用户名: 密码: 验证码:
BTH诱导葫芦科作物抗病毒研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小西葫芦黄花叶病毒(Zuccini yellow mosaic virus, ZYMV)、西瓜花叶病毒(Watermelon mosaic virus, WMV)、黄瓜花叶病毒(Cucumber mosaic virus, CMV)是葫芦科作物上普遍发生、危害严重的3种病毒。本研究以这3种病毒为研究对象,考察苯并噻二唑类化合物S-甲基苯基(1,2,3)噻二唑-7-硫代羧酸酯(benzothiodiazole, BTH)处理后,植株对ZYMV、WMV、CMV的抗病效果。在此基础上,采用以18SrRNA为内参的半定量RT-PCR方法,对BTH诱导西葫芦抗ZYMV、WMV、CMV的作用机理进行了探讨。获得的主要研究结果如下:
     1.BTH处理后,植株生长量减少;BTH诱导不同葫芦科作物抗病毒病所需的适宜浓度不同。BTH诱导西瓜、甜瓜抗ZYMV、WMV、CMV所需的适宜浓度为25μg/ml;BTH诱导西葫芦抗ZYMV、WMV、CMV所需的适宜浓度为50μg/ml。
     2.在接种ZYMV、WMV前3 d用25μg/mlBTH处理西瓜,28 d后植株的病情指数减少,相对防效分别为55.6%、56.8%;在接种CMV前3 d用25μg/ml BTH处理甜瓜,28 d后植株的病情指数减少,相对防效为78.2%。进一步研究发现:BTH处理后,处理与接种的间隔期即诱导时间的长短对植株接种后的病情指数有一定的影响;BTH对病毒病的防治效果优于病毒A、病毒K、宁南霉素、芸薹素内酯。
     3.在接种ZYMV、WMV、CMV前3 d用50μg/ml BTH处理西葫芦,28 d后植株的病情指数减少,相对防效分别为39.3%、45.4%、87.5%;在接种ZYMV、WMV、CMV后1d和8d分别用50μg/ml BTH处理西葫芦,第一次处理28 d后植株的病情指数减少,相对防效分别为40.6%、38.7%、54.8%;在接种ZYMV、WMV、CMV前3 d用50μg/mlBTH处理西葫芦,接种后3 d定植到大田,定植后搭防虫网,28 d后植株的病情指数减少,相对防效分别为38.2%、42.0%、54.4%。
     4.采用以18SrRNA为内参的半定量RT-PCR方法,对分别接种ZYMV、WMV、CMV(接种前3 d 50μg/ml BTH处理植株)后第28 d时新生叶片病毒繁殖量进行分析,结果表明:BTH处理能抑制植株叶片内WMV、CMV复制,不能抑制植株叶片内ZYMV的复制。
Zuccini yellow mosaic virus(ZYMV),Watermelon mosaic virus(WMV)and Cucumber mosaic virus(CMV)are the most important pathogens infecting cucurbitaceous crops. The potential effect of benzothiodiazole to trigger systemic acquired resistance (SAR) in plants against ZYMV, WMV, CMV was investigated by treatment of plants with BTH;With the aid of Semi-quantityitive RT-PCR with the plant’s 18SrRNA as internal control, we studied the resistance mechanism too. The results obtained in this study were illustrated as followings:
     1. Average fresh weigh decreased after treatment of plants with BTH; The better concentration of pre-treatment with BTH to watermelon, melon is 25μg/ml; the better concentration of pre-treatment with BTH to zucchini is 50μg/ml .
     2. The resistance was evident as a reduced disease severity in BTH-treated plants. Average relative control effect 28 days after treatments reached 55.6%, 56.8% for ZYMV, WMV respectively when pre-treatment of watermelon with 25μg/ml BTH 3 days before virus inoculations; Average relative control effect 28 days after treatments reached 78.2% for CMV when pre-treatment of melon with 25μg/ml BTH 3 days before virus inoculations. The further research indicated that the time between treatment of BTH and the inoculation also affected disease indices; The potential effect of BTH is better than that of Moroxydine hydrochloride copper acetate, K virusicide, Ningnanmycin, Brassinolide.
