用户名: 密码: 验证码:
全程自养脱氮(CANON)反应器的启动及其脱氮性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用传统的生物脱氮工艺处理高氨氮废水时,往往面临碳源不足的问题,影响脱氮的效率与成本。采用全程自养脱氮(Completely Autotrophic Nitrogen removal Over Nitrite,CANON)工艺具有几乎毋须碳源,除此之外,CANON工艺还具有节省曝气量、降低污泥产量、减少温室气体排放量等诸多优点,是一种可持续发展的脱氮工艺。不过,CANON工艺依然存在启动时间缓慢、短程硝化难以稳定等难题。为在上述难点问题上有所突破,采用四组反应器研究了CANON工艺启动及其脱氮性能。四组反应器均采用人工配置的不含有机碳源的高氨氮废(NH4+-N浓度约400mg·L-1)为进水,其中,反应器Ⅰ采用普通活性污泥启动,反应器Ⅱ、Ⅲ、Ⅳ在反应器Ⅰ启动成功后,接种其污泥启动。
     反应器Ⅰ以海绵为填料,接种普通活性污泥,控制反应器中温度为35℃±1℃,pH为7.39~8.01条件下,并始终维持曝气的条件下,经过亚硝酸化阶段和厌氧氨氧化阶段,运行210d后成功启动CANON工艺,TN去除负荷达到1.22kg/(m3·d),TN去除率达到80%。启动成功后,反应器能够保持长期稳定,最大TN去除负荷可达到2.32kg/(m3?d), TN去除率可达到80%。试验发现,CANON工艺启动成功及短程硝化维持稳定的标志是:反应前后有明显的TN损失,ΔNO3--N/ΔTN相对稳定,且维持在0.127左右。
     反应器Ⅱ以改性乙烯为填料,通过接种CANON污泥启动CANON工艺。首先在常温、厌氧条件下,历经300d启动厌氧氨氧化,脱氮效果不明显,TN去除负荷仅为0.12 kg/(m3·d);后提高温度至30℃运行约30d后,厌氧氨氧化效果明显提高,TN去除负荷达到0.23 kg/(m3·d);转为好氧状态约30d后,TN去除率达到77.61%,TN去除负荷达到1.01kg/(m3·d),完成CANON工艺的启动。
     反应器Ⅲ以海绵为填料,在温度为20~30℃条件下,接种CANON污泥,直接在好氧条件下启动,约50d后,TN去除率达到73.67%,TN去除负荷可以达到1.56 kg/(m3·d),完成CANON工艺的启动。启动过程中发现,适量的曝气存在不仅不会抑制Anammox菌,而且还会加速CANON工艺的启动。
     反应器Ⅳ以火山岩为填料,在温度为20~30℃条件下,接种CANON污泥,经过137d可启动厌氧氨氧化,TN去除负荷达到0.87kg/(m3·d),转为好氧状态后,约20d后,TN去除率达到67.03%,TN去除负荷达到1.53kg/(m3·d),完成CANON工艺的启动。随着反应器Ⅳ的继续运行,在20℃条件下,TN去除负荷最高可达到2kg/(m3·d),当调低进水负荷后,最高TN去除率达到85.50%,相应TN去除负荷为1.17kg/(m3·d)。
     试验通过SBBR反应器研究了不同温度对于CANON工艺的冲击影响,其中,SBBR反应器以海绵为填料,在30℃~35℃条件下,可稳定运行,TN去除率可达到88.3%,TN去除负荷达到0.52kg/(m3?d),且pH值先降低后升高的拐点与DO突跃的拐点均可作为反应结束的指示参数。当温度为26℃~35℃时,SBBR反应器具有较好的脱氮效果,当温度降至20℃以下时,SBBR反应器脱氮效果不佳,造成了显著的亚硝酸盐积累;受低温冲击时,Anammox菌与AOB相比,更容易受到影响。试验又通过反应器Ⅲ在长期低于30℃温度下运行发现,Anammox菌能够逐渐适应较低的温度,且藉由Anammox菌与NOB对NO2--N的竞争,协同游离氨的选择性抑制作用,可扩展短程硝化的温度应用范围至20℃~35℃。
     试验研究了曝气量变化对CANON工艺的影响,并提出来极限曝气量的概念。当曝气量小于极限曝气量时,提高曝气量有利于CANON反应器的TN去除率;曝气量超过极限曝气量时,提高曝气量不利于CANON反应器TN去除率的提高。以海绵为填料时,超过极限曝气量,TN去除效果能够维持稳定,而以改性乙烯为填料时,则会导致TN去除效果的严重恶化。
     针对不同水质,试验分别研究了水质对CANON工艺的影响,试验发现:(1)提高NH4+-N与NO2--N浓度均有利于TN去除量增加,但当二者在反应器中的浓度超过50mg·L-1时,继续提高没有明显效果。(2)当NH4+-N约为400mg·L-1,COD浓度不足100mg·L-1,不会造成对CANON工艺的破坏,但COD浓度超过100mg·L-1时,会恶化CANON工艺。
     通过4组反应器的长期运行,研究了CANON工艺长期的运行稳定性,试验发现,反应器Ⅰ在长达一年多的时间中能够保持稳定;反应器Ⅱ的稳定性较差,且过量曝气易造成污泥流失而长期破坏CANON工艺的稳定运行;反应器Ⅲ与反应器Ⅳ可在20~30℃条件下稳定运行,因此,认为海绵填料与火山岩填料均可作为CANON工艺的合适填料,而改性聚乙烯填料并不适合。
     最后,试验得出Anammox菌性质如下:厌氧氨氧化试验时消耗的NH4+-N、NO2--N及产生的NO3--N的比例为1:1.36:0.22;在30℃下活性最高,NO2--N对其抑制浓度处于200~280mg·L-1;PO43--P浓度不超过90mg·L-1时不会对其构成抑制,当高DO抑制其活性后,降低DO可快速恢复厌氧氨氧化活性。
Lack of organic carbon sources is always considered to be a key problem for it will influence the nitrogen removal efficiency and cost when conventional biological nitrogen removal process was used to treat ammonium-rich wastewater. While CANON (Completely Autotrophic Nitrogen removal Over Nitrite) process, hardly needs organic carbon in nitrogen removal. In addition, it also has a lot of advantages, such as it saves aeration gas, reduces sludge production