. J. (2007) A male reproduction-related Kazal-type peptidase inhibitor gene in the prawn, Macrobrachium rosenbergii:molecular characterization and expression patterns. Mar Biotechnol (NY) 9,45-55.
    Ceraul S. M., Sonenshine D. E., Ratzlaff R. E. and Hynes W. L. (2003) An arthropod defensin expressed by the hemocytes of the American dog tick, Dermacentor variabilis (Acari:Ixodidae). Insect Biochem Mol Biol 33,1099-103.
    Cerenius L., Liu H., Zhang Y., Rimphanitchayakit V., Tassanakajon A. and Gunnar Andersson M. (2010) High sequence variability among hemocyte-specific Kazal-type proteinase inhibitors in decapod crustaceans. Dev Comp Immunol 34,69-75.
    Cerenius L. and Soderhall K. (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198,116-26.
    Cerenius L., Lee B L. and Soderhall K. (2008) The proPO-system:pros and cons for its role in invertebrate immunity. Trends Immunol 29,263-71.
    Chaga O., Lignell M. and Soderhall, K. (1995) The hematopietic cells of freshwater crayfish, Pacifastacus leniusculus. Anim Biol 4,57-70.
    Chera S., de Rosa R., Miljkovic-Licina M., Dobretz K., Ghila L., Kaloulis K. and Galliot B. (2006) Silencing of the hydra serine protease inhibitor Kazall gene mimics the human SPINK1 pancreatic phenotype. J Cell Sci 119,846-57.
    Chiou T. T., Lu J. K., Wu J. L., Chen T. T., Ko C. F. and Chen J. C. (2007) Expression and characterisation of tiger shrimp Penaeus monodon penaeidin (mo-penaeidin) in various tissues, during early embryonic development and moulting stages. Dev Comp Immunol 31,132-42.
    Chiou T. T., Wu J. L., Chen T. T. and Lu J. K. (2005) Molecular cloning and characterization of cDNA of penaeidin-like antimicrobial peptide from tiger shrimp(Penaeus monodon). Mar Biotechnol (NY) 7,119-27.
    Christeller J. T. (2005) Evolutionary mechanisms acting on proteinase inhibitor variability. FEBS J272, 5710-22.
    Christie A. E., Rus S., Goiney C. C., Smith C. M., Towle D. W. and Dickinson, P. S. (2007) Identification and characterization of a cDNA encoding a crustin-like, putative antibacterial protein from the American lobster Homarus americanus. Mol Immunol 44,3333-7.
    Daquinag A. C., Nakamura S., Takao T., Shimonishi Y. and Tsukamoto, T. (1995). Primary structure of a potent endogenous dopa-containing inhibitor of phenol oxidase from Musca domestica. Proc
    Natl Acad Sci U S A 92,2964-8.
    de la Vega E., O'Leary N. A., Shockey J. E., Robalino J., Payne C, Browdy C. L., Warr G. W. and Gross P. S. (2008) Anti-lipopolysaccharide factor in Litopenaeus vannamei (LvALF):A broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection. Mol Immunol 45,1916-25.
    Deraison C., Bonnart C., Lopez F., Besson C., Robinson R., Jayakumar A., Wagberg F., Brattsand M., Hachem J. P., Leonardsson G. and Hovnanian A. (2007) LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell 18,3607-19.
    Dixon M. (1953) The determination of enzyme inhibitor constants. Biochem J 55,170-1.
    Dong Y., Aguilar R., Xi Z., Warr E., Mongin E. and Dimopoulos G. (2006) Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. PLoS Pathog 2, e52.
    Donpudsa S., Tassanakajon A. and Rimphanitchayakit V. (2009) Domain inhibitory and bacteriostatic activities of the five-domain Kazal-type serine proteinase inhibitor from black tiger shrimp Penaeus monodon. Dev Comp Immunol 33,481-8.
    Du X. J., Wang J. X., Liu N., Zhao X. F., Li F. H. and Xiang J. H. (2006) Identification and molecular characterization of a peritrophin-like protein from fleshy prawn (Fenneropenaeus chinensis). Mol Immunol 43,1633-44.
    Dziarski R. and Gupta D. (2006) The peptidoglycan recognition proteins (PGRPs). Genome Biology 7:232
    Eguchi M., Itoh M., Chou L. and Nishino K. (1993) Purification and characterization of a fungal protease specific protein inhibitor (FPI-F) in the silkworm haemolymph. Comp Biochem Physio/ 104B,537-43.
    Eleftherianos I., Boundy S., Joyce S. A., Aslam S., Marshall J. W., Cox R. J., Simpson T. J., Clarke D. J., ffrench-Constant R. H. and Reynolds S. E. (2007) An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci U S A 104,2419-24.
    Fedders H. and Leippe M. (2008) A reverse search for antimicrobial peptides in Ciona intestinalis: identification of a gene family expressed in hemocytes and evaluation of activity. Dev Comp Immunol 32,286-98.
    Ferrandon D., Imler J. L., Hetru C. and Hoffmann J. A. (2007). The Drosophila systemic immune response:sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7, 862-74.
    Flegel T. W. (1997) Major viral disesses of the black tiger prawn(Penaeus mondon) in Thailand. Microbial Biotechnol 13,433-42.
    Franc N. C., Dimarcq J. L., Lagueux M., Hoffmann J. and Ezekowitz R. A. (1996) Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 4,431-43.
    Friedrich T., Kroger B., Bialojan S., Lemaire H. G., Hoffken H. W., Reuschenbach P, Otte M. and Dodt J. (1993) A Kazal-type inhibitor with thrombin specificity from Rhodnius prolixus. J Biol Chem 268,16216-22.
    Fuentes-Prior P., Noeske-Jungblut C, Donner P., Schleuning W. D., Huber R. and Bode W. (1997) Structure of the thrombin complex with triabin, a lipocalin-like exosite-binding inhibitor derived from a triatomine bug. Proc Natl Acad Sci U S A 94,11845-50.