     3. Average relative control effect 28 days after treatments reached 39.3%, 45.4%, 87.5% for ZYMV, WMV, CMV respectively when pre-treatment of zucchini with 50μg/ml BTH 3 days before virus inoculations; Average relative control effect 28 days after first treatments also reached 40.6%, 38.7%, 54.8% for ZYMV, WMV, CMV respectively when BTH applied ,1day and 8 days after virus inoculation;Average relative control effect 28 days after treatments reached 38.2%, 42.0%, 54.4% for ZYMV, WMV, CMV respectively when pre-treatment of zucchini with 50μg/ml BTH 3 days before virus inoculations, outdoor cultivation with insect screen 3 days after inoculation.
     4. The virus concentration of newly developed leaves of plants 28 days after 50μg/ml BTH treatments 3 days before inoculation was analyzed by semi-quantitive RT-PCR with the plant’s 18S rRNA as internal control. The results were indicated that 50μg/ml BTH treatment 3 days before inoculation affected WMV, CMV replication but did not affect ZYMV replication.
引文
1.R.赫尔。马修斯植物病毒学(原书第四版)[M].北京:科学出版社,2007:498
    2.蔡新忠,李维江.植物系统获得抗病性的产生机理和途径[J].植物保护学报,1999,26(1):83-90
    3.陈观水,潘大仁,周以飞等.甘薯NPR1基因半定量RT-PCR检测方法的建立[J].福建农林大学学报(自然科学版),2007,36(1):56-59
    4.陈慧勤,赵淑清.植物抗病反应及系统获得抗性研究进展[J].山西农业大学学报,2003,23(3):286-288
    5.董汉松.植物诱导抗性原理和研究[M].北京:科学出版社,1995:185
    6.范志金,刘秀峰,艾应伟等.物激活剂苯并噻二唑(BTH)[J].四川师范大学学报(自然科学版).2004,27 (4):410-412
    7.葛秀春,宋凤鸣,陈永叶等.苯并噻二唑诱发水稻对稻瘟病抗性中防卫相关酶活性的变化[J].中国水稻科学,2002,16 ( 2) :171-175
    8.葛银林,李德葆.二硝基类化合物对棉花抗枯萎病的诱导作用及机理[J].植物保护学报,1995,22:62-66
    9.古勤生,范在丰,李怀方.葫芦科作物病毒名录[J].中国西瓜甜瓜,2002,1:45-47
    10.古勤生,耿玲,俞征旺等.西瓜苗期抗小西葫芦黄花叶病毒的鉴定与分析[J].农业有害生物可持续治理的策略与技术[M].北京:中国农业科学技术出版社,2003:13
    11.古勤生.葫芦科主要作物病毒的鉴定和小西葫芦黄花叶病毒的变异性[D].中国农业大学博士学位论文,2001
    12.古勤生.葫芦科作物主要病毒病防治研究进展[J].中国西瓜甜瓜,2002(4):27-30
    13.候珲,朱建兰,周红平.BTH和水杨酸(SA)对甜瓜抗白粉病的诱导作用[J].果树学报,2006,23(5):736-739
    14.胡廷章,王维平,曹凯鸣等.OsCOI1,水稻中一个受茉莉酸甲酯和脱落酸诱导表达的F-box家族基因[J].生物化学与生物物理进展,2006,33(4):388-393
    15.李征,刘登义,王育鹏等.活性氧在植物—病原物相互作用过程中的作用[J].安徽师范大学学报(自然科学版),2006,29(1):70-73
    16.刘峰,慕卫.植物系统获得抗病性与化学诱导抗病剂[J].农药科学与管理,2001增刊:37-38,41
    17.聂秀玲.化学诱导启动子的克隆、定点突变及功能分析[D].北京:中国农业大学博士论文,2003
    18.彭斌,顾青,古勤生等.5种病毒侵染葫芦科作物的症状观察[J].中国西瓜甜瓜,2004(6):16-18
    19.彭金英,黄勇平.植物防御反应的两种信号转导途径及其相互作用[J].植物生理与分子生物学学报,2005,31(4):347-353
    20.宋凤鸣,葛秀春,郑重等.苯并噻二唑诱发水稻对白叶枯病的系统获得抗性[J].中国水稻科学,2001,15 (4) :323-326
    21.田文忠,丁力,曹守云等.植物抗毒素转化水稻和转基因植株的生物鉴定[J].植物学报,1998,40:803-808
    22.汪以真,林文学,许梓荣.半定量RT-PCR法评定不同生长阶段猪抗菌肽pr-39基因表达差异[J].农业生物技术学报,2004,12(1):52-55
    23.王冲,陈集双,洪健等.以18S rRNA为内参照的多重RT-PCR检测3种百合病毒[J].植物病理学报,2006,36(3):204-211
    24.王妮妍,蒋德安.茉莉酸及其甲酯与植物诱导抗病性[J].植物生理学通讯,2002,3(38):279-284
    25.王守正,李洪连,袁红霞.蔬菜诱导抗性研究现状[J].中国蔬菜,1992,5:46-49
    26.王守正,王海燕,李洪连等.瓜类作物诱导抗病机制的研究[J].河南农业科学,2001,3:20-23
    27.王文娟,刘建庄,魏朝俊等.苯并噻二唑(BTH)对苹果抗斑点落叶病的抗性[J].果树学报,2008,25(30):362-365
    28.王阳,王大浩.BTH和INA诱导小麦抗条锈病性的研究[J].中国植保导刊,2004, 24(8):5-8
    29.吴安慧,张岁岐,邓西平等.水分亏缺条件下玉米根系PIP2-5基因的表达[J].植物生理学通讯,2006,42(3):457-460
    30.徐平东,李梅,林奇英,谢联辉.黄瓜花叶病毒两亚组分离物寄主反应和血清学性质比较研究[J].植物病理学报,1997,27(4):353-360
    31.徐平东,李梅,林奇英,谢联辉.侵染西番莲属(Passiflora)植物的五个黄瓜花叶病毒分离物的特性比较[J].中国病毒学,1999,14(1):73-79
