用户名: 密码: 验证码:
富含瓦斯煤岩体采掘失稳非线性力学机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含瓦斯煤岩体的采掘失稳会引发岩爆、煤爆、冲击地压、煤与瓦斯突出等多种动力灾害,特别是在富含瓦斯煤岩体中,这些灾害发生更加频繁。研究富含瓦斯煤岩体的失稳机理,对于减少灾害事故,改善煤矿生产的安全状况,具有重要工程意义。富含瓦斯煤岩体采掘失稳是一动态演化过程,对煤岩体变形、破坏和失稳机理需要用非线性力学理论进行研究。本文综合应用实验室试验、理论分析、数值模拟等方法研究了富含瓦斯煤岩体采掘失稳的非线性力学机理。论文共分6章,其主要研究内容及学术贡献如下:
     (1)对陕西下峪口煤矿和崔家沟煤矿煤样进行了电镜扫描试验、单轴压缩试验、三轴压缩试验。试验结果显示,富含瓦斯煤的破坏特征符合Coulomb-Mohr强度准则,非突出矿煤样相对突出矿煤样具有较大的抗压强度和弹性模量,具有较小的泊松比。
     (2)利用瞬态渗透法对富含瓦斯煤样进行了渗透性试验,结果表明,全应力应变过程渗透率的变化与试样内部裂隙的发展变化过程密切相关。非突出矿煤样易于形成贯通裂隙,突出矿煤样较松软,不易形成贯通裂隙,因此其峰后渗透率远小于非突出矿煤样。针对富含瓦斯煤样渗流的非Darcy流特性,计算了渗流失稳时的临界压力梯度。结果显示,非突出矿井煤样的渗流失稳多发生在峰后;突出矿井煤样在峰值强度前后均易发生渗流失稳并且其临界压力梯度较大,因此渗流失稳的过程更加短暂和迅速。这一结果与矿井实际发生渗流失稳的情况相符合。
     (3)在WY-98B瓦斯吸附常数测定仪基础上,研制了瓦斯解吸激振及测试系统,研究了温度、粒径及激振力等因素对煤吸附解吸瓦斯性能的影响。基于吸附等温线拟合了温度在[293K,323K]范围时Langmiur吸附常数与温度的关系式;得到了粒径与瓦斯吸附量之间的关系,发现煤的粒径小于0.045mm时,粒径的减小不会使吸附量明显的增大;获得了煤样在低频振动作用下的解吸特性曲线,研究认为,振动作用改变了煤体的吸附微孔,使瓦斯与煤体产生相对运动而脱附,同时振动过程为解吸提供了热能。因此,低频激振能够加快煤体中的瓦斯解吸速度并增大解吸量。
     (4)采用多尺度耦合理论,建立了煤岩体的微单元三维强度分布模型及其受力的邻近单元加权分担模型,针对富含瓦斯煤的强度分布性能,应用有效应力原理,建立了含有损伤分数、名义应力、温度、瓦斯压力等多个控制参量的富含瓦斯煤体宏观破坏概率函数和多尺度敏感性函数;研究发现,损伤分数和压力越大、温度越低,煤的宏观破坏概率越大,破坏的多尺度敏感性越高。
     (5)根据工程观测和试验结果,建立了层状煤岩体及层裂煤岩体的薄板力学模型。采用尖点突变理论导出了煤岩采掘失稳的判据;采用燕尾突变理论研究了采掘过程中爆破、钻探及瓦斯动压力等动载因素对层状煤岩稳定性的影响,分析了不同势函数下岩板的失稳特征。研究表明,富含瓦斯煤岩体的采掘失稳除了与其物理、力学性质和几何尺寸有关外,还与岩板面内载荷、法向载荷和法向动载的大小及变化路径有关。
     (6)采用突变级数法对富含瓦斯煤岩体发生煤与瓦斯突出的危险性进行了预测,计算表明,突变级数法用于煤与瓦斯突出的危险性预测能取得较高的准确率。
Mining instability of coal rocks containing gas may result in various disasters, such as rock bust, coal outburst, and gas outburst. In the case of gas-rich coal rocks, these disasters occur even more frequently. Therefore, it is very important in engineering practice to study the instability mechanism of gas-rich coal rocks, so that disaster accidents may be reduced and coal mine production safety can be improved. The mining instability of gas-rich coal rocks is a dynamic evolution process. To study the mechanism of deformation, collapse, and instability of coal rocks, non-linear mechanical theory is used. In the dissertation research, laboratory tests, theoretical analysis, and numerical simulation methods are comprehensively used to study the non-linear mechanical mechanism of mining instability of gas-rich coal rocks. The dissertation is divided into 6 chapters, and the major research contents and academic contributions are as follows:
     (1) Coal samples from two gas-rich coal mines in Shanxi, the Xiayukou Mine and the Cuijiagou Mine, are used to do the EMS tests, uniaxial compression tests, and triaxial compression tests. The test results show that the collapse feature of gas-rich coal rocks accords with Coulomb-Mohr strength criterion and the coal samples from non-outburst coal mines, in comparison with those from outburst mines, have larger compressive strength, larger modulus of elasticity, and smaller Poisson ratio.