    Garver L. S., Wu J. and Wu L. P. (2006) The peptidoglycan recognition protein PGRP-SCla is essential for Toll signaling and phagocytosis of Staphylococcus aureus in Drosophila. Proc Natl Acad Sci U SA 103,660-5.
    Gillespie J. P., Kanost M. R. and Trenczek T. (1997) Biological mediators of insect immunity. Annu Rev Entomol 42,611-43.
    Girardin S. E. and Philpott D. J. (2004) The role of peptidoglycan recognition in innate immunity. Eur J Immunol 34,1777-82.
    Giulietti A., Overbergh L., Valckx D., Decallonne B., Bouillon R. and Mathieu C. (2001) An overview of real-time quantitative PCR:applications to quantify cytokine gene expression. Methods 25(4), 386-401.
    Gonzalez Y., Pons T., Gil J., Besada V., Alonso-del-Rivero M., Tanaka A. S., Araujo M. S. and Chavez M. A. (2007) Characterization and comparative 3D modeling of CmPI-II, a novel 'non-classical'Kazal-type inhibitor from the marine snail Cenchritis muricatus (Mollusca). Biol Chem388,1183-94.
    Halford W. P., Falco V. C., Gebhardt B. M. and Carr D. J. (1999) The inherent quantitative capacity of the reverse transcription-polymerase chain reaction. Anal Biochem 266,181-91.
    Hall M., Wang R., van Antwerpen R., Sottrup-Jensen L. and Soderhall K. (1999) The crayfish plasma clotting protein:a vitellogenin-related protein responsible for clot formation in crustacean blood. Proc Natl Acad Sci USA 96,1965-70.
    Hameed A. S., Balasubramanian G, Musthaq S. S. and Yoganandhan K. (2003) Experimental infection of twenty species of Indian marine crabs with white spot syndrome virus (WSSV). Dis Aquat Organ 51,157-61.
    Han Y, Yu H., Yang X., Rees H. H., Liu J. and Lai R. (2008) A serine proteinase inhibitor from frog eggs with bacteriostatic activity. Comp Biochem PhysiolB Biochem Mol Biol 149,58-62.
    Haug T., Kjuul A. K., Stensvag K., Sandsdalen E. and Styrvold O. B. (2002) Antibacterial activity in four marine crustacean decapods. Fish Shellfish Immunol 12,371-85.
    Hauton C., Brockton V. and Smith V. J. (2006) Cloning of a crustin-like, single whey-acidic-domain, antibacterial peptide from the haemocytes of the European lobster, Homarus gammarus, and its response to infection with bacteria. Mol Immunol A3,1490-6.
    Hauton C., Brockton V. and Smith V. J. (2007) Changes in immune gene expression and resistance to bacterial infection in lobster(Homarus gammarus) post-larval stage VI following acute or chronic exposure to immune stimulating compounds. Mol Immunol 44,443-50.
    Hemmi H., Kumazaki T., Yamazaki T., Kojima S., Yoshida T., Kyogoku Y, Katsu F., Yokosawa H., Miura K. and Kobayashi Y. (2003) Inhibitory specificity change of the ovomucoid third domain of the silver pheasant upon introduction of an engineered Cys14-Cys39 bond. Biochemistry 42, 2524-34.
    Imjongjirak C, Amparyup P., Tassanakajon A. and Sittipraneed S. (2007) Anti-lipopolysaccharide factor (ALF) of mud crab Scylla paramamosain:molecular cloning, genomic organization and the antimicrobial activity of its synthetic LPS binding domain. Mol Immunol 44,3195-203.
    Iwanaga S. (2002) The molecular basis of innate immunity in the horseshoe crab. Curr Opin Immunol 14,87-95.
    Iwanaga S. and Lee B. L. (2005) Recent advances in the innate immunity of invertebrate animals. J Biochem Mol Biol 38,128-50.
    Iwanaga S., Miyata T, Tokunaga F. and Muta T. (1992) Molecular mechanism of hemolymph clotting system in Limulus. Thromb Res 68,1-32.
    Janeway C. A. Jr. (1989) Cold Spring Harbor Symp. Quant. Biol.54,1-13.
    Janeway C. A. Jr. (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13,11-6.
    Jarasrassamee B., Supungul P., Panyim S., Klinbunga S., Rimphanichayakit V. and Tassanakajon A. (2005) Recombinant expression and characterization of five-domain Kazal-type serine protease inhibitor of black tiger shrimp (Penaeus monodon). Mar Biotechnol (NY) 7,46-52.
    Jayakumar A., Kang Y., Mitsudo K., Henderson Y., Frederick M. J., Wang M., El-Naggar A. K., Marx U. C., Briggs K. and Clayman G. L. (2004) Expression of LEKTI domains 6-9'in the baculovirus expression system:recombinant LEKTI domains 6-9'inhibit trypsin and subtilisin A. Protein Expr Purif 35,93-101.
    Jering H. and Tschesche H. (1976) Replacement of lysine by arginine, phenylalanine and tryptophan in the reactive site of the bovine trypsin-kallikrein inhibitor (Kunitz) and change of the inhibitory properties. Eur J Biochem 61,453-63.
    Jia Y. P., Sun Y. D., Wang Z. H., Wang Q., Wang X. W, Zhao X. F. and Wang J. X. (2008) A single whey acidic protein domain (SWD)-containing peptide from fleshy prawn with antimicrobial and proteinase inhibitory activities. Aquaculture 284,246-59.
    Jimenez-Vega F. and Vargas-Albores F. (2005) A four-Kazal domain protein in Litopenaeus vannamei hemocytes. Dev Comp Immunol 29,385-91.
    Jiravanichpaisal P., Lee B. L. and Soderhall K. (2006) Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology 211,213-36.
    Jiravanichpaisal P., Lee S. Y, Kim Y. A., Andren T. and Soderhall I. (2007) Antibacterial peptides in hemocytes and hematopoietic tissue from freshwater crayfish Pacifastacus leniusculus: characterization and expression pattern. Dev Comp Immunol 31,441-55.
    Johansson M.W., Keyser P. and Soderhall K. (1994) Purification and cDNA cloning of a four-domain Kazal proteinase inhibitor from crayfish blood cells. Eur J Biochem 223,389-94.