    32.徐平东,周仲驹,林奇英.黄瓜花叶病毒亚组I和Ⅱ分离物外壳蛋白基因的序列分析与比较[J].病毒学报,1999,15(2):164-171
    33.杨翠红,李永镛.一种改良的半定量RT-PCR方法[J].上海免疫学杂志,1999,19(15):292-293,296
    34.尹玉琦.哈密瓜病毒防治措施研究[J].石河子农学院学报,1986,(1):29-36
    35.张丽娜,牛吉山,于玲.用半定量RT-PCR方法分析小麦TaMlo-Alc基因的表达[J].西北植物学报,2005,25(7):1368-1371
    36.赵丽,古勤生,陈红运等.葫芦科作物3种病毒的多重RT-PCR方法的建立[J].果树学报,2008,25(5):703-707
    37.郑光宇,董涛.在新疆发生的小西葫芦黄化花叶病毒的研究初报[J].植物病理学报,1991,21(1):72
    38.周雪平,濮祖芹,方中达.黄瓜花叶病毒(CMV)土壤非介体传播研究[J].南京农业大学学报,1994,17(2):39-42
    39. Achuo E A, Audenaert K H, Meziane, et al. The salicylic acid-dependent defence pathway is effective against different pathogens in tomato and tobacco [J]. Plant Pathology, 2004, 53: 65-72
    40. Adler W. Cucurbi potyvirus transmission by alate aphid(sHomoptera:Aphididae)trapped alive [J]. Econ Entomol, 1987, 80: 87-92
    41.Anfoka Ghandi H. Benzo-(1,2,3)-thiadiazole-7-carbothioicacid-S-methylester Induces systemic resistance in tomato ( Lycopersicon esculentum. Mill cv. Vollendung ) to Cucumber mosaic virus [J]. Crop Protection, 2000, 19: 401-405
    42. Beckers G J M, Spoel S H. Fine-tuning plant defence signaling: Salicylate versus jasmonate [J]. Plant Biol, 2006, 8:1-10
    43. Beckers G J, Conrath U. Priming for stress resistance: from the lab to the field [J]. Curr Opin Plant Biol, 2007, 10: 425-31
    44. Benhamou Nicole, Bélanger Richard R. Induction of systemic resistance to Pythium damping-off in cucumber plant by bentothiadiazole: ultrastructure and cytochemistry of the host response [J]. The Plant Journal, 1998, 14(1):13-21
    45. Bokshi A I, Morris S C, Deverall B J. Effects of benzothiadiazole and acetylsalicylic acid onβ-1,3-glucanase activity and disease resistance in potato [J]. Plant Pathology, 2003, 52: 22-27
    46. Bol J F, Linthorst J M, Cornelissen B J C. Plant pathogenesis-related proteins induced by virus infection [J]. Annu Rev Phytopathol, 1990, 28: 113-138
    47. Bostock R M, Karban R, Thaler J S, et al. Signal interaction in induced resistance to pathogens and insect herbivores [J]. European Journal of Plant Pathology, 2001, 107: 103-111
    48. Bowling S A, Clarke J D, Liu Y,et a1. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance [J].Plant Cell,1997,9(9):l573-l584
    49. Buzi A, Chilosi G, DeSillo D, et al. Induction of Resistance in Melonto Didymella bryoniae and Sclerotinia sclerotiorum by Seed Treatments with Acibenzolar–S-methyl and Methyl Jasmonate but not with Salicylic Acid [J]. Phytopathology, 2004, 152: 34-42
    50. Cao H, Bowling S A, Gordon A S, et al. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance [J]. Plant Cell, 1994, 6: 1583-1592
    51. Cao H, Glazebrook J, Clarke J, et al. The Arabidopsis npr1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J]. Cell, 1997, 88: 57-63
    52. Cao H, Li X, Dong X. Generation of broad- spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance [J]. Proc Natl Acad Sci USA, 1998, 95:6531-6536
    53. Cao Jian kang, Jiang Wei bo. Induction of resistance in Yali pear (Pyrus bretschneideri Rehd) fruit against post harvest diseases by acibenzolar-S-methyl Sprays on trees during fruit growth [J]. Scientia Horticulturae, 2006, 110:181-186