and reduces greenhouse gas emissions, therefore it was considered to be a sustainable process for nitrogen removal. However, a lot of difficulties still exist in CANON process, such as the long time start-up stage and the unstable short-cut nitrification. In order to solve these problems above, four sets of Reactors were used to study the start-up and performance of CANON Reactor. All of four reactors used synthetic ammonia-rich wastewater without organic carbon as influent (NH4+-N was about 400mg?L-1). Among them, ReactorⅠwas started by inoculating common activated sludge, While ReactorⅡ, ReactorsⅢandⅣwere started by inoculating sludge from ReactorⅠwhen it was started successfully and performed stable.
     During the start-up stage of ReactorⅠ,which used a kind of sponge as carrier, temperature was controlled at 35℃±1℃, pH was controlled at 7.39~8.01, ReactorⅠexperienced partial nitration stage and Anammox stage on the condition of keeping aeration, the CANON process was finally started successfully at the 210th day, the total nitrogen removal load was up to 1.22kg/(m3?d), and corresponding total nitrogen removal efficiency was 80%. After the start-up, ReactorⅠcan maintained long-term stability, and the maximum total nitrogen removal load was 2.32 kg/(m3?d), corresponding nitrogen removal efficiency was 80%. During the start-up of ReactorⅠ, it was founded that the symbol for the successful start-up of CANON process and stable short-cut nitrification in CANON process was that there is an apparent nitrogen loss, values ofΔNO3--N/ΔTN keep relatively stable, and maintained at about 0.127.
     During the start-up stage of ReactorⅡ, which used modified polyethylene as carrier, temperature was controlled at room temperature, under anaerobic conditions first, though ReactorⅡexperienced 300 days to start Anammox stage, effect of nitrogen removal was still not significant, and total nitrogen removal load was only 0.12 kg/(m3?d). When the temperature was increased to 30℃for about 30 days, effect of nitrogen removal was improved to 0.23 kg/(m3?d). When anaerobic condition was changed to aerobic condition for about 30 days, the total nitrogen removal load was up to 1.01kg/(m3?d), and corresponding removal efficiency was up to 77.61%, which mean the completion of ReactorⅡ’s start-up.
     During the start-up stage of ReactorⅢ, which use anther kind of sponge as carrier, the temperature was controlled at 20~30℃. The CANON process was directly started under aerobic conditions. About 50 days later, the start-up of ReactorⅢwas completed. The total nitrogen removal load was up to 1.56 kg/(m3?d), and corresponding removal rate was 73.67%. It was also found that the presence some dissolved oxygen not only does not inhibit Anammox bacteria, but also will speed up the start-up of CANON process.
