用户名: 密码: 验证码:
探地雷达成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探地雷达(GPR)是一种利用电磁波对地下区域进行无损探测的装置,它根据电磁波在地下介质不连续处产生的反射和散射等现象来反演地下场景和目标的信息,实现对地下目标的检测和识别。通过GPR成像技术,可以对地下目标的信息进行直观显示,便于人们对地下目标的解译。由于GPR成像技术具有非破坏性、高分辨率、探测速度快、操作方便、安全性高等优点,其在军事和民用领域中得到广泛的应用,具有很好的发展前景。与传统雷达成像不同,GPR成像场景较为特殊,具体表现为GPR工作于近场条件,且工作场景和目标特性均比较复杂。为了克服上述问题,本文分别从时域和频域成像技术、超分辨成像技术和压缩感知成像技术等方面对GPR成像进行了深入研究。
     首先研究了时域的反向投影(BP)成像算法。GPR成像场景中分层介质的存在使得电磁波发生折射现象,在成像时必须对介质分界面上折射点的位置进行求解,然而该求解过程计算量大、复杂性高。本文从改进近似求解方法和降低算法冗余性两个角度出发提出了优化的折射点求解方法,极大地提高了算法的精度和计算效率。研究发现标准BP算法具有成像速度慢和成像结果干扰严重的缺点,针对前者本文提出了FBP算法,通过子孔径划分和极坐标处理降低了算法复杂度,提高了计算速度,且便于并行实时计算;针对后者本文提出了CBP算法,通过在数据叠加前引入互相关操作,对成像结果中的旁瓣和杂波具有良好的抑制效果。
     其次研究了频域的距离偏移(RM)成像算法。当使用经典RM算法进行GPR成像时,成像结果中目标不能正确聚焦,该问题的原因是在GPR成像的分层介质模型下波场传播的连续性被破坏。本文在建立分层介质场景中的爆炸源模型基础上,提出了适合于分层介质成像的LRM算法。LRM算法通过将波场的非连续传播过程分解为多个局部连续传播过程,不仅克服了经典RM算法无法有效聚焦的问题,还保持了RM算法计算速度快的特点。
     在对传统的时域和频域算法研究之后,本文研究了基于谱估计理论的超分辨成像算法。传统算法受信号有限带宽的限制,成像结果中存在大量的旁瓣和杂波等干扰。而现代谱估计领域中的鲁棒Capon波束形成(RCB)理论和正弦幅度相位估计(APES)理论具有分辨率高、干扰抑制效果好、鲁棒性强的优点,本文分别根据这两种理论提出了RCB成像算法和APES成像算法,得到了高分辨率低干扰的成像结果。但是这两种算法受高维矩阵运算的限制,其计算效率不高。本文通过在子图像域进行预波束形成处理进而构造低维波束矢量,实现了协方差矩阵维度的降低,从而提出了DR-RCB算法和DR-APES算法。这两种算法在保持前两种算法成像质量的同时,显著地提高了计算速度。
     最后研究了基于压缩感知(CS)理论的成像算法。由于CS理论突破了传统数据采集中Nyquist采样率的限制,可以从少量的数据中精确恢复出原始的稀疏信号,极大地简化了数据采集、编码解码和数据传输的工作。结合GPR成像的实际场景中目标空间满足稀疏性要求,本文提出了CS成像算法,并以聚焦度、成像误差等为指标系统分析了测量矩阵维度、信噪比、数据损失率和目标密集度等因素对成像结果的影响,证实了CS算法具有优良的成像性能和干扰抑制能力,以及较强的鲁棒性。
GPR (Ground Penetrating Radar) uses electromagnetic waves to probe theunderground region nondestructively. GPR can be used to reconstruct the information ofunderground scenes and targets by the reflection and scattering phenomena stimulatedby the discontinuity of the underground medium, as well as underground targetdetection and recognition. The information of underground targets can be displayeddirectly by GPR imaging technique, which is also convenient for the interpretation ofunderground targets. Because of the advantages such as nondestructive, high resolution,fast probing and high safety, GPR has been widely used both in military and civilianapplications, and it possesses great developing potential. Unlike traditional radarimaging, the observing scene of GPR is relatively special because GPR works in nearfield conditions and the characteristics of both the imaging scene and targets are rathercomplicated. In order to solve these problems, an in-depth and detailed research hasbeen carried out in this thesis in the aspects of time domain imaging technique,frequency domain imaging technique, super resolution imaging technique andcompressive sensing imaging technique.
     First of all, the BP (Back Projection) algorithm in time domain is investigated. Thelayered mediums in the scene of GPR imaging cause the refraction phenomenon ofelectromagnetic waves on the interface between different mediums. In the procedure ofimaging the calculation of the coordinates of the refraction point must be performed,which has a huge workload and high complexity. An optimized method for solving theposition of refraction point is proposed by improving the approximation method anddecresing the redundancy. The accuracy and effectiveness of the imaging algorithm areboth improved. It turns out that standard BP algorithm suffers from low calcualtionspeed and severe interference in imaging results. In order to accelerate the speed of BPalgorithm, a novel FBP (Fast Back Projection) algorithm is proposed by subaperturedivision and processing in polar coordinate. The FBP algorithm is fast than the originalalgorithm, and it is convenient to perform parallel or real time calculation. In order tosuppress the interference in imaging results, a novel CBP (Cross-correlation BackProjection) algorithm is proposed by using the cross-correlation information of thereceiving data. The CBP algorithm can receive better performance of artifactssuppression.