    54.Chandra-Shekara A C, Navarre Du Roy, Kachroo Aardra, et al. Signaling requirements and role of salicylic acid in HRT-and rrt-mediated resistance to turnip crinkle virus in Arabidopsis [J]. The Plant Journal, 2004, 40: 647-659
    55. Chen Y K, Derks A F L M, Langeveld S, et al. High sequence conservation among Cucumber mosaic virus isolates from Lily [J]. Arch Virol, 2001, 146: 1631-1636
    56. Chen Z, Klessig D F. Identification of a soluble salicylic acid binding protein that may function in the signal transduction in the plant disease resistance response [J]. Proc Natl Acad Sci USA, 1991, 88: 8179-8183
    57. Chen Z, Silva H, Klessig D F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid [J]. Science, 1993, 262: 1883-1886
    58. Chern M S, Fitzgerald H A, Canlas P E, et al. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light [J]. Molecular Plant Microbe Interactions, 2005, 18: 511-520
    59. Chern M S, Fitzgerald H A, Yadav R C, et al. Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis [J]. The Plant Journal, 2001, 27: 101-113
    60. Chikara Masuta, Yuko Seshimo, Motomi mukohara, et al. Evolutionary characterization of Two Lily isolates of cucumber mosaic virus isolated in Japan and Korea [J]. Plant Pathol. 2002, 68: 163-168
    61. Chivasa S,Carr J. The promoter of a H2O2-inducible,Arabidopsis ethylene-response gene contains closely linked OBF-and OBP1-binding sites [J].Plant J,1998, 10: 955-966
    62. Chivasa S,Murphy A M , Naylor M,et a1.Salicylic acid interferes with tobacco mosaic virus in transgeneic tobacco expressing salicylic acid hydroxylase [J].Plant J, 1997, 10: 1489-1498
    63. Conrath U, Pieterse C M J, Mauch-Mani B. Priming in plant-pathogen interactions [J]. Trends Plant Sci, 2002, 7: 210-216
    64. Daayf F, Schmitt A, Bélanger R R. Evidence of phytoalexions in cucumber leaves infected with powdery mildew following treatment with leaf extracts of Reynoutria sachalinensis [J]. Plant Physiol, 1997, 113:719-727
    65. Delaney T P, Friedrich L, Ryals J A. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance [J].Proc. Natl. Acad. Sci, 1995, USA, 92:6602-6606
    66. Delaney T P. Genetic dissection of acquired resistance to disease [J]. Plant Physiol, 1997, 113:5-12
    67. Despr &C, Delong C, Glaze S, et al. The Arabidopsis NPRl/ NIMl protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors [J]. Plant Cell, 2000, 12: 279-290
    68. Dong H Z, Co hen Y. Extracts of killed Penicillium chrysogenum induce resistance against Fusarium wilt of melon [J]. Phytoparasitica, 2001, 29(5): 421-430
    69. Durrant W E, Dong X. Systemic acquired resistance [J]. Annual Review of Phytopathology, 2004, 42: 185-209
    70. Friedrich L, Lawton K, Ruess W, et al. A benzothiadiazole derivative induces systemic acquired resistance in tobacco [J]. Plant J, 1996, 10(1): 61-71
    71. Fumihiro Terami, Fumiyosshi Fukumoto, Kaoru Hanada. Cucumber mosaic virus isolated from Amazon Lily (Eucharis grandiflora) [J]. Plant Pathol, 2004, 70: 192-193
    72. Goarach J, Volrath S, Knaufbeiter G, et al. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat [J]. Plant Cell, 1996, 8:629-643