     (2) The transient permeability method is used to do permeability tests for gas-rich coal samples. The test results show that the change of permeability during complete stress-strain process is closely related with the development and change of internal cracks of coal samples. Coal samples from non-outburst coal mines form transfixion cracks easily. While coal samples from outburst mines are relatively loose and soft and they do not form transfixion cracks easily, so their after-peak permeability is far less than those of non-outburst mines. Based on the permeability characteristics of non-Darcy flow of coal samples from gas-rich mines, critical pressure gradient at seepage instability is computed. The result shows that seepage instability of coal samples of non-outburst mines usually occurs after the peak strength; while the seepage instability of coal samples of outburst coal mines occurs both before and after the peak strength, and its critical pressure gradient is relatively large, therefore, the seepage instability process is short and quick. This result accords with actual conditions of seepage instability of coal mines.
     (3) On the basis of the WY-98B Gas Adsorption Constant Determinator, a gas- desorption exciting and testing system is developed. The impact of temperature, particle size, and exciting force on gas-adsorption and desorption properties of coals is studied. The relation between Langmuir adsorption constant and temperature is fitted from the adsorption isotherm within the adsorption temperature range of 293K and 323K. The relationship between particle size and gas adsorption is obtained, and it is found that when the coal particle size is smaller than 0.045mm, the decreasing of particle size will not increase adsorption significantly. The curve of desorption characteristic of coal samples under the action of low-frequency exciting fore is found. The study shows that exciting vibration has changed the adsorptive micro-pores of coal rocks, caused gas and coal rock to move relatively, so that gas has been removed out of coal rocks. Meanwhile, vibrating process provides desorption with heat energy. Thus, low-frequency exciting force can speed up gas desorption in coal rocks and increase desorption quantity.
     (4) The multi-scale coupling theory is used to build three-dimensional strength distribution model of tiny element of coal rocks and the weighted adjacent element force-sharing model. Based on the strength distribution properties of gas-rich coal rocks and by using the effective strength principle, the macroscopic failure probability function and the multi-scale sensitivity function of gas-rich coal rocks are established. These functions have damage fraction, nominal stress, temperature, and gas pressure as their control parameters. The study shows that when the damage fraction and the pressure are greater and the temperature is lower, the macroscopic failure probability of the coal rocks is larger and the multi-scale sensitivity of the failure is higher.
     (5) Based on engineering observation and test results, mechanics models of thin plate are established for layered coal rocks and spalled coal rocks. Cusp catastrophe theory is used to derive the determining criterion of mining instability of coal rocks. And swallowtail catastrophe theory is used to study the impact of dynamic factors, such as explosion, drilling, and dynamic gas pressure on the stability of layered rocks, and to analyze the instability characteristics of rock plate under different potential functions. The study shows that the mining instability of gas-rich coal rocks depends not only on the physic and mechanical properties and the rock size, but also on the in-plane loads, normal loads, and the magnitude and changing path of dynamic normal loads.
     (6) Catastrophe progression method is used to predict the risk of coal and gas outburst of gas-rich coal rocks. The calculation shows that the prediction yields relatively high accuracy.
引文
[1]赵志刚.煤与瓦斯突出的耦合灾变机制及非线性分析[D].济南:山东科技大学,2007.
    [2]王凯,俞启香.煤与瓦斯突出的非线性特征及预测模型[M],徐州:中国矿业大学出版社,2005.
    [3]于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册[M],北京:煤炭工业出版社,2000.
    [4] Li H Y, Ogawa Y. Pore structure of sheared coals and related coal bed methane[J], Environ Geol, 2002,40: 1455~1461.
    [5]郑哲敏.从数量级和量纲分析看煤和瓦斯突出的机理[J],中国力学学会第二届理事会扩大会议论文汇编,北京大学出版社, 1982:128~137.
    [6] Paterson L. A model for outbursts in coal[J], Int J Rock Mech Min Sci, 1986(23): 327~332.
    [7]丁晓良.煤在瓦斯渗流作用下破坏及其持续扩展的机制[D],北京:中国科学院力学研究所,1988.
    [8]李萍丰.浅谈煤与瓦斯突出机理的假说—二相流体假说[J].煤矿安全, 1989, (11): 29~35.
    [9]俞善炳,谈庆明,丁雁生,孟祥跃.含气多孔介质卸压层裂的间隔特征~突出的前兆[J],力学学报,1998, 30(2):145~150.
    [10]谈庆明,俞善炳,朱怀球,郑哲敏.含瓦斯煤在突然卸压下的开裂破坏[J],煤炭学报,1997,22(5):514~518.
    [11]黄弘读,郑哲敏,俞善炳,谈庆明.突然卸载下含气煤的层裂[J],煤炭学报, 1999, 24(2):142~146.
    [12]何学秋,周世宁.煤和瓦斯突出机理的流变假说[J].煤矿安全,1991,(10):2~7.
    [13]何学秋.含瓦斯煤岩流变动力学[M],徐州:中国矿业大学出版社,1995.
    [14]何学秋.含瓦斯煤岩流变动力学[M],北京:科学出版社,2003.
    [15]梁冰,章梦涛,潘一山等.煤和瓦斯突出的固流藕合失稳理论[J],煤炭学报, 1995, 20(5):493~496.