    Johansson M. and Soderhall K. (1995) The prophenoloxidase activating system and associated proteins in invertebrates. In:Invertebrate Immunology (B. Rinkevich&W.E.G. Muller. Eds) pp46-66. Berlin:Springer.
    Johansson M. W. and Soderhall K. (1988) Isolation and purification of a cell adhesion factor from crayfish blood cells. J Cell Biol 106,1795-803.
    Johansson M.W. (1999) Cell adhesion molecules in invertebrate immunity. Dev Comp Immunol 23, 303-15.
    Johansson M. W., Keyser P., Srirunyaluksana K. and Soderhall K. (2000) Crustacean hemocytes and haematopoiesis. Aquaculture 191,45-52.
    Ju J. S., Cho M. H., Brade L., Kim J. H., Park J. W, Ha N. C, Soderhall I., Soderhall K., Brade H. and Lee B. L. (2006) A novel 40-kDa protein containing six repeats of an epidermal growth factor-like domain functions as a pattern recognition protein for lipopolysaccharide. J Immunol 177,1838-45.
    Kang C. J., Xue J. F., Liu N., Zhao X. F. and Wang J. X. (2007) Characterization and expression of a new subfamily member of penaeidin antimicrobial peptides (penaeidin 5) from Fenneropenaeus chinensis. Mol Immunol 44,1535-43.
    Kanost M. R. and Jiang H. (1996) Proteinase inhibitors in invertebrate immunity. In:Soderhall K, Iwanaga S, Vanta G, editors. New directions in invertebrate immunology. Fair Haven, NJ:SOS Publications; 1996. p.155-74.
    Kanost M. R. (1999) Serine proteinase inhibitors in arthropod immunity. Dev Comp Immunol 23,
    291-301.
    Kazal L. A., Spicer D. S. and Brahinsky R. A. (1948) Isolation of a crystalline trypsin inhibitor anticoagulant protein from pancreas. J Am Chem Soc 70,3034-40.
    Khanobdee K., Soowannayan C, Flegel T. W., Ubol S. and Withyachumnamkul B. (2002) Evidence for apoptosis correlated with mortality in the giant black tiger shrimp Penaeus monodon infected with yellow head virus. Dis Aquat Organ 48,79-90.
    Kim C. S., Kosuke Z., Nam Y. K., Kim S. K. and Kim K. H. (2007) Protection of shrimp (Penaeus chinensis) against white spot syndrome virus (WSSV) challenge by double-stranded RNA. Fish Shellfish Immunol 23,242-6.
    Kocks C, Cho J. H., Nehme N., Ulvila J., Pearson A. M., Meister M., Strom C, Conto S. L., Hetru C., Stuart L. M., Stehle T., Hoffmann J. A., Reichhart J. M., Ferrandon D., Ramet M. and Ezekowitz R. A. (2005) Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123,335-46.
    Komatsu M. and Ando S. (1998) A very-high-density lipoprotein with clotting ability from hemolymph of sand crayfish, Ibacus ciliatus. Biosci Biotechnol Biochem 62,459-63.
    Kong H. J., Cho H. K., Park E. M., Hong G. E., Kim Y. O., Nam B. H., Kim W. J., Lee S. J., Han H. S., Jang I. K., Lee C. H., Cheong J. and Choi T. J. (2009) Molecular cloning of Kazal-type proteinase inhibitor of the shrimp Fenneropenaeus chinensis. Fish Shellfish Immunol 26,109-14.
    Konrad K. D., Goralski T. J., Mahowald A. P. and Marsh J. L. (1998) The gastrulation defective gene of Drosophila melanogaster is a member of the serine protease superfamily. Proc Natl Acad Sci U S A 95,6819-24.
    Kopacek P., Hall M. and Soderhall K. (1993) Characterization of a clotting protein, isolated from plasma of the freshwater crayfish Pacifastacus leniusculus. Eur J Biochem 213,591-7.
    Kress H., Jarrin A., Thuroff E., Saunders R., Weise C, Schmidt am Busch M., Knapp E. W., Wedde M. and Vilcinskas A. (2004) A Kunitz type protease inhibitor related protein is synthesized in Drosophila prepupal salivary glands and released into the moulting fluid during pupation. Insect Biochem MolBiol 34,855-69.
    Kreutzmann P., Schulz A., Standker L., Forssmann W. G. and Magert H. J. (2004) Recombinant production, purification and biochemical characterization of domain 6 of LEKTI:a temporary Kazal-typerelated serine proteinase inhibitor. J Chromatogr B Analyt Technol Biomed Life Sci 803, 75-81.
    Krowarsch D., Cierpicki T., Jelen F. and Otlewski J. (2003) Canonical protein inhibitors of serine proteases. Cell Mol Life Sci 60,2427-44.
    Kwon T. H., Ki, M. S., Choi H. W., Joo C. H., Cho M. Y. and Lee B. L. (2000) A masquerade-like serine proteinase homologue is necessary for phenoloxidase activity in the coleopteran insect, Holotrichia diomphalia larvae. Eur J Biochem 267,6188-96.
    Lan Y, Xu X., Yang F. and Zhang X. (2006) Transcriptional profile of shrimp white spot syndrome virus (WSSV) genes with DNA microarray. Arch Virol 151,1723-33.
    Laskowski M. Jr. and Kato I. (1980) Protein inhibitors of proteinases. Annu Rev Biochem 49,593-626.
    Laskowski M. and Qasim M. A. (2000) What can the structures of enzyme-inhibitor complexes tell us about the structures of enzyme substrate complexes? Biochim Biophys Acta 1477,324-37.
    Laskowski M. J., Qasim M. A. and Yi Z. (2003) Additivity-based prediction of equilibrium constants for some protein-protein associations. Curr Opin Struct Biol 13,130-9.
    Lee S. Y. and Soderhall K. (2001) Characterization of a pattern recognitionprotein, a masquerade-like
    protein, in the freshwater crayfish Pacifastacus leniusculus. J Immunol 166,7319-26.