     Then the RM (Range Migration) algorithm in frequency domain is investigated.The imaging results of classic RM algorithm will not focus correctly because in layeredmediums the the discontinuity in space results in the discontinuity of the wavefield.Base on the exploding source model for layered mediums, a novel LRM (LayeredRange Migration) algorithm is proposed. The LRM algorithm divides the discontinuous propagation of the wavefield into several local continuous propagation. Not only can theLRM algorithm focus effectively, but also it maintains the computational efficiency ofclassic RM algorithm.
     After the studies on traditional imaging algorithms in time and frequency domain,the super resolution imaging algorithms based on the theory of spectral estimation areinvestigated. Subjected to the constraint on limit bandwidth, there are lots of artifactslike sidelobes and clutters in the imaging results. Considering that in the field of modernspectral estimation the theory of both RCB (Robust Capon Beamforming) and APES(Amplitude and Phase Estimation of a Sinusoid) have the advantage of high resolution,good artifacts suppression and high robustness, the RCB and APES algorithms areproposed and better imaging results with high resolution and artifacts suppression areachieved. However, the proposed algorithms are computationally ineffective because ofthe calculation of high dimensional matrixes. More efficient algorithms called DR-RCB(Dimensionality Reduced RCB) and DR-APES (Dimensionality Reduced APES) areproposed by pre-beamforming in the sub-image domain and constructing lowdimensional beamforming vectors, that is equivalent to reducing the dimensionality ofcovariance matrix. The DR-RCB and DR-APES algorithms accelerate the RCB andAPES algorithms dramatically, meanwhile, they preserve the high imaging quality.
     In the end, the CS (Compressive Sensing) algorithm is investigated. The CS theory,which can reconstruct the original sparse signal with very few measurements, breakthrough the traditional framework of Nyquist sampling theory. The relational work suchas data acquisition, coding, decoding and data transmission could be simplified.Combining with the fact that in practical GPR imaging scene the targets are sparsecomparing to the background, the CS imaging algorithm is proposed. The effects ofparameters like the dimension of measurement matrix, SNR (Signal to Noise Ratio),data lacking ratio, compactness of targets on imaging results are systematic analysed. Ithas been proved that the CS algorithm has remarkable ability on imaging performance,artifacts suppression and robustness.
引文
[1] Daniels D J. Surface Penetrating Radar [M]. London: The Institution ofElectrical Engineers,1996.
    [2] Daniels D J. Ground Penetrating Radar [M]. London: The Institution ofElectrical Engineers,2004.
    [3]李大心.探地雷达方法与应用[M].北京:地质出版社,1994.
    [4]粟毅,黄春琳,雷文太.探地雷达理论与应用[M].北京:科学出版社,2006.
    [5]雷文太.脉冲GPR高分辨成像算法研究[D].长沙:国防科技大学,2006.
    [6] Kuloglu M, Chen C-C. Ground penetrating radar for tunnel detection [C]. IEEEInternational Geoscience and Remote Sensing Symposium, Honolulu, Hawaii, USA,July,2010,4314~4317.
    [7] Sala J, Linford N. Processing stepped frequency continuous wave GPR systemsto obtain maximum value from archaeological data sets [C]. Proceedings of the XIIIInternational Conference on Ground Penetrating Radar, Lecce, Italy, June,2010,77~82.
    [8] Schwartz N R, Zaghloul A I. Ground penetrating radar measurements:applications to synthetic data generation and target characterization [C]. IEEEInternational Geoscience and Remote Sensing Symposium, Honolulu, Hawaii, USA,July,2010,3362~3365.
    [9] Zhang X, Huang J, Song L, et al. Application of ground penetrating radar (GPR)exploration in Karst mountain areas [C]. Proceedings of the XIII InternationalConference on Ground Penetrating Radar, Lecce, Italy, June,2010,856~859.
    [10] Counts T, Gurbuz A C, Scott W R, et al. Multistatic ground penetrating radarexperiments [J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(8):2544~2553.
    [11] Daniels D J,陶建义.探地雷达导论(上)[J].现代雷达,1989,(6):17~33,61.
    [12] Daniels D J,陶建义.探地雷达导论(下)[J].现代雷达,1989,(5):5~12,26.
    [13] Gamba P, Lossani S. Neural detection of pipe signatures in ground penetratingradar images [J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(2):790~797.
    [14] Sun Y, Li X, Li J. Practical landmine detector using foward-looking groundpenetrating radar [J]. Electronics Letters,2005,41(2):97~98.
    [15]陈义群,肖柏勋.论探地雷达现状与发展[J].工程地球物理学报,2005,2(2):149~155.
    [16]杜二计,赵林,李韧.探地雷达在祁连山多年冻土调查中的应用[J].冰川冻土,2009,31(2):364~371.