     During the start-up stage of ReactorⅣ, which used a kind of volcanic rock as carrier, temperature was controlled at 20~30℃. Under anaerobic conditions, the Anammox stage was first started at the 137th days, and total nitrogen removal load was up to 0.87kg/(m3?d). When the anaerobic condition was changed to aerobic condition, the start-up of CANON process can be completed in 20 days. The total nitrogen removal load was up to 1.53kg/(m3?d), and corresponding nitrogen removal efficiency was 67.03%. With the continued operation of the ReactorⅣ, the maximum TN removal load can be up to 2.0 kg/(m3?d), and corresponding nitrogen removal efficiency was about 70% at 20℃. However, when the influent ammonium load was reduced, the maximum total nitrogen removal efficiency can be up to 85.50%, and corresponding total nitrogen removal load was 1.17kg/(m3?d). Effect of temperature impact on CANON process was studied by using a sequencing batch biofilm Reactor (SBBR) with sponge as carrier. Under stable operation at 30℃~35℃, the total nitrogen removal efficiency of SBBR can be up to 88.3%, and corresponding total nitrogen removal load was 0.52kg/(m3·d). Both the breakpoint of pH curve and DO curve can be used to indicate the termination of CANON reaction. When the temperature was at 26℃~35℃, the SBBR has a good nitrogen removal effect. However,when the temperature was below 20℃, the nitrogen removal effect was not so good, and nitrite accumulated, which means Anammox bacteria was more sensitive compared to AOB under low temperature impact. However, by the long-term operation of ReactorⅢbelow 30℃, it was found that Anammox bacteria can gradually adapted to lower temperature. By competition of Anammox bacteria and NOB on nitrite, coupled with inhibition on NOB by free ammonia, the temperature range of Applica ting short-cut nitrification can be extended to 20℃~35℃.
     The effect of aeration rate variations was also studied. A concept of limiting aeration rate was put forward. When aeration rate was less than limiting aeration rate, the total nitrogen removal efficiency increased with aeration rate. When aeration rate was more than limiting aeration rate, the nitrogen effect was no longer increased or even got worse. If sponge was used as carrier, the effect of total nitrogen removal can keep stable,while modified polyethylene was used as carrier, the effect of total nitrogen removal will deteriorate.
     Effect of different water quality on CANON process was also studied. It was found that the increasing concentration of both ammonium and nitrite was favor to total nitrogen removal until the concentration of ammonium and nitrite reach 50mg?L-1. On the condition of ammonium concentration was about 400 mg?L-1, when COD concentration was less than 100mg?L-1, COD hardly had effect on CANON process. But if COD concentration was more than 100mg?L-1 for a long time, it will caused the deterioration of CANON process.
     The stability of CANON process was studied during long term operation. It was found that reactorⅠcan keep stable for more than a year. ReactorⅡhas a poor stability, and the aeration will cause the loss of sludge easily. ReactorⅢand reactorⅣcan keep stable at 20℃above. Compared four sets of CANON Reactors, two kinds of sponge carrier and volcanic rock were considered to be the suitable carriers for CANON process. However, modified polyethylene carrier was not considered to be suitable.
     Finally, the characteristic of Anammox bacteria was summarized as follows: the ratio of consumed ammonium, nitrite, and produced nitrate was 1: 1.36: 0.22. Anammox bacteria have the highest activity at 30℃. Nitrite inhibit Anammox bacteria at the concentration range of 200~280mg?L-1. At least 90 mg?L-1 of phosphate concentration will not inhibit Anammox bacteria. High concentration of dissolved oxygen can inhibit the activity of Anammox bacteria, but its activity can be recovered as long as the dissolved oxygen concentration was reduced.
引文
1刘云根,田昆,刘惠芳.新型除磷剂应用于滇池富营养化水体的试验研究.环境工程. 2010,28(1):36-39.
    2夏健,钱培东,朱玮. 2007年太湖蓝藻水华提前暴发气象成因探讨.气象科学. 2009,29(4):531-535.
    3 Yang H, Cheng H. Controlling Nitrite Level in Drinking Water by Chlorination and Chloramination. Separation and Purification Technology. 2007, 56(3): 392-396.
    4 Lee K C, Rittmann, B E. A Novel Hollow-Fibre Membrane Biofilm Reactor for Autohydrogenotrophic Denitrification of Drinking WATER. Water Science and Technology. 2000, 41(4-5): 219-226.
    5张彦浩,钟佛华,夏四清.利用氢自养反硝化菌处理硝酸盐污染地下水的研究.水处理技术. 2009,35(5):75-78.
    6严煦世,范瑾初.给水工程(第四版).中国建筑工业出版社,1999.
    7张自杰.排水工程下册(第四版).中国建筑工业出版社,2000.
    8韦朝海,何勤聪,帅伟等.精细化工废水的污染特性分析及其控制策略.化工进展. 2009,28(11):2047-2052.
    9黎永坚,胡晓东,熊紫娟等.高浓度氨氮对SBR工艺处理制药废水的影响.中国给水排水. 2009,(13):92-94.