    [16]梁冰.煤和瓦斯突出固流耦合失稳理论[M],北京:地质出版社,2000.
    [17]蒋承林,俞启香.瓦斯突出的球壳失稳理论[J].煤矿安全, 1995,(2): 20~29.
    [18]蒋承林,俞启香.煤与瓦斯突出的球壳失稳机理及防治技术[M],徐州:中国矿业大学出版社,1998.
    [19]郭德勇,韩德馨.煤与瓦斯突出粘滑机理研究[J],煤炭学报,2003,28(6):598~602.
    [20] Yun xing Cao, Dingdong He, David C Glick. Coal and gas outbursts in footwalls ofreverse faults [J], International Journal of Coal Geology,2002,48(1):47~63.
    [21] Li Huoyin. Major and minor structural features of a bedding shear zone along a coal seam and related gas outburst, Pingdingshan coalfield, northern China [J], International Journal of Coal Geology,2002,47(2):101~113.
    [22] S D Butt. Development of an apparatus to study the gas permeability and acoustic emission characteristics of an outburst~prone sandstone as a function of stress[J], International Journal of Rock Mechanics and Mining Sciences,2001,36(8):1079~1085.
    [23] Klaus Noack. Control of gas emissions in underground coal mines [J], International Journal of Coal Geology,2002,35(1~4):57~82.
    [24]窦林名,何学秋.冲击矿压防治理论与技术.中国矿业大学出版社,2001.
    [25] Tan Jiong Kie. Rockburst. Case Record. Theory and Control. Proceedings of the international symposium on engineering in complex rock formations,1986:33~37.
    [26] Cook N G W. A note on rock bursts considered as a problem of stability.J. South Afr. Int. Min. and Metallurgy, 1965, 65: 437~446.
    [27] Wawersik W K and Fairhurst C A. A study of brittle rock fracture in laboratory compression experiments. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1970,7: 561~575.
    [28] Hudson J A, Croush S L, Fairhurst C. Soft, stiff and servo~controlled testing machines: a review with reference to rock failure. Eng. Geo., 1972,6:155~189.
    [29] Huanganzeng. Rock Burst and Energy Release Rate. In Proceedings 6th international congress on Rock Mechanics: 971~974.
    [30] Bieniawski Z T, Denkhaus H G, Vogler U W. Failure of Fracture Rock.Int. J. Rock Mech. Min. Sci., 1969, 6: 323~341.
    [31] Bieniawski Z T, Mechanism of brittle fracture of rocks. PartⅠ,ⅡandⅢ. Int. J. Rock Mech. Min. Sci., 1967, 6: 395~430.
    [32]王淑坤,张万斌,赵国栋,用点载荷方法测定煤的动态破坏时间,煤炭开采,1993, 3:48~51.
    [33]王元汉,李卧东,李启光等.岩爆预测的模糊数学综合评判方法.岩石力学与工程学报1998(5): 493~501.
    [34]金立平,鲜学福.煤层冲击倾向性研究及模糊综合评判.重庆大学学报1993 (6): 114~119.
    [35]章梦涛,冲击地压失稳理论与数值模拟计算.岩石力学与工程学报,1987(3): 197~204.
    [36]章梦涛,徐曾和,潘一山.冲击地压和突出的统一失稳理论.煤炭学报,1991(4): 48~53.
    [37]潘一山,章梦涛,冲击地压失稳理论的解析分析.岩石力学与工程学报,1996,Vol, 15 supp: 504~510.
    [38]高延法、张庆松.矿山岩体力学[M],徐州:中国矿业大学出版社,2000.
    [39] A.M.Hirt, A.Shakoor. Determination of Unconfined Compressiv strenbth of Coal for Pillar Design[J],Mining Engineering,1992,(8):1037~1041.
    [40] T.P.Medhurst, E.T.Brown.A study of the Mechanical Behavior of coal for Pillar Design[J],Int.J.Rock.Min.Sci.1998,35(8):1087~1104.
    [41]刘宝琛等.岩石抗压强度的尺寸效应,岩石力学与工程学报[J],1998,17(6): 611~614.
    [42]孟召平,彭苏萍,凌灿标.不同侧压下沉积岩石变形与强度特征[J],煤炭学报, 2000,25(1):15~18.
    [43]杨永杰.煤岩强度、变形及微震特征的基础试验研究,[D],山东:山东科技大学博士论文,2006.
    [44]周世宁,林柏泉.煤层瓦斯赋存与流动理论.北京:煤炭工业出版社,1999.
    [45]俞启香,王凯,杨胜强.中国采煤工作面瓦斯涌出规律及其控制研究.中国矿业大学学报, 2000, 29(1):9~14.
    [46]梁冰,章梦涛,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法.岩石力学与工程学报,1996,15(2):135~142.
    [47]赵阳升,胡耀青,杨栋等.三维应力下吸附作用对煤岩体气体渗流规律影响的实验研究.岩石力学与工程学报,1999,18(6):651~653.
    [48]赵阳升,段康廉,胡耀青等.块裂介质岩石流体力学研究新进展.辽宁工程技术大学学报,1999,18(5):459~462 .
    [49]靳钟铭,康天合,弓培林等.煤体裂隙分形与顶煤冒放性的相关研究[J ] .岩石力学与工程学报,1996,15 (2) :143~149 .