    Lee S. Y. and Soderhall K. (2002) Early events in crustacean innate immunity. Fish Shellfish Immunol 12,421-37.
    Lee S. Y., Lee B. L. and Soderhall K. (2003) Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. J Biol Chem 278,7927-33.
    Lei K., Li R, Zhang M., Yang H., Luo T. and Xu X. (2008) Difference between hemocyanin subunits from shrimp Penaeus japonicus in anti-WSSV defense. Dev Comp Immunol 32,808-13.
    Lemaitre B., Kromer-Metzger E., Michaut L., Nicolas E., Meister M., Georgel P., Reichhart J. M. and Hoffmann J. A. (1995) A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc Natl Acad Sci U S A 92,9465-9.
    Leulier F. and Lemaitre B. (2008) Toll-like receptors-taking an evolutionary approach. Nat Rev Genet 9, 165-78.
    Levashina E. A., Moita L. F., Blandin S., Vriend G., Lagueux M. and Kafatos F. C. (2001) Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104,709-18.
    Li X. C., Wang X. W., Wang Z. H., Zhao X. F. and Wang J. X. (2009a) A three-domain Kazal-type serine proteinase inhibitor exhibiting domain inhibitory and bacteriostatic activities from freshwater crayfish Procambarus clarkii. Dev Comp Immunol 33,1229-38.
    Li Y, Qian Y. Q., Ma W. M. and Yang W. J. (2009b) Inhibition mechanism and the effects of structure on activity of male reproduction-related peptidase inhibitor Kazal-type (MRPINK) of Macrobrachium rosenbergii. Mar Biotechnol (NY) 11,252-9.
    Li C., Zhao J., Song L., Mu C., Zhang H., Gai Y., Qiu L., Yu Y, Ni D. and Xing K. (2007a) Molecular cloning, genomic organization and functional analysis of an anti-lipopolysaccharide factor from Chinese mitten crab Eriocheir sinensis. Dev Comp Immunol 32,784-94.
    Li D. F., Zhang M. C., Yang H. J., Zhu Y B. and Xu X. (2007b) Beta-integrin mediates WSSV infection. Virology 368,122-32.
    Liang Z., Sottrup-Jensen L., Aspan A., Hall M. and Soderhall K. (1997) Pacifastin, a novel 155-kDa heterodimeric proteinase inhibitor containing a unique transferrin chain. Proc Natl Acad Sci U S A 94,6682-7.
    Lin X., Cerenius L., Lee B. L. and Soderhall K. (2007) Purification of properoxinectin, a myeloperoxidase homologue and its activation to a cell adhesion molecule. Biochim Biophys Acta 1770,87-93.
    Ling E. J. and Yu X. Q. (2005) Prophenoloxidase binds to the surface of hemocytes and is involved in hemocyte melanization in Manduca sexta. Insect Biochem Mol Biol 35,1356-66.
    Little T. J., Hultmark D. and Read A. F. (2005) Invertebrate immunity and the limits of mechanistic immunology. Nat Immunol 6,651-4.
    Liu H., Jiravanichpaisal P., Cerenius L., Lee B. L., Soderhall I. and Soderhall K. (2007) Phenoloxidase is an important component of the defense against Aeromonas hydrophila Infection in a crustacean, Pacifastacus leniusculus. J Biol Chem 282,33593-8.
    Loongyai W., Avarre J. C., Cerutti M., Lubzens E. and Chotigeat W. (2007) Isolation and functional characterization of a new shrimp ovarian peritrophin with antimicrobial activity from Fenneropenaeus merguiensis. Mar Biotechnol (NY) 9,624-37.
    Lu S. M., Lu W., Qasim M. A., Anderson S., Apostol I., Ardelt W., Bigler T., Chiang Y. W., Cook J., James M. N., Kato I., Kelly C., Kohr W., Komiyama T., Lin T. Y., Ogawa M., Otlewski J., Park S.
    J., Qasim S., Ranjbar M., Tashiro M., Warne N., Whatley H., Wieczorek A., Wiezorek M., Wilusz T., Wynn R., Zhang W. and Laskowski M. Jr. (2001) Predicting the reactivity of proteins from their sequence alone:Kazal family of protein inhibitors of serine proteinases. Proc Natl Acad Sci USA98,1410-5.
    Lu W., Apostol I., Qasim M. A., Warne N., Wynn R., Zhang W. L., Anderson S., Chiang Y. W., Ogin E., Rothberg I., Ryan K. and Laskowski M. Jr. (1997) Binding of amino acid side-chains to S1 cavities of serine proteinases. J Mol Biol 266,441-61.
    Luo T., Zhang X., Shao Z. and Xu X. (2003) PmAV, a novel gene involved in virus resistance of shrimp Penaeus monodon. FEBS Lett 551,53-7.
    Ma T. H., Tiu S. H., He J. G. and Chan S. M. (2007) Molecular cloning of a C-type lectin (LvLT) from the shrimp Litopenaeus vannamei:early gene down-regulation after WSSV infection. Fish Shellfish Immunol 23,430-7.
    Mackay I. M., Arden K. E. and Nitsche A. (2002) Real-time PCR in virology. Nucleic Acids Res 30, 1292-305
    Maeda M., Itami T., Mizuki E., Tanaka R., Yoshizu Y., Doi K., Yasunaga-Aoki C, Takahashi Y. and Kawarabata T. (2000) Red swamp crayfish (Procambarus clarkia):An alternative experimental host in the study of white spot syndrome virus. Acta Virol 44,371-4.
    Magert H. J., Standker L., Kreutzmann P., Zucht H. D., Reinecke M., Sommerhoff C. P., Fritz H. and Forssmann W. G (1999) LEKTI, a novel 15-domain type of human serine proteinase inhibitor. J Biol Chem 274,21499-502.
    Maningas M. B., Kondo H., Hirono I., Saito-Taki T. and Aoki T. (2008) Essential function of transglutaminase and clotting protein in shrimp immunity. Mol Immunol 45,1269-75.
    Matsuda Y., Osaki T., Hashii T., Koshiba T. and Kawabata S. (2007) A cysteine-rich protein from an arthropod stabilizes clotting mesh and immobilizes bacteria at injury sites. J Biol Chem 282, 33545-52.