    [17]方广有.探地雷达及其技术概况和展望[J].电波与天线,1994,(6):1~4.
    [18]冯晅,鹿琪,刘财等.防步兵地雷地球物理探测技术国内外研究动态[J].地球物理学进展,2008,23(3):929~935.
    [19]李才明,王良书,徐鸣洁等.基于小波能谱分析的岩溶区探地雷达目标识别[J].地球物理学报,2006,49(5):1499~1504.
    [20]李远强,陈伟.探地雷达在岩土工程勘察中的应用[J].岩土工程技术,2001,25(3):146~149.
    [21]毛琳,俞明,常洲等.用探地雷达测量城市地下管线剖面[J].现代雷达,2003,25(6):19~20,38.
    [22]闪迪.探地雷达与面波勘探技术在考古调查中的综合应用[J].工程地球物理学报,2001,8(3):339~343.
    [23]苏兆锋,陈昌彦,张辉.探地雷达在城市道路无损检测中的八个要点分析[J].岩土工程技术,2011,25(4):180~182,186.
    [24]吴正生.综合地质超前地质预报方法再隧道工程中的运用[J].工程与建设,2011,25(6):764~767.
    [25]袁新顺,水中和,王桂明.探地雷达在箱梁腹板检测中的应用[J].无损检测,2009,31(5):412~414.
    [26]张伟,李妹昱,张诗悦等.探地雷达在水利工程隐患探测中的应用[J].水利与建筑工程学报,2011,9(1):34~38.
    [27]张耀平,董陇军,袁海平.新型探地雷达设备在采空区覆盖层厚度探测中的应用[J].中国矿业,2011,20(4):114~118.
    [28] Jol H M. Ground Penetrating Radar [M]. Oxford, UK: Elsevier Science,2009.
    [29]高守传,粟毅,黄春琳等.用平均法实现瞬态信号接收中的直达波抑制[J].系统工程与电子技术,2004,26(1):21~25.
    [30]高守传,黄春琳,粟毅.主元分析法去除瞬态系统收发耦合波研究[J].电子与信息学报,2004,26(9):1461~1467.
    [31]高守传,黄春琳,粟毅.基于RLS横向滤波自适应抵消法的直达波抑制[J].信号处理,2004,20(6):566~571.
    [32]李禹,黄春琳,粟毅.基于MSE准则抑制SPR射频干扰的方法[J].国防科技大学学报,2003,25(4):42~46.
    [33]李禹,粟毅,黄春琳等.冲激雷达接收中的随机射频干扰抑制方法[J].电子与信息学报,2004,26(5):733~738.
    [34] Triltzsch G, Braun H M, Krellmann Y, et al. Stepped frequency GPR fieldtrials in potash mines [C]. Proceedings of the10th International Conference on GroundPenetrating Radar, Delft, Netherlands, June,2004,755~758.
    [35] Carin L, Sichina J, Harvey J F. Microwave underground propagation anddetection [J]. IEEE Transactions on Geoscience and Remote Sensing,2002,20(3):945~952.
    [36] Gader P D, Mystkowski M, Zhao Y. Landmine detection with groundpenetrating radar using hidden Markov models [J]. IEEE Transactions on Geoscienceand Remote Sensing,2001,39(6):1231~1244.
    [37] Wilson J N, Gader P, Lee W-H, et al. A large-scale systematic evaluation ofalgorithms using ground-penetrating radar for landmine detection and discrimination [J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(8):2560~2572.
    [38] Montoya T P, Smith G S. Land mine detection using a ground-penetratingradar base on resistively coaded Vee dipoles [J]. IEEE Transactions on Antennas andPropagation,1999,47(12):1795~1806.
    [39] Ho K C, Gader P D. A linear prediction land mine detection algorithm forhand held ground penetrating radar [J]. IEEE Transactions on Geoscience and RemoteSensing,2002,40(6):1374~1384.
    [40]孔令讲.浅地层探地雷达信号处理算法的研究[D].成都:电子科技大学,2003.
    [41]张春城.浅地层探地雷达中的信号处理技术研究[D].成都:电子科技大学,2005.
    [42] Chen C-C, Higgins M B, O'Neill K, et al. Ultrawide-bandwidthfully-polarimetric ground penetrating radar classification of subsurface unexplodedordance [J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(6):1221~1230.
    [43] Benedetto A, Benedetto F, DeBlasiis M R, et al. Reliability of signalprocessing technique for pavement damages detection and classification using groundpenetrating radar [J]. IEEE Sensor Journal,2005,5(3):471~480.
    [44] Belotti V, Dell'Acqua F, Gamba P. Denoising and hyperbola recognition inGPR data [J]. SPIE Proceedings of Image and Sigal Processing for Remote Sensing,2002,70~80.
    [45] Milisavljevic N, Bloch I, Broek S v d, et al. Improving mine recognitionthrough processing and Dempster-Shafer fusion of ground-penetrating radar data [J].Pattern Recognition,2003,36(5):1233~1250.
    [46] Derobert X, Fauchard C, Cote, et al. Step-frequency radar applied on thin roadlavers [J]. Journal of Applied Geophysics,2001,47(3):317~325.