    [50]靳钟铭,魏锦平,弓培林等.顶煤压裂损伤参数研究[J ].煤炭学报,2001,26(4): 356~356.
    [51]刘金才,刘天泉,张玉卓.裂隙岩替渗透特性研究.煤炭学报,1997,22(5):481~185.
    [52]速宝玉,詹美礼等.裂隙渗流与应力耦合特性的实验研究.岩土工程学报.1997 (4):73~77.
    [53]朱珍德,孙钧.裂隙岩体非稳态渗流场与损伤场耦合分析模型.水文地质于工程地质,1999(2):35~41.
    [54]曹树刚,鲜学福.煤岩固—气耦合的流变力学分析.中国矿业大学学报,2001,30 (4):362~365.
    [55] Li Shiping, Li Yushou, Li Yi, Wu Zhenye, Zhou Gang. Permeability ~ strain equations corresponding to the complete stress~ strain path of Yinzhuang Sandstone. International Journal of Rock Mechanics & Mining Sciences, 1994, 34(4): 383~391.
    [56] Li Shiping,Wu Daxing,Xie Weihong,et al.Effect of Confining Pressure, Pore Pressure and Specimen Dimension on Permeability of Yinzhuang Sand stone [J]. International Journal of Rock Mechanicsand Mining Science,1997,34(3~4):432.
    [57] Somerton W.H. Effect of stress on permeability of coal. Int.J. Rock Meck. Mech. Min. Sci. & Geomech. Abstr.,1975,12(2):151~158.
    [58] Harpalani,S.& Mopherson,M.J. The effect of gas evacation on coal permeability tests peciments. Int.J.Rock. Meth. Min. Sci & Geomech.Abstr,1975,12(2):151~158.
    [59] J.Liu,D.Elsworth.Linking stress~dependent effective porosity and hydraulic conductivity fields to RMR.Int,J.Rock Min Sci,1999,36:581~596.
    [60] Dana,F. Skoczylas. Gas relative permeability and pore structure of sandstones. Int.J.Rock Min Sci,1999,36:613~625.
    [61] Bibhuti B. Panda P. Relation between fracture tensor parameters and jointed rock hydraulics. Journal of Engineering Mechanics, 1999,1:53~59.
    [62] Heiland, J,Raab, S.Experimental investigation of the influence of differential stresspermeability of a lower permian (Rotliegend) sandstone deformed in the brittle deformation field. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001,26(1~2):33~38.
    [63] Schulze, O., Popp, T., Kern, H. Development of damage and permeability in deforming rock salt. Engineering Geology,2001,61(2~3):163~180.
    [64] Oda, M., Takemura, T., Aoki, T.Damage growth and permeability change in triaxial compression tests of Inada granite. Mechanics of Materials, 2002, 34(6):313~331.
    [65]李树刚,钱鸣高,石平五.煤样全应力应变中的渗透系数~应变方程.煤田地质与勘探, 2001,29(1) :22~24.
    [66]李树刚,钱鸣高等.综放开采覆岩离层裂隙变化及空隙渗流特性研究.岩石力学与工程学报,2000,19(5):604~607. [ 67 ]李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究.岩土工程学报,2001,23(1):68~70.
    [68]杨天鸿,唐春安,朱万成,冯启言.岩石破裂过程渗流与应力耦合分析[J] .岩土工程学报,2001,23 (04) :489~493.
    [69] Yang, T.H.Study on permeability character and coupled analysis of seepage and stress in rock failure process,2001:1~114.
    [70] Yang, T.H., Tham, L.G., Tang, C.A., Liang, Z.Z., Tsui, Y.Influence of heterogeneity of mechanical properties on hydraulic fracturing in permeable rocks. Rock Mechanics and Rock Engineering, 2004, 37(4): 251~275.
    [71]杨天鸿,唐春安,李连崇,朱万成.非均匀岩石破裂过程渗透率演化规律研究[J].石力学与工程学报,2004,23(05) :758~762.
    [72]杨天鸿,徐涛,刘建新,等.应力~损伤~渗流耦合模型及在深部煤层瓦斯卸压实践中的应用[J] .岩石力学与工程学报,2005,14(16):2900~2905.
    [73]程远平,俞启香,袁亮,李平,刘永庆,童云飞.煤与远程卸压瓦斯安全高效共采试验研究[J] .中国矿业大学学报,2004, 33(02):132~136.
    [74]夏红春,程远平,柳继平.远程覆岩卸压变形及其渗透性研究.西安科技大学学报, 2006,26(01):10~14.
    [75]魏锦平,张建平,靳钟铭.裂隙煤体压裂机理的分形研究.矿山压力与顶板管理,2005, (02):112~113.
    [76]李玉寿,马占国,贺耀龙,等.煤系地层岩石渗透特性试验研究.实验力学,2006,21 (2):129~133.
    [77]杨永杰,宋扬,陈绍杰.三轴压缩煤岩强度及变形特征的试验研究.煤炭学报, 2006, 31(02):150~153.
    [78]夏筱红,杨伟峰,崔道伟,等.采场底板岩石渗透性试验研究.矿业安全与环保. 2006, 33(3):20~22.