    Mavrouli M. D., Tsakas S., Theodorou G. L., Lampropoulou M. and Marmaras V. J. (2005) MAP kinases mediate phagocytosis and melanization via prophenoloxidase activation in medfly hemocytes. Biochim Biophys Acta 1744,145-56.
    Mayo M. A. (2002) A summary of taxonomic changes recently approved by ICTV. Arch virol 147, 1655-63.
    Michele B. B., Hamdaoui A., Hajjar E., Boudier C, Reuter N., Laurence E. S., Joseph G. B. and Gauthier F. (2006) A novel locust (Schistocerca gregaria) serine protease inhibitor with a high affinity for neutrophil elastase. Biochem J 400,467-76.
    Mitsudo K., Jayakumar A., Henderson Y., Frederick M. J., Kang Y., Wang M., Naggar A. K. E. and Clayman G. L. (2003) Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI:a kinetic analysis. Biochem J42,3874-81.
    Moita L. F., Vriend G., Mahairaki V., Louis C. and Kafatos F. C. (2006) Integrins of Anopheles gambiae and a putative role of a new beta integrin, BINT2, in phagocytosis of E. coli. Insect Biochem Mol Biol 36,282-90.
    Morris M. T., Coppin A., Tomavo S. and Carruthers V. B. (2002) Functional analysis of Toxoplasma gondii protease inhibitor 1. J Biol Chem 277,45259-66.
    Muta T., Miyata T, Tokunaga F., Nakamura T. and Iwanaga S. (1987) Primary structure of anti-lipopolysaccharide factor from American horseshoe crab, Limulus polyphemus. J Biochem 101,1321-30.
    Nawarat S., Vichien R. and Anchalee T. (2006) A five-domain Kazal-type serine proteinase inhibitor from black tiger shrimp Penaeus monodon and its inhibitory activities. Dev Comp Immunol 30, 998-1008.
    Nirmala X., Kodrik D., Zurovec M. and Sehnal F. (2001) Insect silk contains both a Kunitz-type and a unique Kazal-type proteinase inhibitor. Eur J Biochem 268,2064-73.
    O'Leary N. A. and Gross P. S. (2006) Genomic structure and transcriptional regulation of the penaeidin gene family from Litopenaeus vannamei. Gene 371,75-83.
    Ongvarrasopone C, Chanasakulniyom M., Sritunyalucksana K. and Panyim S. (2008) Suppression of PmRab7 by dsRNA Inhibits WSSV or YHV Infection in Shrimp. Mar Biotechnol (NY) 10,374-81.
    Pan C. Y., Chao T. T., Chen J. C, Chen J. Y., Liu W. C, Lin C. H. and Kuo C. M. (2007) Shrimp (Penaeus monodon) anti-lipopolysaccharide factor reduces the lethality of Pseudomonas aeruginosa sepsis in mice. Int Immunopharmacol 7,687-700.
    Pearson A., Lux A. and Krieger M. (1995) Expression cloning of dSR-CI, a class C macrophage-specific scavenger receptor from Drosophila meianogaster. Proc Natl Acad Sci USA 92,4056-60.
    Pham L. N., Dionne M. S., Shirasu-Hiza M. and Schneider D. S. (2007) A specific primed immune response in Drosophila is dependent on phagocyte. PloS Pathog 3, e26
    Piao S., Song Y. L., Kim J. H., Park S. Y, Park J. W., Lee B. L, Oh B. H. and Ha N. C. (2005) Crystal structure of a clip-domain serine protease and functional roles of the clip domains. EMBO J 24, 4404-14.
    Polanowski A. and Wilusz T. (1996) Serine proteinase inhibitors from insect hemolymph. Acta Biochim Pol 43,445-53.
    Potempa J., Korzus E. and Travis J. (1994) The serpin superfamily of proteinase inhibitors:structure, function, and regulation. JBiol Chem 269,15957-60.
    Quinton T. M., Kim S., Derian C. K., Jin J. and Kunapuli S. P. (2004) Plasmin-mediated activation of platelets occurs by cleavage of protease-activated receptor 4. J Biol Chem 279,18434-9.
    Ramet M., Manfruelli P., Pearson A., Mathey-Prevot B. and Ezekowitz R. A. (2002) Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416,644-8.
    Ramet M., Pearson A., Manfruelli P., Li X., Koziel H., Gobel V., Chung E., Krieger M. and Ezekowitz R. A. (2001) Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria. Immunity 15,1027-38.
    Rattanachai A., Hirono I., Ohira T., Takahashi Y. and Aoki T. (2004) Molecular cloning and expression analysis of alpha 2-macroglobulin in the kuruma shrimp, Marsupenaeus japonicus. Fish Shellfish Immunol 16,599-611.
    Rawlings N. D., Morton F. R., Kok C. Y, Kong J. and Barrett A. J. (2008) MEROPS:the peptidase database. Nucleic Acids Res 36, D320-5.
    Rawlings N. D., Tolle D. P. and Barrett A. J. (2004) Evolutionary families of peptidase inhibitors. Biochem 7378,705-16.
    Read R. J., Fujinaga M., Sielecki A. R. and James M. N. (1983) Structure of the complex of Streptomyces griseus protease B and the third domain of the turkey ovomucoid inhibitor at 1.8-A resolution. Biochemistry 22,4420-33.
    Reid K. B. and Porter R. R. (1981) The proteolytic activation systems of complement. Annu Rev Biochem 50,433-64.
    Relf J. M., Chisholm J. R., Kemp G. D. and Smith V. J. (1999). Purification and characterization of a cysteine-rich 11.5-kDa antibacterial protein from the granular haemocytes of the shore crab, Carcinus maenas. Eur J Biochem 264,350-7.
    Rijiravanich A., Browdy C. L. and Withyachumnarnkul B. (2008) Knocking down caspase-3 by RNAi reduces mortality in Pacific white shrimp Penaeus(Litopenaeus) vannamei challenged with a low dose of white-spot syndrome virus. Fish Shellfish Immunol 24,308-13.