    10闫立龙,李伟光,张颖等.曝气生物活性炭滤池处理高浓度尿素废水的中试研究.现代化工. 2008,28(S2):419-423.
    11时晓宁,王淑莹,孙洪伟,彭永臻. SBR工艺处理垃圾渗滤液研究及应用现状.水处理技术. 2009,35(2):19-24.
    12张树军,孟凡能,吕鑑等.高浓度氨氮消化污泥脱水液半短程硝化试验研究.环境科学. 2009,30(05):1437-1441.
    13张亮,彭永臻,张树军等.污泥消化液旁侧生物处理技术发展现状.水处理技术. 2009,(11):1-5.
    14郝晓地, van Loosdrecht Mark.荷兰鹿特丹DOKHAVEN污水处理厂介绍.给水排水. 2003,29(10):19-25.
    15 Kang K H, Shin H. S, Park H, et al. Characterization of Humic Substances Present in Landfill Leachates with Different Landfill Ages and its Implications. Water Research. 2002, 36(16): 4023-4032.
    16 Christensen T H, Kjeldsen P, Bjerg P L, et al. Biogeochemistry of Landfill Leachate Plumes. Applied Geochemistry. 2001, 16(7-8): 659-718.
    17 Connolly R, Zhao Y. Sun G, et al. Removal of Ammoniacal-Nitrogen From an ArtificialLandfill Leachate in Downflow Reed Beds. Process Biochemistry. 2004, 39(12): 1971-1976.
    18赵庆良,李湘中.垃圾渗滤液中的氨氮对微生物活性的抑制作用.环境污染与防治. 1998,20(06):1-4.
    19尹君贤.焦化污水的生物脱氮处理. 1996,27(6):309-314.
    20操卫平,冯玉军,李正山,李自树.高氮低碳废水生物脱氮研究进展.化工环保. 2004,24(4):266-270.
    21吕艳丽,单明军,王旭,杜杨.短程硝化-厌氧氨氧化处理焦化废水的研究.冶金能源. 2007,26(5):55-58.
    22谢陈鑫,赵慧,滕厚开,陈军,傅送保,单忠平,柯小军.改进式曝气生物滤池处理化肥氨氮废水的研究.水处理技术. 2009,(12):91-93.
    23邓良伟,蔡昌达,陈铬铭,陈子爱.猪场废水厌氧消化液后处理技术研究及工程应用.农业工程学报. 2002,18(3):92-94.
    24洪俊明.三段式生物法处理味精和饮料生产废水.现代化工. 2006,26(10):59-63.
    25万文玉,肖宝清.氨吹脱过程的传质模型.现代化工. 2007,27(S1):331-334.
    26杨宗政.膜生物反应器去除废水中高浓度氨氮的研究.天津大学博士论文. 2005.
    27 Anthonisen A C, Loehr R. C, Prakasam T B, et al. Inhibition of Nitrification by Ammonia and Nitrous Acid. J Water Pollut Control Fed. 1976, 48(5): 835-852.
    28房景燕. UASB工艺处理养殖废水的厌氧氨化及产气率实验研究.西南交通大学硕士论文. 2005.
    29郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术.科学出版社,2003.
    30李正魁,石鲁娜,杨竹攸等.纯种氨氧化细菌Comamonas aquatic LNL_3的固定化及短程硝化性能研究.环境科学. 2009,30(10):2952-2957.
    31 Koops H P, Pommerening-R?ser A. Distribution and Ecophysiology of the Nitrifying Bacteria Emphasizing Cultured Species. FEMS Microbiology Ecology. 2001, 37(1): 1-9.
    32 EPA, USA. Nitrogen Control. Technomic Publishing Company Inc, 1991.
    33 M, A. Nitrification. Wiley J Sons. Introduction to soil microbiology, 1977.
    34郭建华,彭永臻.异养硝化、厌氧氨氧化及古菌氨氧化与新的氮循环.环境科学学报. 2008,28(8):1489-1498.
    35 Ni B, Yu H. An Approach for Modeling Two-Step Denitrification in Activated Sludge Systems. Chemical Engineering Science. 2008, 63(6): 1449-1459.
    36 Moon H S, Chang S W, Nam K, et al. Effect of Reactive Media Composition and Co-Contaminants On Sulfur-Based Autotrophic Denitrification. Environmental Pollution. 2006, 144(3): 802-807.
    37 Strous M, Kuenen, J G, Jetten, M, et al. Key Physiology of Anaerobic Ammonium Oxidation. Applied and Environmental Microbiology. 1999, 65(7): 3248-3250.
    38林涛,操家顺,钱艳.新型的脱氮工艺——SHARON工艺.环境污染与防治. 2003,25(3):164-166.