    [79] Bustin R M , Clarkson C R. Geological cont rols on coalbed met hane reservoir capacity and gas content [J ]. International Journal of Coal Geology, 1998, 38 (1~2):3~26
    [80] Krooss B M , Bergen F Van , Gensterblum Y, et al . High pressure methane and carbon dioxide adsorption on dry and moisture2equilibrated Pennsylvanian caols. Internation Journal of coal Geology,2002,51 (2):69~92.
    [81]近藤精一,等.李国希译.吸附科学[M] .北京:化学工业出版社,2006.
    [82]张庆玲,崔永君,曹利戈.煤的等温吸附实验中各因素影响分析[J].煤田地质与勘探,2004,32(2):16~19.
    [83]唐书恒,杨起,汤达祯.二元混合气体等温吸附实验结果与扩展Langmuir方程预测值的比较[J],地质科技情报,2003,22(2):68~69.
    [84]钟玲文,郑玉柱,吴争荣,雷崇利,张慧.煤在温度和压力综合影响下的吸附性能及气含量预测[J] .煤炭学报,2002,27(2):581~584.
    [85]梁冰,刘建军.煤和瓦斯突出发生过程中的温度作用机理研究[J].中国地质灾害与防治学报,2000,11(1):79~82.
    [86]崔永君,张庆玲,杨锡禄.不同煤的吸附性能及等量吸附热的变化规律[J].天然气工业,2003:130~132.
    [87]何学秋.交变电磁场对煤吸附瓦斯特性的影响[J]煤炭学报, 1996,(1):63~67
    [88]何学秋,张力.外加电磁场对瓦斯吸附解吸的影响规律及作用机理的研究[J]煤炭学报, 2000,(06):614~618.
    [89]刘保县,鲜学福,徐龙君,李秀清.交变电场作用下煤吸附甲烷特性的研究[J]煤炭转化, 2000,(03):36~39.
    [90]刘保县,熊德国,鲜学福.电场对煤瓦斯吸附渗流特性的影响[J]重庆大学学报(自然科学版), 2006,(02):83~85.
    [91]易俊.声震法提高煤层气抽采率的机理及技术原理研究[D].重庆:重庆大学,2007.
    [92]姜永东,鲜学福,易俊等.声震法促进煤中甲烷气解吸规律的实验及机理[ J ].煤炭学报,2008,33(6):675~680.
    [93] Xie Heping, Willian G. Pariseau. Studies on mechanism of rock bursts~associated seismicity mines by using fractals and damage mechanics[A]. U.S. Symposium on Rock Mechanics,1991:745.
    [94]谢和平, PariseauW.G.岩爆的分形特征和机理.岩石力学与工程学报,1993,12 (1):28~37.
    [95]谢和平.脆性材料裂纹扩展的分形运动学.力学学报.1994,26(6):757~762.
    [96]潘一山,杜广林,张永利等.煤体振动方法防治冲击地压的机理研究[J] .岩石力学与工程学报,1999(4):432~436.
    [97]潘一山,王来贵,章梦涛等.断层冲击地压发生的理论与试验研究[J] .岩石力学与工程学报,1998,(6):642~649.
    [98]王来贵,潘一山,梁冰等.矿井不连续面冲击地压发生过程分析.中国矿业.1996, 5(3):61~64.
    [99]尹光志,鲜学福,金立平等.地应力对冲击地压的影响及冲击危险区域评价的研究[J] .煤炭学报,1997, 22(4):132~137.
    [100]缪协兴,安里千,翟明华等,岩(煤)壁中滑移裂纹扩展的冲击矿压模型[J] .中国矿业大学学报,1999 ,28(2):113~117.
    [101]谭云亮,孙中辉.矿区岩层运动非线性动力学特征及预测研究的基本框架[J] .中国地质灾害与防治学报,2000,11(2):51~54.
    [102]宋维源,潘一山,沈连山.冲击地压的非线性动力反演及预报问题[J] .辽宁工程技术大学学报(自然科学版),1999,18(5):500~502.
    [103]潘岳,刘英,顾善发.矿井断层冲击地压的折迭突变模型[J] .岩石力学与工程学报. 2001,20(1):43~48.
    [104]潘岳,解金玉,顾善发.非均匀围压下矿井断层冲击地压的突变理论分析[J] .岩石力学与工程学报,2001,20(3):310~314.
    [105]Cook N G W, Hoek E, Pretorius J P G, et al. Rock mechanics applied to the study of rock bursts[J]. Journal of the South African Institute of Mining and Metallurgy, May, 1966,66(4):435~528.
    [106]Bufe,C.G., Varnes, D.J.Predictive modeling of the seismic cycle of the greater San Francisco Bay region. Journal of Geophysical Research,1993,98 (B6): 9871~9883.
    [107] LINKOV. A M Rockbursts and the Instability of Rock Masses[J]. Int.J.Rock Mech. Min.Sci. & Geomech. Abstr. 1996,33(7):727~732.
    [108]Rabinovitch,A., Frid,V., Bahat,D., Goldbaum,J.Fracture area calculation from electromagnetic radiation and its use in chalk failure analysis, International Journal of Rock Mechanics and Mining Sciences,2000,37 (7):1149~1154.