    Rimphanitchayakit V. and Tassanakajon A. (2010) Structure and function of invertebrate Kazal-type serine proteinase inhibitors. Dev Comp Immunol 34,377-86.
    Robalino J., Almeida J. S., McKillen D., Colglazier J., Trent H. F.3rd., Chen Y. A., Peck M. E., Browdy C. L., Chapman R. W., Warr G. W. and Gross P. S. (2007a) Insights into the immune transcriptome of the shrimp Litopenaeus vannamei:tissue-specific expression profiles and transcriptomic responses to immune challenge. Physiol Genomics 29,44-56.
    Robalino J., Bartlett T. C., Chapman R. W., Gross P. S., Browdy C. L. and Warr G W. (2007b) Double-stranded RNA and antiviral immunity in marine shrimp:inducible host mechanisms and evidence for the evolution of viral counter-responses. Dev Comp Immunol 31,539-47.
    Robalino J., Bartlett T., Shepard E., Prior S., Jaramillo G., Scura E., Chapman R. W., Gross P. S., Browdy C. L. and Warr G W. (2005) Double-stranded RNA induces sequence-specific antiviral silencing in addition to nonspecific immunity in a marine shrimp:convergence of RNA interference and innate immunity in the invertebrate antiviral response. J Virol 79,13561-71.
    Robalino J., Browdy C. L., Prior S., Metz A., Parnell P., Gross P. and Warr G. (2004) Induction of antiviral immunity by double-stranded RNA in a marine invertebrate. J Virol 78,10442-8.
    Robalino J., Payne C, Parnell P., Shepard E., Grimes A. C., Metz A., Prior S., Witteveldt J., Vlak J. M., Gross P. S., Warr G and Browdy C. L. (2006) Inactivation of White Spot Syndrome Virus (WSSV) by normal rabbit serum:implications for the role of the envelope protein VP28 in WSSV infection of shrimp. Virus Res 118,55-61.
    Rosa R. D., Bandeira P. T. and Barracco M. A. (2007) Molecular cloning of crustins from the hemocytes of Brazilian penaeid shrimps. FEMS Microbiol Lett 274,287-90.
    Roux M. M., Pain A., Klimpel K. R. and Dhar A. K. (2002) The lipopolysaccharide and beta-1,3-glucan binding protein gene is upregulated in white spot virus-infected shrimp(Penaeus stylirostris). J Virol 76,7140-9.
    Saleh M. C., Tassetto M., van Rij R. P., Goic B., Gausson V., Berry B., Jacquier C., Antoniewski C. and Andino R. (2009) Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature 458,346-50
    Saxena I. and Tayyab S. (1997) Protein proteinase inhibitors from avian egg whites. Cell Mol Life Sci 53,13-23.
    Schmucker D., Clemens J. C., Shu H., Worby C. A., Xiao J., Muda M., Dixon J. E. and Zipursky S. L. (2000) Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101,671-84.
    Simonet G., Claeys I. and Broeck J. V. (2002) Structural and functional properties of a novel serine proteinase inhibiting peptide family in arthropods. Comp Biochem Physiol B Biochem Mol Biol 132,247-55.
    Smith V. J., Fernandes J. M., Kemp G. D. and Hauton C. (2008) Crustins:Enigmatic WAP domain-containing antibacterial proteins from crustaceans. Dev Comp Immunol 32,758-72.
    Soderhall K., Vey A. and Rented M. (1984) Haemocytes lysate enhancement of fungal spore
    encapsulation by crayfish hemocytes. Dev Comp Immunol 8,23-9.
    Soderhall I., Kim Y. A., Jiravanichpaisal P., Lee S. Y. and Soderhall K.(2005) An ancient role for a prokineticin domain in invertebrate hematopoiesis. JImmunol 174,6153-60.
    Soderhall K. and Smith V. J. (1983) Separation of the haemocyte populations of Carcinus maenas and other marine decapods, and prophenoloxidase distribution. Dev Comp Immunol 7,229-39.
    Soderhall K., Wingren A., Johansson M. W. and Bertheussen K. (1985) The cytotoxic reaction of hemocytes from the freshwater crayfish, Astacus astacus. Cell Immunol 94,326-32.
    Somboonwiwat K., Bachere E., Rimphanitchayakit V. and Tassanakajon A. (2008) Localization of anti-lipopolysaccharide factor (ALFPm3) in tissues of the black tiger shrimp, Penaeus monodon, and characterization of its binding properties. Dev Comp Immunol 32,1170-6.
    Somboonwiwat K., Marcos M., Tassanakajon A., Klinbunga S., Aumelas A., Romestand B., Gueguen Y., Boze H., Moulin G. and Bachere E. (2005) Recombinant expression and anti-microbial activity of anti-lipopolysaccharide factor (ALF) from the black tiger shrimp Penaeus monodon. Dev Comp Immunol 29,841-51.
    Sommerhoff C. P., Sollner C., Mentele R., Piechottka G. P., Auerswald E. A. and Fritz H. (1994) A Kazal-type inhibitor of human mast cell tryptase:isolation from the medical leech Hirudo medicinalis, characterization, and sequence analysis. Biol Chem Hoppe Seyler 375,685-94.
    Somprasong N., Rimphanitchayakit V. and Tassanakajon A. (2006) A five-domain Kazal-type serine proteinase inhibitor from black tiger shrimp Penaeus monodon and its inhibitory activities. Dev Comp Immunol 30,998-1008.
    Sritunyalacksana K. and Soderhall K. (2000) The proPO and clotting system in crustacean. Aquaculture 191,53-69.
    Sritunyalucksana K., Wannapapho W., Lo C. F. and Flegel T. W. (2006) PmRab7 is a VP28-binding protein involved in white spot syndrome virus infection in shrimp. J Virol 80,10734-42.
    Sritunyalucksana K., Wongsuebsantati K., Johansson M. W. and Soderhall K. (2001) Peroxinectin, a cell adhesive protein associated with the proPO system from the black tiger shrimp, Penaeus monodon. Dev Comp Immunol 25,353-63.