    [47] Al-Qadi I, Lahouar S, Loulizi A, et al. Effective approach to improvepavement drainage layers [J]. Journal of Transportation Engineering,2004,130(5):658~664.
    [48] Rampa V, Spagnolini U. Multi-layer detection/tracking for monostatic groundpenetratig radar [C]. Proceedings of the IEEE International Geoscience and RemoteSensing Symposiyum,1996,1903~1906.
    [49] Sullivan R J. Radar Foundations for Imaging and Advanced Concepts [M].Raleigh: SciTech Publishing Inc.,2004.
    [50] Cumming I G, Wong F. Digital Processing of Synthetic Aperture Radar Data:Algorithms and Implementation [M]. Boston: Artech House Inc.,2005.
    [51] Soumekh M. Synthetic Aperture Radar Signal Processing with MATLABAlgorithms [M]. New York: John Wiley&Sons Inc.,1999.
    [52] Franceschetti G, Lanari R. Synthetic Aperture Radar Processing [M]. BacaRaton: CRC Press,1999.
    [53] Skolnik M I. Introduction to Radar Systems, Third Edition [M]. New York:McGraw-Hill Companies Inc.,2001.
    [54] http://www.geophysical.com.2012.
    [55] Seuzu M, Street P, Lodha G, et al. Characterization of a moderately fracturedgrantic rock using single-hole radar reflection, crosshole radar tomography, and groundpenetrating radar at AECL's underground research laboratory [C]. SEG Annual Meeting,Denver, Colorado, Nov,1996,912~916.
    [56] Chanzy A, Tarussov A, Judge A, et al. Soil water content determination usinga digital ground-penetrating-radar [J]. Soil Science Society of America Journal,1996,60(5):1318~1326.
    [57] http://www.sensoft.ca.2012.
    [58] http://www.malags.com.2012.
    [59] http://www.idscompany.it.2012.
    [60] http://www.oyo.co.jp.2012.
    [61]邹爱民.低频段脉冲探地雷达技术研究[D].长春:吉林大学,2011.
    [62]高翔.浅埋地层探地雷达信号处理与目标识别研究[D].青岛:中国海洋大学,2011.
    [63]胡进峰.合成孔径探地雷达探测浅埋小目标的信号处理算法研究[D].成都:电子科技大学,2005.
    [64]沈飚,于东海,孙忠良.探地雷达系统的研制及其应用[J].东南大学学报,1996,26(3):86~90.
    [65]沈飚,于东海,孙忠良.3ns脉宽的单脉冲探地雷达系统[J].石油地球物理勘探,1996,30(6):867~873.
    [66]张安学.探地雷达目标检测与定位方法的研究[D].西安:西安交通大学,2003.
    [67]朱迪.车载探地雷达的数据采集及信号处理[D].西安:西安交通大学,2004.
    [68]魏建涛.探地雷达的分析和研究[D].大连:大连理工大学,2000.
    [69] http://www.chinagpr.com.2012.
    [70]谢昭晖,李金铭.我国探地雷达的应用现状及展望[J].工程勘察,2007,(11):71~75.
    [71]支海燕,吕锡从.一种无载波脉冲探地雷达技术的发展及应用[J].中国航天,1994,(5):39~43.
    [72]方广有.无载波脉冲探地雷达的现状与展望[J].电子了望,1994,(2):17~20.
    [73]彭荣.6ns脉宽的单脉冲探地雷达系统[J].电波与天线,1993,(1):48~55.
    [74] Sato M, Kong F, Zeng Z, et al. Antenna development and a stepped-frequencyGPR system for landmine detection [C]. Proceedings of the2nd International Workshopon Advanced GPR, Delft, Netherlands, May,2003,168~171.
    [75] Noon D A. Stepped-frequency radar design and signal processing enhancesground penetrating radar performance [D]. Brisbane: The University of Queensland,1996.
    [76] Farquharson G. Design and implementation of200to1600MHz steppedfrequency ground penetrating radar transceiver [D]. Cape Town: The University ofCape Town,1999.
    [77] Langman A. The design of hardware and signal processing for a steppedfrequency continous wave ground penetrating radar [D]. Cape Town: The University ofCape Town,2002.
    [78] Isaacson A R. Frequency borehole tomographic imaging system [D]. CapeTown: The University of Cape Town,2002.
    [79] Devaney A J. Geophysical diffraction tomography [J]. IEEE Transactions onGeoscience and Remote Sensing,1984, GE-22(1):3~13.
    [80]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [81]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [82]薛睿峰.逆散射层析成像技术在微波成像雷达中的应用[D].上海:上海交通大学,2005.
    [83] Meincke P. Linear GPR inversion for lossy soil and a planar air-soil interface[J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(12):2713~2721.
    [84] Hislop G, Tang T. A new diffraction tomography algorithm for groundpenetrating radar [C]. Proceedings of IEEE International Geoscience and RemoteSensing Symposium,2003,21~25.
    [85] Hislop G, Tang T. An improvement diffraction tomographic inversiontechnique for imaging near-surface buried objects [C]. Asia-Pacific CEEM,2003,169~172.