    [109]Rabinovitch, A., Bahat, D., Frid, V.Similarity and dissimilarity of electromagnetic radiation from carbonate rocks under compression, drilling and blasting, International Journal of Rock Mechanics and Mining Sciences, 2002,39 (1) :125~129.
    [110]Frid, V., Rabinovitch, A., Bahat, D. Fracture induced electromagnetic radiation Journal of Physics D: Applied Physics,2003,36 (13) :1620~1628.
    [111]Frid, V.,Vozoff, K. Electromagnetic radiation induced by mining rock failure International Journal of Coal Geology, 2005, 64(1~2) :57~65.
    [112]Ling Fuhua. History, present and advance of the catastrophe theory[J]. Advances in Mechanics.1984,14(4):289–403.
    [113]凌复华.突变理论及其应用[M].上海:上海交通大学出版社, 1988.
    [114]Henley.Catastrophe theory model in geology [J] .Math Geology,1976,8:649~655.
    [115]Henley S.Catastrophe theory models in geology [J] .Math Geology,1979,8:6~11.
    [116]Cubitt j,Shaw B.The geological implication of steady~state mechanisms in catastrophe theory [J] .Math Geology,1976,8:657~661.
    [117] Potier~Ferry M.Towards a catastrophe theory for the mechanics of plasticity and fracture [J] .Int J Engng Sci,1985,23(8):821~837.
    [118]Alberto Carpinteri. A catastrophe theory approach to fracture mechanics [J] .Int J Frac, 1990,44:57~69.
    [119]X. Lignos,G.Ioannidis and A.N.Kounadis.Non~linear buckling of simple models with tilted cusp catastrophe . International Journal of Non~Linear Mechanics.2003,38(8): 1163~1172.
    [120]Anthony N. Kounadis.Dynamic buckling of simple two~bar frames using catastrophe theory.International Journal of Non~Linear Mechanics, 2002,37(7):1249~1259.
    [121]L.G.Raftoyiannis,T.G.Constantakopoulos,G.T.Michaltsos and A.N. Kounadis. Dynamic buckling of a simple geometrically imperfect frame using Catastrophe Theory.International Journal of Mechanical Sciences, 2006,48(10): 1021~1030.
    [122]J.A.Wang, H.D.Park. Coal mining above a confined aquifer[J], International Journal of Rock Mechanics and Mining Sciences,2003,40(4):537~551.
    [123]Christina Magill,Russell Blong, John McAneney. VolcaNZ—A volcanic loss model for Auckland, New Zealand[J],Journal of Volcanology and Geothermal Research, 2006,149(3~4):329~345.
    [124]程不时.突变理论及其应用.科学通报,1978,23:513~522.
    [125]陈应天.突变理论在力学中的应用.力学与实践,1979,1(3):9~14.
    [126]康仲远.岩体准静态运动失稳的CUSP型突变模型[J].地震学报,1984,6(3): 352~361.
    [127]殷有泉,等.断层地震的尖角型突变模型[J].地球物理学报,1988,31(6):657~633.
    [128]Tang Chunan, Xu Xiaohe.A cusp catastrophe model of rock unstable failure [J].Chinese Journal of Rock Mechanics and Engineering,1990,9(2):100–107.
    [129]唐春安.岩石破裂过程中的灾变[M] .北京:煤炭工业出版社,1993.
    [130]栾元重,姜岩.地下水动态的突变预测模型[J] .水文地质工程地质,1991,8(4): 16~18.
    [131]王德禹,杨桂通.基于突变理论的弹性圆柱壳冲击扭转屈曲[J] .工程力学,1992, 9(2):36~40.
    [132]尹光志,李贺,鲜学福,等.煤岩体失稳的突变理论模型[J] .重庆大学学报,1994, 17(1): 23~28.
    [133]Xu Zenghe, Xu Xiaohe,Tang Chunan.Theoretical analysis of a cusp catastrophe bump of coal pillar under hard rocks[J].Journal of China Coal Society,1995,20(5): 485~491.
    [134]Xu Zenghe, Xu Xiaohe. Cusp catastrophe of occurrence conditions and hysteresis of rockbursts in pillar workings[J].The Chinese Journal of Nonferrous Metals, 1997,7(2): 17~23.
    [135]钟新谷.长壁工作面顶板变形失稳的突变模式[J].湘潭工学院学报,1994, (02):1~6.
    [136]白晨光,黎良杰,于学馥.承压水底板关键层失稳的尖点突变模型[J] .煤炭学报, 1997,22(2) :149~154.
    [137]邵爱军,彭建萍,刘唐生.矿坑底板突水的突变模型研究[J] .岩土工程学报,2001, 23(1) :38~41.
    [138]Pan Yue. Fold catastrophe model of mining fault rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(1):43~48.
    [139]谢胜华,侯忠杰.突变理论在浅埋煤层组合关键层中的应用[J] .力学与实践, 2002, (06):42~44.
    [140]谢胜华,侯忠杰.浅埋煤层组合关键层失稳临界突变分析[J] .矿山压力与顶板管理, 2002, (1) :68~70.
    [141]肖福坤,董建军,周立光,等.煤与瓦斯突出的突变学分析,黑龙江科技学院学报, 2002,12 (2):11~13.
    [142]肖福坤,秦宪礼,张娟霞,刘晓军,等.煤与瓦斯突出过程的突变分析,辽宁工程技术大学学报,2004,23(4): 442~444.