    Stuart L. M. and Ezekowitz R. A. (2008) Phagocytosis and comparative innate immunity:learning on the fly. Nat Rev Immunol 8,131-41.
    Sugumaran M. and Nellaiappan K. (2000) Characterization of a new phenoloxidase inhibitor from the cuticle of Manduca sexta. Biochem Biophys Res Commun 268,379-83.
    Sun Y. D., Fu L. D., Jia Y. P., Du X. J., Wang Q., Wang Y. H., Zhao X. F., Yu X. Q. and Wang J. X. (2008) A hepatopancreas-specific C-type lectin from the Chinese shrimp Fenneropenaeus chinensis exhibits antimicrobial activity. Mol Immunol 45,348-61.
    Tamura H., Tanaka S., Oda T., Uemura Y, Aketagawa J. and Hashimoto Y. (1996) Purification and characterization of a (1→3)-β-D-glucan-binding protein from horseshoe crab (Tachypleus tridentatus) amoebocytes. Carbohydr Res 295,103-16.
    Tamura K., Dudley J., Nei M. and Kumar S. (2007) MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24,1596-9.
    Tauszig-Delamasure S., Bilak H., Capovilla M., Hoffmann J. A. and Imler J. L. (2002) Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nat Immunol 3,91-7.
    Tharntada S., Somboonwiwat K., Rimphanitchayakit V. and Tassanakajon A. (2008) Anti-lipopolysaccharide factors from the black tiger shrimp, Penaeus monodon, are encoded by two genomic loci. Fish Shellfish Immunol 24,46-54.
    Tian M., Benedetti B. and Kamoun S. (2005) A Second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato. Plant Physiol 138,1785-93.
    Tian M., Huitema E., Da Cunha L., Torto-Alalibo T. and Kamoun S. (2004) A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. JBiol Chem 279,26370-7.
    Tian M. and Kamoun S. (2005) A two disulfide bridge Kazal domain from Phytophthora exhibits stable inhibitory activity against serine proteases of the subtilisin family. BMC Biochem 6,15.
    Tirasophon W., Roshorm Y. and Panyim S. (2005) Silencing of yellow head virus replication in penaeid shrimp cells by dsRNA. Biochem Biophys Res Commun 334,102-7.
    Tirasophon W., Yodmuang S., Chinnirunvong W., Plongthongkum N. and Panyim S. (2007) Therapeutic inhibition of yellow head virus multiplication in infected shrimps by YHV-protease dsRNA. Antiviral Res 74,150-5.
    Travis J., Potempa J. and Maeda H. (1995) Are bacterial proteinases pathogenic factors? Trends Microbiol 3,405-7.
    Tsai M. F., Lo C. F., van Hulten M. C., Tzeng H. F., Chou C. M., Huang C. J., Wang C. H., Lin J. Y., Vlak J. M. and Kou G H. (2000) Transcriptional analysis of the ribbonucleotide reductase genes of shrimp white spot syndrome virus. Virology 277,92-9.
    Tzou P., Ohresser S., Ferrandon D., Capovilla M., Reichhart J. M., Lemaitre B., Hoffmann J. A. and Imler J. L. (2000) Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13,737-48.
    van de Locht A., Lamba D., Bauer M, Huber R., Friedrich T., Kroger B., Hoffken W. and Bode W. (1995) Two heads are better than one:crystal structure of the insect derived double domain Kazal inhibitor rhodniin in complex with thrombin. EMBO J 14,5149-57.
    Van Hulten M. C., Witteveldt J., Peters S., Kloosterboer N., Tarchini R., Fiers M., Sandbrink H., Lankhorst R. K. And Vlak J. M. (2001) The white spot syndrome virus DNA genome sequence. Virol.286,7-22.
    Vanden Broeck J., Chiou S. J., Schoofs L., Hamdaoui A., Vandenbussche F., Simonet G., Wataleb S. and De Loof A. (1998) Cloning of two cDNAs encoding three small serine protease inhibiting peptides from the desert locust Schistocerca gregaria and analysis of tissue-dependent and stage-dependent expression. Eur J Biochem 254,90-5.
    Visetnan S., Donpudsa S., Supungul P., Tassanakajon A. and Rimphanitchayakit V. (2009) Kazal-type serine proteinase inhibitors from the black tiger shrimp Penaeus monodon and the inhibitory activities of SPLPw4 and 5. Fish Shellfish Immunol 27,266-74.
    Volz J., Muller H. M., Zdanowicz A., Kafatos F. C. and Osta M. A. (2006) A genetic module regulates the melanization response of Anopheles to Plasmodium. Cell Microbiol 8,1392-405.
    Volz J., Osta M. A., Kafatos F. C. and Muller H. M. (2005) The roles of two clip domain serine proteases in innate immune responses of the malaria vector Anopheles gambiae. J Biol Chem 280, 40161-8.
    Wang B., Zhao J. M., Song L. S., Zhang H., Wang L. L., Li C. H., Zheng P. L., Zhu L., Qiu L. M. and Xing K. Z. (2008a) Molecular cloning and expression of a novel Kazal-type serine proteinase inhibitor gene from Zhikong scallop Chlamys farreri, and the inhibitory activity of its recombinant domain. Fish Shellfish Immunol 24,629-37.
    Wang L., Song L., Zhao J., Qiu L., Zhang H., Xu W., Li H., Li C., Wu L. and Gao X. (2009a) Expressed sequence tags from the zhikong scallop (Chlamys farreri):discovery and annotation of host-defense genes. Fish Shellfish Immunol 26,744-50.
    Wang Z. H., Zhao X. F. and Wang J. X. (2009b) Characterization, kinetics, and possible function of Kazal-type proteinase inhibitors of Chinese white shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol 26,885-97.
    Wang H. C, Wang H. C., Leu J. H., Kou G. H., Wang A. H. and Lo C. F. (2007a) Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. Dev Comp Immunol 31:672-86.
    Wang K. J., Huang W. S., Yang M., Chen H. Y., Bo J., Li S. J. and Wang G. Z. (2007b) A male-specific expression gene, encodes a novel anionic antimicrobial peptide, scygonadin, in Scylla serrata. Mol Immunol 44,1961-8.