    [86] Witten A J, Long E. Shallow applications of geophysical diffractiontomography [J]. IEEE Transactions on Geoscience and Remote Sensing,1986,24(5):654~662.
    [87] Molyneux J E, Witten A. Diffraction tomography imaging in a monostaticmeasurement geometry [J]. IEEE Transactions on Geoscience and Remote Sensing,1993,31(2):507~511.
    [88] Witten A J, Molyneux J E, Nyquist J E. Ground penetrating radar tomography:algorithms and case studies [J]. IEEE Transactions on Geoscience and Remote Sensing,1994,32(2):461~467.
    [89] Hansen T B, Johansen P M. Inversion scheme for ground penetrating radarthat takes into account the planar air-soil interface [J]. IEEE Transactions onGeoscience and Remote Sensing,2000,38(1):496~506.
    [90] Cui T, Chew W C. Novel diffraction tomographic algorithm for imagingtwo-dimensional targets buried under a lossy earth [J]. IEEE Transactions onGeoscience and Remote Sensing,2000,38(4):2033~2041.
    [91] Cui T, Chew W C. Diffraction tomographic algorithm for the detection ofthree-dimensional objects buried in a lossy half-space [J]. IEEE Transactions onAntennas and Propagation,2002,50(1):42~49.
    [92] Zhdanov M S, Fang S. Three-dimensional quasilinear electromagneticinversion [J]. Radio Science,1996,31(4):741~754.
    [93] Zhou C, Liu L. Radar-diffraction tomography using the modified quasi-linearapproximation [J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(1):404~415.
    [94] Meincke P.2.5-D far-field diffraction tomography inversion scheme for GPRthat takes into account the planar air-soil interface [C]. Proceedings of IEEE Antennasand Propagation Society International Symposium, Boston, USA, July,2001,662~665.
    [95] Meincke P. Linear GPR imaging based on electromagnetic plane-wave spectraand diffraction tomography [C]. Proceedings of the10th International Conference onGround Penetrating Radar, Delft, Netherlands, June,2004,55~58.
    [96] Meincke P, Chen X-Y. Efficient fixed-offset GPR scattering analysis [C].Proceedings of the10th International Conference on Ground Penetrating Radar, Delft,Netherlands, June,2004,29~32.
    [97] Meincke P, Kim O. Accurate antenna models in ground penetrating radardiffraction tomography [C]. Proceedings of IEEE Antennas and Propagation SocietyInternational Symposium, San Antonio, USA, June,2002,306~309.
    [98] Cui T J, Qin Y, Wang G L, et al. High-order inversion formulars forlow-frequency imaging of2D buried targets [C]. Proceedings of IEEE Antennas andPropagation Society International Symposium,2004,189~192.
    [99] Wang Y M, Chew W C. An iterative solution of two-dimensionalelectromagnetic inverse scattering problem [J]. Int. J. Imaging Syst. Technol.,1989,1(1):100~108.
    [100] Chew W C, Yang Y M. Reconstruction of two-dimensional permittivitydistribution using the distorted Born iterative method [J]. IEEE Transactions on MedicalImaging,1990,9(2):218~225.
    [101] Haddadin O S, Lucas S D, Ebbini E S. Solution to the inverse scatteringproblem using a modified distorted Born iterative algorithm [C]. IEEE UltrasonicsSymposium,1995,1411~1414.
    [102] Cui T, Chew W C, Aydiner A A, et al. Inverse scattering of two-dimensionaldielectric objects buried in a lossy earth using the distorted Born iterative method [J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(2):339~346.
    [103] Torres-Verdin C, Habashy T. A two-step linear inversion of two-dimensionalelectrical conductivity [J]. IEEE Transactions on Antennas and Propagation,1995,43(4):405~415.
    [104] Cui T, Chew W C, Yin X X, et al. Study of resolution and super resolution inelectromagnetic imaging for half-space problems [J]. IEEE Transactions on Antennasand Propagation,2004,52(6):1398~1411.
    [105] Catapano I, Crocco L, Soldovieri F. A feasibility study of two non-linearimaging methods for GPR surveys [C]. Proceedings of the12th InternationalConference on Ground Penetrating Radar, Birmingham, UK, June,2008,1~6.
    [106] Munson-Jr D C, O'Brien J D, Jenkins W K. A tomographic formulation ofspotlight-mode synthetic aperture radar [J]. Proceedings of IEEE,1983,71(8):917~925.
    [107]周红.基于子带子孔径的低频SAR成像及运动目标检测技术研究[D].长沙:国防科技大学,2011.
    [108]雷文太,黄春琳,粟毅.脉冲探地雷达反向投影成像算法[J].电子与信息学报,2004,26(增刊):529~533.
    [109] Halman J I, Shubert K A, Ruck G T. SAR processing of ground-penetratingradar data for buried UXO detection: results from a surface-based system [J]. IEEETransactions on Antennas and Propagation,1998,46(7):1023~1027.
    [110] Carin L, Geng N, McClure M, et al. Ultra-wide-band synthetic-aperture radarfor mine-field detection [J]. IEEE Antennas and Propagation Magazine,1999,41(1):18~33.