    [143]陈先国.隧道结构失稳及判据研究.西南交通大学博士论文.2002.
    [144]徐涛,郝天轩,唐春安,杨天鸿,等.含瓦斯煤岩突出过程数值模拟.中国安全科学学报. 2005,15(1):108~110.
    [145]郭文兵,邓喀中,邹友峰,等.条带煤柱的突变破坏失稳理论研究.中国矿业大学学报.2005,34(1): 77~81.
    [146]Qin S, Jiao J J, Wang S. A cusp catastrophe model of instability of slip~buckling slope[J].International Rock Mechanics and Rock Engineering, 2001,34(2): 119~134.
    [147]Qin Siqing, He Huaifeng. Analysis on the destabilization for the narrow coal pillar burst by the catastrophe theory[J].Hydrogeology and Engineering Geology, 1995,18(5): 17~20.
    [148] Siqing Qin, Jiu Jimmy Jiao, C.A. Tang and Zhigang Li .Instability leading to coal bumps and nonlinear evolutionary mechanisms for a coal~pillar~and~roof system. International Journal of Solids and Structures, Volume 43, Issues 25~26, December 2006, Pages 7407~7423.
    [149]李江腾,曹平,等.硬岩矿柱纵向劈裂失稳突变理论分析.中南大学学报(自然科学版). 2006,27(2):371~375.
    [150]马中飞,俞启香,等.煤与瓦斯承压散体失控突出机理的初步研究.煤炭学报.2006, 31(3):329~333.
    [151]Pan Yishan, Zhang Mengtao, Li Guozheng. The Study of chamber rockburst by the cuspmodel of catastrophe theory[J].Applied Mathematics and Mechanics (English Edition), 1994,15 (10): 943~951.
    [152]Pan Yue, Wang Zhiqiang. Fold catastrophe model of rockburst in narrow coal pillar[J]. Rock and Soil Mechanics, 2004, 25(1):23~30.
    [153]Pan Yue, Wang Zhiqiang. Research on relationship of load~displacement for cavern surrounding rock with strain nonlinear softening[J]. Rock and Soil Mechanics, 2004, 25(10):1515~1521.
    [154]Pan Yue, Zhang Yong,Yu Guangming. Mechanism and catastrophe theory analysis of circular tunnel rock burst. Applied Mathematics and Mechanics (English Edition) . June 2006, 27(6):23~30.
    [155]孙强,刘天霸,秦四清.斜坡失稳的燕尾突变模型[J].工程地质学报, 2006,14(06): 853~854.
    [156]孙强,王媛媛,胡秀宏.地下水作用下斜坡燕尾突模型研究[J].岩土力学, 2008, (S1): 357~362.
    [157]孙强,马平,冶小平,刘天霸.斜坡演化的燕尾突变模型研究[J].岩土工程学报, 2008,(07):1024~1028.
    [158]刘文方,隋严春,周菊芳,李红梅.含软弱夹层岩体边坡的突变模式分析[J].岩石力学与工程学报, 2006,(S1):2663~2669.
    [159]姜永东,鲜学福,郭臣业.层状岩质边坡失稳的燕尾突变模型[J].重庆大学学报, 2008,(05):553~557.
    [160]范镜泓.非均匀材料力学:学时思想及研究趋势,力学进展,2004,34(6),570~578
    [161]何俊,何学秋,刘明举.煤与瓦斯突出多尺度预测研究[J]岩石力学与工程学报, 2004,(18): 3122~3126.
    [162]肖福坤,秦宪礼,张娟霞等.煤与瓦斯突出过程的突变分析,辽宁工程技术大学学报,2004,23(24): 442~446.
    [163]徐涛,郝天轩,唐春安等.含瓦斯煤岩突出过程数值模拟.中国安全科学学报. 2005.15(1): 108~110.
    [164]李玉民,来兴平,蔡晓芒等.开采扰动区(EDZ)内层状围岩变尺度损伤及失稳预计实验及综合分析[J].西安科技大学学报,2007,(1),15~19.
    [165]张天军,李树刚,陈占清.突出矿煤岩微孔隙特征及其渗透特性[J].西安科技大学学报,2008,28(2):310-313.
    [166] Li xiaozhao,Hua Aanzeng.The study of heterogeneous media dynamical problems in the gas bearing rockmass. Proc.Int. Symp. NDRM,94, China:Northeastern University Press, 1994:19~24.
    [167]缪协兴,刘卫群,陈占清.采动岩体渗流理论.北京:科学出版社,2004
    [168]缪协兴,陈占清,茅献彪等.峰后岩石非Darcy渗流的分岔行为研究[J].力学学报,2003, 35(6):660~667.
    [169]孙明贵,黄先伍,李天珍等.石灰岩应力~应变全过程的非Darcy流渗透特性[J].岩石力学与工程学报,2006,25(3): 484~491.
    [170]胡耀青,赵阳升,魏锦平.三维应力作用下煤体瓦斯渗透规律实验研究.西安科技学院学报, 1996,16(4):308~311.
    [171]杨永杰,宋扬,陈绍杰.煤岩全应力应变过程渗透性特征试验研究.岩土力学, 2007, 28 (2): 381~385.