    39 Sun G, Austin D. Completely Autotrophic Nitrogen-Removal Over Nitrite in Lab-Scale Constructed Wetlands: Evidence From a Mass Balance Study. Chemosphere. 2007, 68(6): 1120-1128.
    40张悦,曾薇,刘春兰等.单级好氧和限氧污水处理系统中总氮损失的微生物学机理.应用与环境生物学报. 2009,15(3):399-404.
    41郝晓地.可持续污水-废物处理技术.中国建筑工业出版社,2006.
    42 Furukawa K, Lieu P K. Tokitoh H, et al. Development of Single-Stage Nitrogen Removal Using Anammox and Partial Nitritation (SNAP) and its Treatment Performances. Water Science and Technology. 2006, 53(6): 83-91.
    43 Weissenbacher N, Takacs I. Murthy, S, et al. Gaseous Nitrogen and Carbon Emissions From a Full-Scale Deammonification Plant. Water Environment Research. 2010, 82(2): 169-175.
    44叶建锋,徐祖信,薄国柱.新型生物脱氮工艺——OLAND工艺.中国给水排水. 2006,22(4):6-8.
    45 Broda, E. Two Kinds of Lithotrophs Missing in Nature. Z Allg Mikrobiol. 1977, 17(6): 491-493.
    46 Mulder A, van de Graaf, A. A. Robertson, L. A, et al. Anaerobic Ammonium Oxidation Discovered in a Denitrifying Fluidized-Bed Reactor. FEMS microbiology ecology. 1995, 16(3): 177-183.
    47 Strous M, Fuerst, J. A. Kramer, E, et al. Missing Lithotroph Identified as New Planctomycete. Nature. 1999, 400(6743): 446-449.
    48 van de Graaf A. A, Mulder, A. Debruijn, P, et al. Anaerobic Oxidation of Ammonium is a Biologically Mediated Process. Applied and Environmental Microbiology. 1995, 61(4): 1246-1251.
    49胡宝兰,郑平,胡安辉等. Anammox反应器的启动及其菌群演变的研究.农业工程学报. 2005,21(07):107-110.
    50 Strous M, Heijnen J J. Kuenen J G, et al. The Sequencing Batch Reactor as a Powerful Tool for the Study of Slowly Growing Anaerobic Ammonium-Oxidizing Microorganisms. Applied Microbiology and Biotechnology. 1998, 50(5): 589-596.
    51 Thamdrup B, Dalsgaard T. Production of N2 through Anaerobic Ammonium Oxidation Coupled to Nitrate Reduction in Marine Sediments. Applied and Environmental Microbiology. 2002, 68(3): 1312-1318.
    52 van de Graaf, A. A, de Bruijn, P. Robertson, L. A, et al. Autotrophic Growth of Anaerobic Ammonium-Oxidizing Micro-Organisms in a Fluidized Bed Reactor. Microbiology-UK.1996, 142(8): 2187-2196.
    53 Kuenen G, Jetten M S M. Extraordinary Anaerobic Ammonium-Oxidizing Bacteria. ASM NEWS. 2001, 67(9): 456.
    54 Schmid M. C, Risgaard-Petersen N. van de Vossenberg J et al. Anaerobic Ammonium-Oxidizing Bacteria in Marine Environments: Widespread Occurrence but Low Diversity. Environmental Microbiology. 2007, 9(6): 1476-1484.
    55 Jetten M, Strous M, van de Pas-Schoonen, K. T. The Anaerobic Oxidation of Ammonium. FEMS Microbiology Reviews 1998, 22(5): 421-437.
    56 Lindsa M R, Webb R I, Strous, M, et al.Cell Compartmentalisation in Planctomycetes: Novel Types of Structural Organisation for the Bacterial Cell. Arch Microbiol. 2001, 175(6): 413-429.
    57胡宝兰,郑平,徐向阳,金仁村.一株反硝化细菌的鉴定及其厌氧氨氧化能力的证明. 2006,36(6):493-499.
    58 Egli K, Fanger U, Alvarez, P. J, et al. Enrichment and Characterization of an Anammox Bacterium From a Rotating Biological Contactor Treating Ammonium-Rich Leachate. Arch Microbiol. 2001, 175(3): 198-207.
    59 Kuypers M, Sliekers A. O,Lavik, G, et al Anaerobic Ammonium Oxidation by Anammox Bacteria in the Black Sea. Nature. 2003, 422(6932): 608-611.
    60 Schmid M, Walsh K, Webb R, et al. Candidatus "Scalindua Brodae", Sp. Nov, Candidatus "Scalindua Wagneri", Sp. Nov, Two New Species of Anaerobic Ammonium Oxidizing Bacteria. Systematic and Applied Microbiology. 2003, 26(4): 529-538.