    73. Gozzo F. Systemic acquired resistance in crop protection [J]. Outlooks on Pest Management, 2004, 2: 20-23
    74. Hammerschmidt R, Métraux J-P, van Loon L C. Inducing resistance: a summary of papers presented at the first international symposium on induced resistance to plant diseases [J]. European Journal of Plant Pathology, 2001, 107: 1-6
    75. Hammond Kosack K E, Parker J E. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding [J]. Current Opinion in Biotechnology, 2003, 14: 177-193
    76. Hatada E N, Krappmann D, Scheidereit C. NF-kappaB and the innate immune response [J]. Curr Opin Immunol, 2000, 12: 52-58
    77. Heil M. Ecological costs of induced resistance [J]. Curr Opin Plant Biol, 2002(5): 345-350
    78. Hu xue bo, Song feng ming, Zheng zhong. Molecular characterization and expression analysis of a riceprotein phosphatase 2C gene, OsBIPP2C1, and overexpression in transgenic tobacco conferred enhanced disease resistance and abiotic tolerance [J]. Physiologia Plantarum, 2006, 127:225-236
    79. Iriti M, Faoro F. Benzothiadiazole (BTH) induces cell-death independent resistance in Phaseolus vulgaris against Uromyces appendiculatus [J]. Phytopathology, 2003, 151:171-180
    80. Kachroo P,Yoshioka K,Shah J,et a1.Resistance to turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1,ethylene and jasmonate independent [J].Plant Cell,2000, 12(5): 677-690
    81. Kalde M, Barth M, Somssich I E, et a1. Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways [J]. Mol Plant Microbe-Interact, 2003, 16(4): 295-305
    82. Kaper J M, Waterworth H E. Cucumovirus In: handbook of plant virus inferctions and comparative diagnosis. Kurstak E, ed. New York: Elsevier/ North-Hotland Biomedical Press, 1981, 257-332
    83. Keller H, Blein J P, Bonnet P, et al. Physiological and molecular characteristics of elictin-induced systemic acquired resistance in tobacco [J]. Plant Physiol, 1996, 110(2): 365-367
    84. Kloek A P, Verbsky M L, Sharma SB, et al . Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms [J]. Plant J, 2001, 26: 509-522
    85. Knoester M,Pieterse C M J,Bol J F,et a1.Systemic resistance in Arabidopsis indueed by rhizobacteria requires ethylene dependent signaling at the site of application [J].Molecular Plant Microbe interactions, 1999, l 2(8):720-727
    86. Kohler A, Schwindling S, Conrath U. Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis [J]. Plant Physiology, 2002, 128: 1046-1056
    87. Kuc J, In Beiley J A, Deverall N J. The dynamics of host defense [M]. Acad Press. Sydney et al. 1983: 191
    88. Kuc J. Phytopathology[J]. 1997, 67: 533-536
    89. Li J, Brader G, Kariola T, et al. WRKY70 modulates the selection of signaling pathways in plant defense [J]. Plant J, 2006, 46(3): 477-491
    90. Li J, Brader G, Palva E T. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense [J]. Plant Cell, 2004, 16:319 -331
    91. Lin W C, Lu C F, Wu J W, et al. Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases [J]. Transgenic Research, 2004, 13: 567-581