    [172]T.J. Zhang,S.G. Li,Z.Q. Chen T.C. Zhang. Study on Mechanical Properties and Permeability of Gas-rich Coal Rocks[C]//Jinghong Fan and Haibo Chen.Advances in heterogeneous material mechanics 2008.USA:DEStech Publication,Inc., 2008.1354-1357.
    [173]刘树才.煤矿底板突水机理及破坏裂隙带演化动态探测技术[D].徐州:中国矿业大学,2008.
    [174]李树刚,张天军,陈占清,许鸿杰.高瓦斯矿煤样非Darcy流的MTS渗透性试验[J].湖南科技大学学报.2008,23(3):1-4.
    [175]李树刚,张天军,陈占清,李玉寿.高瓦斯煤样渗透规律的实验研究[J].煤田地质与勘探,2008,36(4): 8-11.
    [176]程守珠,江之永.物理学[M].北京:高等教育出版社,1998.6.
    [177]王正列,周亚平.物理化学[M].北京:高等教育出版社, 2001.
    [178]吴俊.煤表面能的吸附计算及研究意义[J] .煤田地质与勘察,1994,22(2):18~23.
    [179]I.L.éttinger. Methane saturation of coal strata as methane~coal solid solution[J].Journal of Mining Science,1990.
    [180] I. L.éttinger. Diffusion field in coal stratum[J].Journal of Mining Science,1991
    [181]钟玲文,张慧,员争荣等.煤的比表面积孔体积及其对煤吸附能力的影响[J].煤田地质与勘探,2003,30(3):26~29.
    [182]降文萍,崔永君,张群等.不同变质程度煤表面与甲烷相互作用的量子化学研究[J].煤炭学报,2007,32(3):292~295.
    [183]李大伟,王德明,顾俊杰等.煤物理吸氧量随温度及粒径变化规律的实验研究[J].煤炭科学技术,2008,36(2):42~44.
    [184]张庆玲,永君,曹利戈.压力对不同变质程度煤的吸附性能影响分析[J].天然气工业,2004:98~101.
    [185]潘一山,杜广林,张永利等.煤体振动方法防治冲击地压的机理研究[J].岩石力学与工程学报,1999,18(4):432-436.
    [186]孙茂远,黄盛初等.煤层气开发利用手册[M].北京:煤炭工业出版社,1998.67-85.
    [187]夏蒙棼,韩闻生,柯孚久等.统计细观损伤力学和损伤演化诱致突变[J].力学进展,1995, 25(1):1~21.
    [188]夏蒙棼,韩闻生,白洁等.破坏现象耦合斑图演化诱致突变的系综统计[J].科学通报, 1999,44(6):564~571.
    [189]范镜泓.材料变形与破坏的多尺度分析[M].北京:科学出版社,2008.
    [190]G C Sih. Multiscale cracking aggravated by environment effects of electron behavior and local chemistry [A]. Multiscale Damage Related to Environment Assisted Cracking[C].Shanghai: East China Univer, Sci and Tech Press,2005:1~11.
    [191]G C Sih. Mechanics of fracture initiation and propagation [M].Netherlands: Kluwer Academic Publishers.1991.
    [192]Harpalani S,Chen G L. Estimation of changes in fracture porosity of coal with gas emission[J]. Fuel, 1995,74(10):1491~11498.
    [193]谈慕华,黄蕴元.表面物理化学[M].北京:中国建筑工业出版社,1985.33~53.
    [194]Biot M a, Willis D G. The elastic coefficients of the theory of consolidation [J]. ASME J. Appl Mech,1957, 24:594~601.
    [195]李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展,2003,18(4): 419–426.
    [196]张天军,李云鹏.顺层围岩地下洞室的粘弹性稳定分析[J].长安大学学报, 2004, 24(4):55~58.
    [197]雷光宇,卢爱红,茅献彪.应力波作用下巷道层裂破坏的数值模拟研究[J],岩土力学,2005, 26(5):1477~1480.
    [198]张晓春,缪协兴.层状岩体中洞室围岩层裂及破坏的数值模拟研究[J],岩石力学与工程学报,2002,21(11):1645~1650.
    [199]张我华,金荑,陈云敏.煤瓦斯突出过程中的能量释放机理[J],岩石力学与工程学报, 2000,19(增):829~ 835.
    [200]徐芝纶,弹性力学[M].高等教育出版社,2006.
    [201]程五一,邓全封.确定工作面突出预测指标临界值方法的研究.煤矿安全,1996, (10):12~16.
    [202]孔东玲.突出敏感指标及临界值确定方法的探讨与尝试.煤炭工程师,1996(4).
    [203]梁桂兰,徐卫亚,何育智等.突变级数法在边坡稳定综合评判中的应用[J].岩土力学,2008,29(7):1895~1899.
    [204]高科,李明,吴超.突变级数法在硫化矿爆堆自然发火预测中的应用[J].金属矿山, 2008,2(2): 21~22.
    [205]万武亮,杨朝发,王大江.突变评价法在矿井经济效益和效率评价中的应用[J].矿业工程,2006,4(2) :5~7.
    [206]黄奕龙.突变级数法在资源持续利用评价中的应用[J].干旱环境监测,2001,15 (3): 167~170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700