    61 Fujii T, Sugino H, Rouse J D, et al. Characterization of the Microbial Community in an Anaerobic Ammonium-Oxidizing Biofilm Cultured On a Nonwoven Biomass Carrier. Journal of Bioscience and Bioengineering. 2002, 94(5): 412-418.
    62胡宝兰,郑平,管丽莉. Anammox反应器中氨氧化菌的分离鉴定及特性研究.浙江大学学报(农业与生命科学版). 2001,27(3):314-316.
    63 Schmidt I, Bock E. Anaerobic Ammonia Oxidation with Nitrogen Dioxide by Nitrosomonas Eutropha. Archives of Microbiology. 1997, 167(2-3): 106-111.
    64 Schmid M, Twachtmann U, Klein M, et al. Molecular Evidence for Genus Level Diversity of Bacteria Capable of Catalyzing Anaerobic Ammonium Oxidation. Syst Appl Microbiol. 2000, 23(1): 93-106.
    65 Schmidt I, Sliekers O, Schmid M, et al. New Concepts of Microbial Treatment Processes for the Nitrogen Removal in Wastewater. FEMS Microbiology Reviews. 2003, 27(4): 481-492.
    66张少辉,郑平.厌氧氨氧化反应器启动方法的研究.中国环境科学. 2004,24(04):496-500.
    67 Magri A, Corominas L, Lopez H A, et al. Model for the Simulation of the Sharon Process: pH as a Key Factor. Environmental Technology. 2007, 28(3): 255-265.
    68郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究.生物工程学报. 2001,17(02):193-198.
    69 Dalsgaard D E, Canfield J, Petersen B. Thamdrup et al.N2 Production by the Anammox Reaction in the Anoxic Water Column of Golfo Dulce, Costa Rica. Nature. 2003, 422(6932): 606-608.
    70 M. Strous E, van Gerven J G, Kuenen et al. Effects of Aerobic and Microaerobic Conditions On Anaerobic Ammonium-Oxidizing (Anammox) Sludge. Applied and Environmental Microbiology. 1997, 63(6): 2446-2448.
    71 Dongen V.. The Combinded Sharon/Anammox Process: A Sustainable Method for N-Removal From Sludge Water (Water and Wastewater Practitioner). IWA Publishing, 2001: 64.
    72 van Dongen U, Jetten, M S, van Loosdrecht M. The Sharon-Anammox Process for Treatment of Ammonium Rich Wastewater. Water Sci Technol. 2001, 44(1): 153-160.
    73 Bock, E, Wagner, M. Oxidation of Inorganic Nitrogen Compounds as an Energy Source. 2006, : 457-495.
    74袁林江,彭党聪.短程硝化——反硝化生物脱氮.中国给水排水. 2000,16(2):29-31.
    75 Heijnen J J, Hellinga C,. Mulder J W et al. The Sharon Process: An Innovative Method for Nitrogen Removal From Ammonium-Rich Waste Water. Water Science and Technology. 1998, 37(9): 135-142.
    76 Hanaki K, Wantawin C. Ohgaki, S, et al Nitrification at Low-Levels of Dissolved-Oxygen with and without Organic Loading in a Suspended-Growth Reactor. Water Research. 1990, 24(3): 297-302.
    77 Laanbroek H J, Gerards S. Competition for Limiting Amounts of Oxygen Between Nitrosomonas-Europaea and Nitrobacter-Winogradskyi Grown in Mixed Continuous Cultures. 1993.
    78 Kuai L P, Verstraete W. Ammonium Removal by the Oxygen-Limited Autotrophic Nitrification-Denitrification System. Applied and environmental microbiology. 1998, 64(11): 4500-4506.
    89 Verstraete W, Philips S. Nitrification-Denitrification Processes and Technologies in New Contexts. Environmental Pollution. 1998, 102(S1): 717-726.
    80彭党聪, Bernet Nicolas.供氧模式对序批式活性污泥反应器硝化性能的影响.环境工程. 1999,17(6):10-14.
    81 Siegrist, H.; Reithaar, S.; Koch, G, et al. Nitrogen Loss in a Nitrifying Rotating ContactorTreating Ammonium-Rich Wastewater without Organic Carbon. WATER SCIENCE AND TECHNOLOGY. 1998, 38(8-9): 241-248.
    82 Third, K. A.; Sliekers, A. O.; Kuenen, J. G, et al. The CANON System (Completely Autotrophic Nitrogen-Removal Over Nitrite) Under Ammonium Limitation: Interaction and Competition Between Three Groups of Bacteria. Systematic and Applied Microbiology. 2001, 24(4): 588-596.