    92. Lisa V, Boccardo G D, Agostino G, et al. Characterization of a potyvirus that causes zucchini yellow mosaic [J]. Phytopathology, 1981, 71: 667-672
    93. Lo S C, Hipskind J D, Nicholson R L. cDNA cloning of a sorghum pathogenesis-relatedprotein(PR-10) and differential expression of defense-related genes following inoculation with Cochliobolus heterostrophus or Colletotrichum sublineolum [J]. Mol Plant-Microbe Interac, 1999, 12(6): 479-489
    94. Makandar R, Essig J S, Schapaugh M A, et al. Engineered Resistance to Fusarium Head Blight in Wheat by Expression of Arabidopsis NPR1 [J]. Molecular Plant Microbe Interactions, 2006, 19: 123-129
    95. Malamy J, Carr J P, Klessing D F, Raskin I. Salicylic acid, a likely endogenous signal in the resistance response of tobacco to viral infection [J]. Sci, 1990, 250: 1002-1004
    96. Mare C, Mazzucotelli E, Crosatti C, et a1. Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley [J]. Plant Mol Biol, 2004, 55(3): 399-416
    97. Molders W, Buchala A, Metraux J P. Transport of salicylic acid in tabacco necrosis virus-infected cucumber plants [J]. Plant Physiol, 1996, 112: 787-792
    98. Morrissey J P, Osbourn A E. Fungal resistance to plant antibiotics as a mechanism of pathogenesis [J]. Miorobiol Mol Biol Rev, 1999, 63: 708-724
    99. Mou Z, Fan W, Dong X. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes [J]. Cell, 2003, 113: 1-10
    100. Murphy A M,Chivasa S,Singh D P,et a1.Salicylic acid-induced resistance to viruses and other pathogen:a parting of the ways? [J].Trends Plant Sci,l999, 4: l55-l60
    101. Murphy F A, Fauquet C M, Bishop D H L, et al. Classifacation and Nomenclature of Virus: Sixth Report of the International Committee on Taxonomy of Viruses [J]. Arch Virol, 1995: 341-347
    102. Nakashita H, Yasuda M, Nitta T, et a1. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice [J]. Plant J, 2003, 33: 887-898
    103. Niki T, Mitsuhara I, Seo S, et al. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves [J]. Plant Cell Physiol , 1998 , 39: 500-507
    104. Palukaitis P, Roossonck M J, Dietzgen R G. Cucumber mosaic virus [J]. Adv Virus Res, 1992, 41: 281-348
    105. Park C Y, Lee J H, Yoo J H, et al. WRKY group IId transcription factors interact with calmodulin. FEBS Lett, 2005, 579(6): 1545-1550
    106. Pieterse C M J, Van Loon L C. Salicylic acid-independent plant defense pathway [J]. Trends in Plant Science, 1999, 4:52-58
    107. Pieterse C M J, Van Wees S C M, Hoffland E, et al. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation andpathogenesis-related gene expression [J]. Plant Cell, 1996, 8: 1225-1237
    108. Pieterse C M J, Van Wees S C M, Van Pelt J A, et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis [J]. Plant Cell, 1998, 10: 1571-1580
    109. Pradhanang P M, Ji P, Momol M T , et al. Application of acibenzolar-S-methyl enhances host resistance in tomato against Ralstonia solanacearum [J]. Plant Dis, 2005, 89: 989-993
    110. Qiu xiao hui, Guan pei zhu, Wang ming li, etal. Identification and expression analysis of BTH induced genes in papaya [J]. Physiological and Molecular Plant Pathology, 2004, 65: 21–30