    [111]雷文太,刘立业,粟毅.平面分层媒质中目标的TAM-BP成像算法[J].信号处理,2007,23(5):680~685.
    [112]余洪涛,童宁宁,田建峰.超宽带SAR成像的快速BP算法[J].空军工程大学学报(自然科学版),2005,6(5):59~62.
    [113]余洪涛,张永顺,朱丽莉.超宽带线性调频信号快速BP成像[J].现代雷达,2005,27(7):39~41.
    [114] McCorkle J, Rofhean M. An order N2logN backprojector algorithm forfocusing wide-angle wide-bandwidth arbitrary motion synthetic aperture radar [C].Proceedings of SPIE AeroSense Conference, Orlando, FL, USA, April,1996,27(47):25~36.
    [115] Oh S-m, McClellan J H. Multiresolution imaging with quadtreebackprojection [C]. Proceedings of the35th Asilomar Conference on Signals Systems&Computers, Pacific Grove, CA, USA, Nov.,2001,105~109.
    [116] Yegulalp A F. Fast backprojection algorithm for synthetic aperture radar [C].IEEE Radar Conference, Walthm, Massachusetts, USA, April,1999,60~65.
    [117] Ulander L M H, Hellsten H, Stenstrom G. Synthetic-aperture radarprocessing using fast factorized back-projection [J]. IEEE Transactions on Aerospaceand Electronic Systems,2003,39(3):760~776.
    [118] Basu S, Bresler Y. O(N2log2N) filtered backprojection reconstructionalgorithm for tomography [J]. IEEE Transactions on Imaging Processing,2000,9(10):1760~1773.
    [119] Xiao S, Munson D, Basu S, et al. An N2logN back-projection algorithm forSAR image fromation [C]. Proceedings of the34th Asilomar Conference on SignalsSystems&Computers, Pacific Grove, CA, USA, Oct.,2000,1~5.
    [120]董臻,朱国富,梁甸农. BP成像算法的快速实现[J].国防科技大学学报,2000,22(6):75~77.
    [121]张春城,孔令讲,周正欧.实现浅地层探地雷达快速合成孔径成像的一种有效方法[J].现代电子技术,2006,(24):111~114.
    [122] Callow H J, Hansen R E, Saeboe T O. Effect of approximations in fastfactorized backprojectio in synthetic aperture imaging of spot regions [C]. Proceedingsof OCEANS2006, Boston, MA, USA, Sept.,2006,1~6.
    [123] Foo S, Kashyap S. Cross-correlated back projection for UWB radar imaging[C]. Proceedings of IEEE Antennas and Propagation Society Symposium, Piscataway,NJ, USA, June,2004,1275~1278.
    [124] Zetik R, Sachs J, Thoma R. Modified cross-correlation back projection foruwb imaging: numerical examples [C]. Proceedings of IEEE International Conferenceon Ultra-Wideband, Zurich, Switzerland, Sep.,2005,650~654.
    [125]吕彤光,粟毅.冲激脉冲合成孔径雷达(SAR)成像算法[J].系统工程与电子技术,1998,20(12):5~10.
    [126]王小宁.微波成像的算法研究[D].西安:西北工业大学,2001.
    [127] Ding Y, Munson D C. A fast back-projection algorithm for bistatic SARimaging [C]. Proceedings of IEEE International Conference on Image Processing,2002,449~452.
    [128]张明新,王光力,吴仁彪.探地雷达成像中多层介质分界面折射点确定[J].中国民航学院学报,2002,20(6):20~24.
    [129] Wu R, Gu K, Bradley M, et al. Propagation velocity uncertainty on GPRSAR processing [J]. IEEE Transactions on Aerospace and Electronic Systems,2003,39(3):849~861.
    [130]雷文太,粟毅,黄春琳.表层穿透雷达递归反向投影成像算法[J].电子学报,2005,33(12):2115~2119.
    [131] Lei W T, Su Y, Huang C L. A TAM-BP imaging algorithm in GPRapplication [C]. Proceedings of th4th International Conference on Microwave andMillimeter Wave Technology, Beijing, China, Aug.,2004,619~621.
    [132] Chen L, Shan O. A time-domain beamformer for UWB through-wallimaging [C]. Proceedings of TENCON2007-2007IEEE Region10Conference, Taipei,China, Oct.,2007,1~4.
    [133] Tanyer S G. High-resolution radar in inhomogeneous meida [C]. Proceedingsof the4th International Conference on Signal Processing, Beijing, China, Oct.,1998,849~861.
    [134] Lim H B, Nhung N T T, Li E-P, et al. Confocal microwave imaging forbreast cancer detection: delay-multiply-and-sum image reconstruction algorithm [J].IEEE Transactions on Biomedical Engineering,2008,55(6):1697~1704.
    [135] Zhou L, Su Y. A GPR imaging algorithm with artifacts suppression [C].Proceedings of the XIII International Conference on Ground Penetrating Radar, Lecce,Italy, June,2010,331~336.
    [136]周琳,粟毅.基于互相关的探地雷达反向投影成像算法[J].电子与信息学报,2011,33(11):2714~2719.
