用户名: 密码: 验证码:
基于采动效应研究的注浆工作面底板突水危险性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以刘桥二矿为研究对象,研究了井田和Ⅱ615工作面的地质和水文地质条件,利用五图双系数法评价了井田和Ⅱ615工作面6煤底板突水危险性。研究了Ⅱ615工作面底板的岩石物理力学特征、岩石水理特征、底板岩体结构特征。通过原位钻孔声波测试和岩石试件的波速测试,得出了岩块强度和岩体强度以及注浆前岩体和注浆后岩体的物理力学参数之间的换算关系。根据注浆前后底板结构特征,建立了原始底板、厚度增加底板、强度增加底板、强度和厚度均增加底板、注浆后含套管底板的5种地质模型,采用数值模拟研究了不同底板的采动效应及其差异性。运用突水系数法评价了Ⅱ615:工作面注浆后底板突水危险性。取得的主要成果和认识有:
     1.井田的东南部6煤底板突水系数较小,在0.01~0.06 MPa/m之间,为相对安全区。西北部突水系数较大,在0.06~0.20 MPa/m之间,存在太灰突水危险性。Ⅱ615工作面底板突水系数在0.05~0.07MPa/m之间,在底板完整区,底板太灰水突水危险性较小,在构造发育区,底板太灰水存在突水危险性。
     2.通过原位波速测试得出:(1)注浆后砂岩段波速增加;泥岩段表现不明显。(2)无论是否注浆,砂岩段正常区的波速都大于构造区。(3)砂岩段波速大于泥岩段。根据注浆前后岩体波速得出注浆后岩体完整性提高,砂岩段1.25倍,泥岩段1.04倍,作为注浆后底板岩体强度增加倍数。
     3.随着底板厚度和强度的增加,底板破坏深度、位移量、松动范围都明显减小。这一结果揭示了工作面底板岩体结构改造的效果以及采动效应的岩体结构控制作用。
     4.在采动效应研究的基础上,通过突水系数法对注浆后Ⅱ615工作面底板突水危险性进行了评价,得出了注浆后Ⅱ615工作面底板的突水系数为0.042-0.056MPa/m,相比注浆前降低0.008~0.014MPa/m,说明注浆效果较显著。
In this paper, Liuqiao No.2 Coal Mine was selected as the research object. The geological and hydrogeological conditions of mine field andⅡ615 working face were studied. The water inrush risk of mine andⅡ615 working face was evaluated by using five-figure and two-coefficient method. The physical and mechanical characteristics of the rock, water management features of the rock, rock mass structure ofⅡ615 working face floor were studied. Through wave velocity testing of borehole in situ and rock samples, the conversion relationship between rock and rock mass strength and the relationship between physical and mechanical parameters of rock mass before and after grouting were calculated, According to floor structure before and after grouting,
     Five geological models of the original floor, thickness increased floor, strength increased floor, strength and thickness increased floor, floor with casing were established. Numerical simulation was used to study the difference of mining effect of different floors was studied.Water inrush risk ofⅡ615 working face floor after grouting was evaluated by water inrush coefficient method. The main conclusions and understanding were as follows:
     1. Water inrush coefficient of No.6 Coal of southeast of mine field was small, at 0.02~0.06 MPa/m, the relatively safe area. Water inrush coefficient of northwest was larger, at 0.06~0.12 MPa/m, existing water inrush risk of Taiyuan limestone. Water inrush coefficient ofⅡ615 working face floor was at 0.05~0.07MPa/m, at the complete section of floor, Water inrush was less dangerous, at the areas of construction developed, danger of water inrush exist.
     2. Obtained from wave velocity test in situ:(1) Wave velocity of sandstone increased after grouting; Mudstone had not increased. (2) Whether grouting or not, the velocity of sandstonein construction zone was smaller than that of normal area. (3) Velocity of sandstone was greater than that of mudstone. Based on the velocity obtained before and after grouting, the the integrity of rock mass after grouting increased:the sandstone was 1.25 times, mudstone was 1.04 times, as the multiples of intensity increased after grouting.