    Wang L., Zhi B., Wu W. and Zhang X. (2008b) Requirement for shrimp caspase in apoptosis against virus infection. Dev Comp Immunol 32,706-15.
    Wang R., Lee S. Y, Cerenius L. and Soderhall K. (2001a) Properties of the prophenoloxidase activating enzyme of the freshwater crayfish, Pacifastacus leniusculus. Eur J Biochem 268,895-902.
    Wang R., Liang Z., Hall M. and Soderhall K. (2001b) A transglutaminase involved in the coagulation system of the freshwater crayfish, Pacifastacus leniusculus. Tissue localisation and cDNA cloning. Fish Shellfish Immunol 11,623-37.
    Watson F. L., Puttmann-Holgado R., Thomas F., Lamar D. L., Hughes M., Kondo M., Rebel V. I. and Schmucker D. (2005) Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309,1874-8.
    Westenberg M., Heinhuis B., Zuidema D. and Vlak J. M. (2005) siRNA injection induces sequence-independent protection in Penaeus monodon against white spot syndrome virus. Virus Res 114,133-9.
    Witteveldt J., Cifuentes C. C., Vlak J. M. and van Hulten M. C. (2004a) Protection of Penaeus monodon against white spot syndrome virus by oral vaccination. J Virol 78,2057-61.
    Witteveldt J., Vlak J. M. and van Hulten M. C. (2004b) Protection of Penaeus monodon against white spot syndrome virus using a WSSV subunit vaccine. Fish Shellfish Immunol 16,571-9.
    Wittwer D. and Wiesner A. (1996) Peptide RGDS inhibits the fibronectin-enhanced phagocytosis of yeast cells by Galleria mellonella hemocytes in vitro. JInvertebr Pathol 68,199-200.
    Wongprasert K., Khanobdee K., Glunukarn S. S., Meeratana P. and Withyachumnarnkul B. (2003) Time-course and levels of apoptosis in various tissues of black tiger shrimp Penaeus monodon infected with white-spot syndrome virus. Dis Aquat Organ 55,3-10.
    Wu C, Soderhall I., Kim Y. A., Liu H. and Soderhall K. (2008) Hemocyte-lineage marker proteins in a crustacean, the freshwater crayfish, Pacifastacus leniusculus. Proteomics 8,4226-35.
    Wu W., Wang L. and Zhang X. (2005) Identification of white spot syndrome virus (WSSV) envelope proteins involved in shrimp infection. Virology 332,578-83.
    Wu W., Zong R., Xu J. and Zhang X. (2008) Antiviral phagocytosis is regulated by a novel Rab-dependent complex in shrimp Penaeus japonicus. JProteome Res 7,424-31.
    Xie X. and Yang F. (2005) Interaction of white spot syndrome virus VP26 protein with actin. Virology 336,93-9.
    Xu J., Han F. and Zhang X. (2007) Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA. Antiviral Res 13,126-31.
    Yang F., He J., Lin X., Li Q., Pan D., Zhang X. and Xu X. (2001) Complete genome sequence of the shrimp white spot bacilliform Virus. J Virol75,11811-20.
    Yeh M. S., Chen Y. L. and Tsai I. H. (1998) The hemolymph clottable proteins of tiger shrimp, Penaeus monodon, and related species. Comp Biochem Physiol B Biochem Mol Biol 121,169-76.
    Yi G., Wang Z., Qi Y, Yao L., Qian J. and Hu L. (2004) Vp28 of shrimp white spot syndrome virus is involved in the attachment and penetration into shrimp cells. J Biochem Mol Biol 37,726-34.
    Yodmuang S., Tirasophon W., Roshorm Y, Chinnirunvong W. and Panyim S. (2006) YHV-protease dsRNA inhibits YHV replication in Penaeus monodon and prevents mortality. Biochem Biophys Res Commun 341,351-6.
    Yoshizaki L., Troncoso M. F., Lopes J. L. S., Hellman U., Beltramini L. M. and Carlota W. T. (2007) Calliandra selloi Macbride trypsin inhibitor:Isolation, characterization, stability, spectroscopic analyses. Phytochem 68,2625-34.
    Zeng Y. and Lu C. P. (2009) Identification of differentially expressed genes in haemocytes of the crayfish(Procambarus clarkia) infected with white spot syndrome virus by suppression subtractive hybridization and cDNA microarrays. Fish Shellfish Immunol 26,646-50.
    Zhao Z. Y, Yin Z. X., Weng S. P., Guan H. J., Li S. D., Xing K., Chan S. M. and He J. G. (2007) Profiling of differentially expressed genes in hepatopancreas of white spot syndrome virus-resistant shrimp (Litopenaeus vannamei) by suppression subtractive hybridisation. Fish Shellfish Immunol 22,520-34.
    Zheng Q. L, Chen J., Nie Z. M., Lv Z. B., Wang D. and Zhang Y. Z. (2007) Expression, purification and characterization of a three-domain Kazal-type inhibitor from silkworm pupae (Bombyx mori). Comp Biochem Physiol B Biochem Mol Biol 146,234-40.
    Zhu L., Song L., Chang Y, Xu W. and Wu L. (2006) Molecular cloning, characterization and expression of a novel serine proteinase inhibitor gene in bay scallops (Argopecten irradians, Lamarck 1819). Fish Shellfish Immunol 20,320-31.
    蔡生力,黄健,王崇明,等.(1995)1993-1994年对虾爆发病的流行病学研究.水产学报19,112-7.
    王忠发,邵俊斌,沃健儿,等. (2005)Taqman实时荧光定量PCR快速检测白斑综合症病毒的方法研究.中国卫生检疫杂志 15,663-665.
    张弛宇,张高红,杨敏,等.(2004)四步法消除SYBR green I实时定量RT-PCR中引物二聚体的影响.中国生物化学与分钟生物学报20,387-92.
    张贺,李波,周虚,等.(2006)实时荧光定量PCR技术研究进展及应用.动物医学进展27,5-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700