    [137] Zhou L, Huang C, Su Y. A fast Back Projection algorithm based oncross-correlation for GPR imaging [J]. IEEE Geoscience and Remote Sensing Letters,2012,9(2):228~232.
    [138]王建.车载前视超宽带SAR浅埋目标成像技术研究[D].长沙:国防科技大学,2008.
    [139] Stolt R H. Migration by transform [J]. Geophysics,1978,43(1):23~48.
    [140] Hellsten H, Anderson L E. An inverse method for the processing of syntheticaperture radar data [J]. Inverse Problems,1987,(3):111~124.
    [141] Cafforio C, Prati C, Rocca F. SAR data focusing using seismic migrationtechniques [J]. IEEE Transactions on Aerospace and Electronic Systems,1991,27(2):194~207.
    [142] Cafforio C, Prati C, Rocca F. Full resolution focusing of SEASAT SARimages in the frequency-wave number domain [C]. Proceedings of the8th EARSelWorkshop, Capri, Italy, May,1988,336~355.
    [143] Rocca F, Cafforio C, Prati C. Synthetic aperture radar: A new application forwave equation techniques [J]. Geophysical Prospecting,1989,(37):809~830.
    [144] Mast J E. Microwave pulse-echo radar imaging for the nondestructiveevaluation of civil structures [D]. Urbana, Illinois: University of Illinois atUrbana-Champaign,1993.
    [145] Xu X, Miller E L. Optization of migration method to locate buried object inlossy medium [C]. Proceedings of IEEE International Geoscience and Remote SensingSymposium,2002,337~339.
    [146] Xu X, Miller E L, Rappaport C M. Minimum entropy regularization infrequency-wavenumber migration to localize subsurface objects [J]. IEEE Transactionson Geoscience and Remote Sensing,2003,41(8):1804~1812.
    [147] Xu X, Miller E L, Rappaport C M, et al. Statistical method to detectsubsurface objects using array ground-penetrating radar data [J]. IEEE Transactions onGeoscience and Remote Sensing,2002,40(4):963~976.
    [148] Gu K, Wang G, Li J. Migration based SAR imaging for ground penetratingradar systems [J]. IEE Proceedings of Radar Sonar Navigation,2004,151(5):317~325.
    [149] Lopera O, Slob E C, Milisavljevic N, et al. Filtering Soil Surface andAntenna Effects From GPR Data to Enhance Landmine Detection [J]. IEEETransactions on Geoscience and Remote Sensing,2007,45(3):707~717.
    [150] Persico R. On the role of measurement configuration in contactless GPR dataprocessing by means of linear inverse scattering [J]. IEEE Transactions on Antennasand Propagation,2006,54(7):2062~2071.
    [151] Gilmore C, Jeffrey I, Vetri J L. Derivation and comparison of SAR andfrequency-wavenumber migration within a common inverse scalar wave problemformulation [J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44(6):1454~1461.
    [152] Zhou L, Su Y. GPR imaging with RM algorithm in layered mediums [J].IEEE Geoscience and Remote Sensing Letters,2011,8(5):934~938.
    [153] Capon J. High-resolution frequency-wavenumber spectrum analysis [J].Proceedings of IEEE,1969,57(8):1408~1418.
    [154] Seligson C D. Comments on high resolution frequency-wavenumberspectrum analysis [J]. Proceedings of IEEE,1970,58(6):947~949.
    [155] Cox H. Resolving power and sensitivity to mismatch of optimum arrayprocessors [J]. The Journal of the Acoustical Society of America,1973,54(3):771~785.
    [156] Wu R, Bao Z, Ma Y. Control of peak sidelobe level in adaptive arrays [J].IEEE Transactions on Antennas and Propagation,1996,44(10):1341~1347.
    [157] Lee C C, Lee J H. Robust adaptive array beamforming under steering vectorerrors [J]. IEEE Transactions on Antennas and Propagation,1997,45(1):168~175.
    [158] Zatman M. Comments on theory and applications of covariance matrix tapersfor robust adaptive beamforming [J]. IEEE Transactions on Signal Processing,2000,46(6):1796~1800.
    [159] Li J, Stoica P, Wang Z. On robust Capon beamforming and diagonal loading[J]. IEEE Transactions on Signal Processing,2003,57(1):1702~1715.
    [160] Stoica P, Wang Z, Li J. Robust Capon beamforming [J]. IEEE SignalProcessing Letters,2003,10(6):172~175.
    [161] Xie Y, Guo B, Xu L, et al. Multi-static adaptive microwave imaging for earlybreast cancer detection [C]. Proceedings of39th ASILOMAR Conference on Signals,Systems and Computers, Pacific Grove, Calif, USA, Oct.,2005,285~289.
    [162] Xie Y, Guo B, Li J, et al. Novel multistatic adaptive microwave imagingmethods for early breast cancer detection [J]. EURASIP Journal on Applied SignalProcessing,2006,1~13.
    [163] Xie Y, Guo B, Li J, et al. On multi-static adaptive microwave imagingmethods for early breast cancer detection [C]. IEEE International Conference onAcoutics Speech and Signal Processing Proceedings, Toulouse, France, May,2006,573~576.