    83 Sliekers, A. O.; Derwort, N.; Gomez, J, et al. Completely Autotrophic Nitrogen Removal Over Nitrite in One Single Reactor. Water Research. 2002, 36(10): 2475-2482.
    84 Ahn, Y. H.; Choi, H. C. Autotrophic Nitrogen Removal From Sludge Digester Liquids in Upflow Sludge Bed Reactor with External Aeration. Process Biochemistry. 2006, 41(9): 1945-1950.
    85 Sliekers, A. O.; Third, K. A.; Abma, W, et al. Canon and Anammox in a Gas-Lift Reactor. FEMS Microbiology Letters. 2003, 218(2): 339-344.
    86 Hao, X. D.; Heijnen, J. J.; Van, L. M, et al. Sensitivity Analysis of a Biofilm Model Describing a One-Stage Completely Autotrophic Nitrogen Removal (CANON) Process. Biotechnol Bioeng. 2002, 77(3): 266-277.
    87 Siegrist, H.; Reithaar, S.; Koch, G, et al. Nitrogen Loss in a Nitrifying Biofilm System. Water Science and Technology. 1999, 39(7): 13-21.
    88 Nielsen, M.; Bollmann, A.; Sliekers, O, et al. Kinetics, Diffusional Limitation and Microscale Distribution of Chemistry and Organisms in a Canon Reactor. FEMS Microbiology Ecology. 2005, 51(2): 247-256.
    89 Sliekers, A. O.; Derwort, N.; Gomez, J, et al. Completely Autotrophic Nitrogen Removal Over Nitrite in One Single Reactor. Water Research. 2002, 36(10): 2475-2482.
    90 Third, K. A.; Paxman, J.; Schmid, M, et al. Treatment of Nitrogen-Rich Wastewater Using Partial Nitrification and Anammox in the CANON Process. Water Science and Technology. 2005, 52(4): 47-54.
    91 Chuang, H. P.; Ohashi, A.; Imachi, H, et al. Effective Partial Nitrification to Nitrite by Down-Flow Hanging Sponge Reactor Under Limited Oxygen Condition. Water Research. 2007, 41(2): 295-302.
    92 Wett, B. Development and Implementation of a Robust Deammonification Process. Water Science and Technology. 2007, 56(7): 81-88.
    93 Rosenwinkel, K. H.; Cornelius, A. Deammonification in the Moving-Bed Process for the Treatment of Wastewater with High Ammonia Content. Chemical Engineering & Technology. 2005, 28(1): 49-52.
    94张培玉,刘晗.城市污水处理厂污泥的综合利用与资源化.环境科学与技术. 2009,32(12):109-112.
    95蒲贵兵,吕波,尹洪军等.生活污水生物处理领域中的CDM机会探讨.中国给水排水. 2009,25(14):1-5.
    96国家环境保护总局.水和废水监测分析方法.第4版.中国环境科学出版社,2002.
    97中华人民共和国卫生部.生活饮用水标准检验方法——无机非金属指标. 2006,(13.060).
    98姚乾. A/O生物除磷系统污泥膨胀控制的研究.北京工业大学硕士论文. 2008.
    99 Turk, O.; Mavinic, D. S. Maintaining Nitrite Buildup in a System Acclimated to Free Ammonia. Water Research. 1989, 23(11): 1383-1388.
    100布坎南R. E,吉布斯N. E.伯杰细菌鉴定手册.中国科学院微生物研究所伯杰细菌鉴定手册翻译组.第8版.科学出版社,1984.
    101 van de Graaf, A. A.; DeBruijn, P.; Robertson, L. A, et al. Metabolic Pathway of Anaerobic Ammonium Oxidation On the Basis of N-15 Studies in a Fluidized Bed Reactor. Microbiology-UK. 1997, 143(Part 7): 2415-2421.
    102 Third, K. A.; Paxman, J.; Schmid, M, et al. Enrichment of Anammox From Activated Sludge and its Application in the Canon Process. Microbial Ecology. 2005, 49(2): 236-244.
    103 Vazquez-Padin, J. R.; Pozo, M. J.; Jarpa, M, et al. Treatment of Anaerobic Sludge Digester Effluents by the Canon Process in an Air Pulsing Sbr. Journal of Hazardous Materials. 2009,
    166(1): 336-341.
    104施永生.亚硝酸型生物脱氮技术.给水排水. 2000,26(11):21-23.
    105高景峰,彭永臻,王淑莹等.以DO、ORP、pH控制SBR法的脱氮过程.中国给水排水. 2001,17(4):6-11.