     3. With the increase of thickness and strength of floor:the depth of floor failure, floor displacement and loose scope significantly reduced. The results reveal the effect of modification of floor rock mass structure in working face and the mining effect controlled by rock mass structure, the effect of grouting was quantitatively evaluated.
     4. On the basis of mining effect, water inrush risk of II 615 working face floor after grouting was evaluated by water inrush coefficient method, obtaining that water inrush coefficient ofⅡ615 working face floor after grouting was 0.042~0.056MPa/m, it significantly reduced 0.008-0.014MPa/m compared with it before grouting, indicating that effect of grouting was obvious.
引文
[1]谷德振.中国工程地质力学的基本研究.见:地质矿产部书刊编辑室.工程地质力学研究.北京:地质出版社,1985:4-6.
    [2]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [3]王国际.注浆技术理论与实践[M].徐州:中国矿业大学出版社,2000.[4]薄层灰岩注浆改造治理煤层底板岩溶水害[J].山东煤炭科技,1997,1:19-21.
    [5]韩王矿煤层底板含水层注浆改造技术[J].河南理工大学学报,2005,24(1):18-21.
    [6]矿井煤层底板含水层注浆改造技术[J].矿业研究与开发,2005,25(6):86-88.
    [7]WOLKERSDORFERC, BOWELLR. Contemporary reviews of mine water studies in Europe[J]. Mine Water and the Environment,2004,23:161.
    [8]KUZNETSOV S V, TROFIMOV V A. Hydrodynamic effect of coal seam compression[J]. Journal of Mining Science,2002,39(3):205-212.
    [9]施龙青,韩进.底板突水机理及预测预报[M].徐州:中国矿业大学出版社,2004
    [10]山东矿业学院.第三届国际矿山防治水会议论文集[M].泰安:山东矿业学院出版社,1990.
    [11]岩金工业部鞍山黑色冶金矿山设计院.国外矿山防治水技术的发展与实践[M].北京:岩金工业部出版社,1983.
    [12]杨成田.专门水文地质学[M].北京:地质出版社,1981.
    [13]魏志勇.杨村煤矿底板突水的工程地质研究[D],徐州:中国矿业大学,1997: 96-97
    [14][苏)H.A.多尔恰尼诺夫等,赵淳义译.构造应力与井巷工程稳定性[M].北京:煤炭工业出版社,1984:8-9.
    [15]B.H.G.布雷斯,E.T.布朗,冯树仁等译.地下采矿岩石力学.北京:煤炭工业出版社,1990[6].
    [16]翁金桃,仝长水.焦作地区岩溶发育特征与含水层的划分[M].南宁:广西师范大学出版社,1989.
    [17]潘国营,武强.裂隙水运动理论与渗流模拟实践[M].北京:中国地质大学出版社,2001.
    [18]曾先贵,李文平,李洪亮,等.综放开采近断层导水断裂带发育规律研究[J].采矿与安全工程学报,2006,23(3):306-310.
    [19]房佩贤.专门水文地质学[M].北京:地质出版社,1996.
    [20]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1995.
    [21]DUREAN S, EDWARDS J S. The effect of stress and fracturation on permeability of coal[J]. Mining Science and Technology,1986,22(1):108-112.
    [22]宋彦波,高全臣.有机高水材料注浆堵水机制研究[J].采矿与安全工程学报,2006,23(3):320-323.
    [23]GERMAN VICH L N. Deformation of natural coals[J]. Journal of Mining Science,1983, 19(5):21-26.
    [24]唐平,孙明贵.岩石渗流系统动力学响应及分析[J].矿山压力与顶板管理,2003,(2):115-117.
    [25]孙明贵,李天珍,黄先伍等.基于层状岩体渗流失稳条件的煤矿突水机制[J].中国矿业大学学报,2005,34(3):284-288.
    [26]黄先伍,茅献彪,李天珍.基于Burgers模型的岩层弯曲变形分析[J].采矿与安全工程学报,2006,23(2):146-150.