    [164] Ahmad F, Amin M G, Kassam S A. A beamforming approach tostepped-frequency synthetic aperture through-the-wall radar imaging [C]. Proceedingsof the20051st IEEE International Workshop on Computational Advances inMulti-Sensor Adaptive Processing (CAMSAP2005), Puerto Vallarta, Mexico, Dec.,2005,24~27.
    [165] Benitz G R. High-definition vector imaging [J]. Proceedings of the31stLincoln Laboratory Journal,1997,10(2):147~170.
    [166] Ahmad F, Amin M G. High-resolution imaging using capon beamformers forurban sensing applications [C]. Proceedings of the IEEE International Conference onAcoustics, Speech, and Signal Processing (ICASSP2007), Honolulu, HI, USA, April,2007,985~988.
    [167] Lopez-Dekker P, Mallorqui J J. Capon/APES base SAR processing: Practicalcondiderations [C]. Proceedings of IEEE International Geoscience and Remote SensingSymposium, Cape Town, South Africa, July,2009,168~171.
    [168] Larsson E G, Stoica P. Fast implementation of two-dimensional APES andCapon spectral estimations [J]. Multidimensional Systems and Signa Processing,2002,12(1):35~53.
    [169] Glentis G-O. A fast algorithm for APES and Capon spectral estimation [J].IEEE Transactions on Geoscience and Remote Sensing,2008,56(9):4207~4220.
    [170] Li J, Stoica P. An adaptive filtering approach to spectral estimation and SARimaging [J]. IEEE Transactions on Signal Processing,1996,44(6):1469~1484.
    [171] Stoica P, Jakobsson A, Li J. Matched-filter band interpretation of somespectral estimators [J]. Signal Processing,1998,66(1):45~59.
    [172] Stoica P, Li H, Li J. A new derivation of the APES filter [J]. IEEE SignalProcessing letters,1999,6(8):205~206.
    [173] Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signalreconstruction from highly incomplete frequency information [J]. IEEE Transactions onInformation Theory,2006,52(2):489~509.
    [174] Donoho D L. Compressed sensing [J]. IEEE Transactions on InformationTheory,2006,52(4):1289~1306.
    [175]刘吉英.压缩感知理论及其在成像中的应用[D].长沙:国防科技大学,2010.
    [176] Baraniuk R G. Compressive sensing [J]. IEEE Signal Processing Magazine,2007,24(4):118~121.
    [177] Baraniuk R, Steeghs P. Compressive radar imaging [C]. IEEE RadarConference, Waltham, Massachusetts, USA,2007,128~133.
    [178] Herman M, Strohmer T. Compressed sensing radar [C]. Proceedings of2008International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV,USA, April,2008,1509~1512.
    [179] Potter L C, Ertin E, Parker J T, et al. Sparsity and compressed sensing inradar imaging [J]. Proceedings of IEEE,2010,98(6):1006~1020.
    [180] Gurbuz A C, McClellan J H, Scott. W R. Compressive sinsing for GPRimaging [C]. Conference Record of the Forty-First Asilomar Conference on Signals,Systems and Computers, Pacific Grove, CA, USA, Nov.2007,2223~2227.
    [181]余惠敏,方广有.压缩感知理论在探地雷达三维成像中的应用[J].电子与信息学报,2010,32(1):12~16.
    [182]屈乐乐,黄琼,方广有.基于压缩感知频率步进探地雷达成像算法[J].系统工程与电子技术,2010,32(2):295~297.
    [183]朱建清.电磁波工程[M].长沙:国防科技大学出版社,2000.
    [184]叶其孝,沈永欢.实用数学手册(第2版)[M].北京:科学出版社,2006.
    [185]陈宏盛,刘雨.计算方法[M].长沙:国防科技大学出版社,2001.
    [186] Johansson E M, Mast J E. Three-dimensional ground penetrating radarimaging using synthetic aperture time-domain focusing [J]. Proceedings of SPIE,1996,2275(1994):205~214.
    [187] GPRMAX2D/3D User's Manual (Version2.0), Antonis Giannopoulos,http://www.gprmax.org.2012.
    [188] Liu Z-S, Li H, Li J. Efficient implementation of Capon and APES forspectral estimation [J]. IEEE Transactions on Aerospace and Electronic Systems,1998,34(4):1314~1319.
    [189]沙威,"压缩传感"引论, http://www.eee.hku.hk/~wsha.2012.
    [190]分析压缩感知基本理论, http://wenku.baidu.com [J].2012,
    [191] Davies M E, Gribonval R. Restricted isometry constants where lp sparserecovery can fail for0    [192]黄璐.步进频率SAR超分辨成像技术研究[D].长沙:国防科技大学,2011.
    [193] Candes E, Romberg J. l1-MAGIC: Recovery of sparse signals via convexprogramming. http://www.acm.caltech.edu/l1magic/.2012.
    [194]周琳,王怀军,粟毅.基于压缩感知的GPR成像算法[J].系统工程与电子技术,2011,33(9):1995~2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700