    106 Kartal, B.; Kuypers, M.; Lavik, G, et al. Anammox Bacteria Disguised as Denitrifiers: Nitrate Reduction to Dinitrogen Gas via Nitrite and Ammonium. Environmental Microbiology. 2007, 9(3): 635-642.
    107 Barnard, J. L. Activated Primary Tanks for Phosphate Removal. Water SA. 1984, 10(3): 121-126.
    108陈曦,崔莉凤,杜兵等.温度和pH值对厌氧氨氧化微生物活性的影响分析.北京工商大学学报:自然科学版. 2006,24(3):5-8.
    109张忠祥,钱易.废水生物处理新技术.清华大学出版社,2004.
    110 Nowak, O.; Svardal, K. Observations on the Kinetics of Nitrification Under Inhibiting Conditions Caused by Industrial Waste-Water Compounds. Water Science and Technology. 1993, 28(2): 115-123.
    111王建龙,吴立波.用氧吸收速率(OUR)表征活性污泥硝化活性的研究.环境科学学报. 1999,19(3):225-229.
    112 SurmaczGorska, J.; Gernaey, K.; Demuynck, C, et al. Nitrification Monitoring in ActivatedSludge by Oxygen Uptake Rate (OUR) Measurements. Water Research. 1996, 30(5): 1228-1236.
    113 van, D. S. W.; Miclea, A. I.; van, D. U, et al. The Membrane Bioreactor: A Novel Tool to Grow Anammox Bacteria as Free Cells. Biotechnol Bioeng. 2008, 101(2): 286-294.
    114吴莉娜,彭永臻,王淑莹等.碳源对晚期垃圾渗滤液短程硝化的影响.北京工业大学学报. 2009,35(04):516-521.
    115王欢,裴伟征,李旭东等.低碳氮比猪场废水短程硝化反硝化-厌氧氨氧化脱氮.环境科学. 2009,30(3):815-821.
    116 Franco, A.; Gresia, G.; Roca, E, et al. Influence of Pulsation on Start-Up of Uasb Reactors. Water Sci Technol. 2002, 45(10): 163-168.
    117 Pynaert, K.; Smets, B. F.; Beheydt, D, et al. Start-Up of Autotrophic Nitrogen Removal Reactors Via Sequential Biocatalyst Addition. Environ Sci Technol. 2004, 38(4): 1228-1235.
    118 Zhang, L.; Zheng, P.; Tang, C. J, et al. Anaerobic Ammonium Oxidation for Treatment of Ammonium-Rich Wastewaters. Journal of Zhejiang University-Science B. 2008, 9(5): 416-426.
    119 Dapena-Mora, A.; Fernandez, I.; Campos, J. L, et al. Evaluation of Activity and Inhibition Effects on Anammox Process by Batch Tests Based On the Nitrogen Gas Production. Enzyme and Microbial Technology. 2007, 40(4): 859-865.
    120 Isaka, K.; Sumino, T.; Tsuneda, S, et al. High Nitrogen Removal Performance at Moderately Low Temperature Utilizing Anaerobic Ammonium Oxidation Reactions. Journal of Bioscience and Bioengineering. 2007, 103(5): 486-490.
    121 Anthonisen, A. C.; Loehr, R. C.; Prakasam, T. B, et al. Inhibition of Nitrification by Ammonia and Nitrous-Acid. Journal Water Pollution Control Federation. 1976, 48(5): 835-852.
    122郝晓地,汪慧贞,钱易等.欧洲城市污水处理技术新概念——可持续生物除磷脱氮工艺(下).给水排水. 2002,28(7):5-8.
    123王印忠,曹相生,孟雪征等.脱水滤液中Mg2+、PO43-和NH4+浓度对鸟粪石形成的影响.中国给水排水. 2007,23(19):6-9.
    124黄自力,夏明辉,肖晶晶等.鸟粪石结晶法回收废水中磷的研究.工业安全与环保. 2009,35(10):13-14.
    125田智勇.常温低基质浓度下生活污水的厌氧氨氧化生物脱氮研究.北京工业大学博士论文. 2008.
    126 Chamchoi, N.; Nitisoravut, S.; Schmidt, J. E, et al. Inactivation of Anammox Communities under Concurrent Operation of Anaerobic Ammonium Oxidation (Anammox) and Denitrification. Bioresource technology. 2008, 99(9): 3331-3336.
    127Cao, X. Q.; Hao, X. D.; Loosdrecht, M. C, et al. Model-Based Evaluation of Oxygen Consumption in a Partial Nitrification/Anammox Biofilm Process. Water Science and Technology. 2005, 52(7): 155-161.
    128孙艳波,周少奇,李伙生等. ANAMMOX与反硝化协同脱氮反应器启动及有机负荷对其运行性能的影响.化工学报. 2009,60(10):2596-2602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700