    [27]张金才.煤层底板突水预测的理论与实践[J],煤田地质与勘探,1989(4):38-41安徽理工大学硕士学位论文.
    [28]张金才,刘天泉,煤层底板采动因素的分析与研究[J].煤矿开采,1993(4): 35-39.
    [29]张金才,刘天泉.论煤层底板采动裂隙带的深度及分布特征[J].煤炭学报,1990(6):46-55.
    [30]张金才,肖奎仁.煤层底板采动破坏特征研究[J].煤矿开采,1993(3):44-49.
    [31]钱鸣高,缪协兴,黎良杰.采场底板岩层破断规律的理论研究[J].岩土工程学报,1995(11):55-62.
    [32]施青龙.采场底板突水力学分析[J].煤田地质与勘探,1998(5):36-38.
    [33]施青龙,宋振骇.采场底板突水条件及位置分析[J].煤田地质与勘探,1990(10):49-52.
    [34]杨善安.采场底板突水及其防治[J].煤炭学报.1994,19(6):620-625.
    [35]朱第植,王成绪.原位应力测试在底板突水预测中的应用[J].煤炭学报,1998,23(3):295-299.
    [36]李白英.预防采掘工作面突水的理论与实践[J].矿井地质.1991,91(2):18-38
    [37]施青龙,韩进.开采煤层底板“四带”划分理论与实践[J].中国矿业火学学报,2005(1):16-23.
    [38]王作宇,刘鸿泉.承压水上采煤[M].北京:煤炭工业出版社,1993:76-77; 102-103.
    [39]武强,刘守强.脆弱性指数法在煤层底板突水评价中的应用[J].中国煤炭,2010,36(6):15-22.
    [40]吴基文.煤层底板岩体阻水能力原位测试研究.岩土工程学报[J],2003,25(1).67-70
    [41]HU Wen-tao, ZHANG Xian-zhi. Evaluation ways about integrity of the engineering rock mass[J]. Journal of Xi'an Engineering University,2001,23(3):50-55.
    [42]中华人民共和国建设部.GB 50218—94 工程岩体分级标准[S].北京:中国计划出版社,1995.
    [43]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979.
    [44]马超峰,李晓等.工程岩体完整性评价的实用方法研究[J].岩土力学,2010,31(11):3580-358.
    [45]中华人民共和国建设部.GB50021—94 岩土工程勘察规范[S].北京:中国建筑工业出版社,1995.
    [46]中华人民共和国交通部.JTG D70-2004公路隧道设计规范[S].北京:人民交通出版社,2004.
    [47]刘大刚.公路隧道施工阶段围岩亚级分级研究[博士学位论文[D].成都:西南交通大学,2004.
    [48]张鹏,陈剑平,邱道宏.基于粗糙集的隧道围岩质量可拓学评价[J].岩士力学,2009,30(1):246-251.ZHANG Peng, CHEN Jian-ping, QIU Dao-hong. Evaluation of tunnel surrounding rock quality with extenics based on rough set[J]. Rock and Soil Mechanics,2009,30(1):246-251.
    [49]沈中其,关宝树.施工阶段围岩类别的定量评定方法[J].上海铁道大学学报,1998,12(2):12-18. SHEN Zhong-qi, GUAN Bao-shu. The evaluation method for surrounding rocks[J]. Journal of Shanghai Railway University,1998,12(2):12-18.
    [50]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979.
    [51]刘长武,陆士良.锚注加固对岩体完整性与准岩体强度的影响[J].中国矿业大学学报,1999,28(3):221-224.
    [52]臧秀平,阮含婷等.岩体分级考虑因素的现状与趋势分析[J].岩土力学,2007,28(10):2245-2248.
    [53]FLAC3D(2.10) User's Manual. Itasca Consulting Group, Inc.Minneapolis, Minnesota 55415 USA,2002
    [54]刘波,韩彦辉.FLAC原理、实例与应用指南.北京:人民交通出版社,2005,9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700