    111. Rasmussen J B, Hammerschmidt R, Zook M N. Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. Syringae [J]. Plant Physiol, 1991, 97: 1342-1347
    112. Ross A F. Virology [M]. 1961, 34:329-339
    113. Ryals J A, Neuenschwander U H, Willits M G, et al. Systemic acquired resistance [J]. Plant Cell, 1996, 8:1809-1819
    114. Sauerborn J, Buschmann H, Ghiasvand Ghiasi K, et al. Benzothiadiazole activates resistance in sunflower (Helianthus annuus) to the root-parasitic weed Orobanche Cumana [J]. Phytopathology, 2002, 92(1):59-64
    115. Sharp J K, Valent B, Albersheim P. Purification and partial characterization of aβ-glucan fragment that elicits phytoalexin accumulation on soybean [J]. Biol Chem,1984, 259:11312-11320
    116. Shimono Masaki, Sugano Shoji, Nakayama Akira, et al. Rice WRKY45 plays a crucial role in Benzothiadiazole-inducible blast resistance [J]. The Plant Cell, 2007, 19:2064–2076
    117. Shulaev V, Leon J, Raskin I. Is salicylic acid a translocated signal of systemic acquired resistance in tobacco [J]. Plant Cell, 1995, 7: 1691-1701
    118. Sikorski M M, Biesiadka J, Kasperska A E, et al. Expression of genes encoding PR10 class pathogenesis-related proteins is inhibited in yellow lupine root nodules [J]. Plant Sci, 1999, 149(2):125-137
    119. ?indelarova M, ?indelar L, Burkefova L. Glucose-6-phosphate dehydrogenase, ribonucleases and esterases upon tobacco mosaic virus infection and bentothiadiazole treatment in tobacco[J]. Biologia Plantarum, 2002, 45(3):423-432.
    120. Smith-Becker J, Keen N T, Becker J O. Acibenzolar-S-methyl induces resistance to Colletotrichum lagenariu and cucumber mosaic virus in cantaloupe [J]. Crop Protection, 2003, 22 769-774
    121. Soner Soylu, Baysal Omur, Soylu Mine. Induction of disease resistance by the plant activator, acibenzolar-S-methyl (ASM), against bacterial canke(Clavibacter michiganensis subsp. michiganensis) in tomato seedlings [J]. Plant Science, 2003, 165:1069-1075
    122. Stark Lorenzen P, Nelke B, Han Bler G, et al. Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L) [J] .Plant Cell Rep, 1997, 16:668-673
    123. Sticher L, Mauch M B, Métraux J P. Systemic acquired resistance [J]. Ann. Rev. Phytopathol, 1997, 35:235-270
    124. Uknes S, Winter A, Delaney T, et al. Acquired resistance in Arabidopsis [J]. Plant Cell, 1992, 4: 645-656
    125. Uknes S, Winter A, Delaney T, et al.Biological induction of systemic acquired resistance in Arabidopsis [J]. Mol Plant–Micro Int, 1993, 6: 692-698
    126. Van Hulten M, Pelser M, Van Loon L C, et al. Costs and benefits of priming for defense in Arabidopsis[J]. Proc Natl Acad Sci USA, 2006, 103 (14): 5602-5607. www.pnas.org cgi doi 10.1073 pnas.0510213103
    127. Van Loon L C, Strien E A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins [J]. Physiol Mole Plant Pathol, 1999, 55(2): 85-97
    128. Van Wees S C M, De Swart E A M, Van Pelt J A, et al .Enhancement of induced disease resistance by simultaneous activation of salicylate-and jasmonate-dependent defense pathways in Arabidopsis thaliana [J]. Proc Natl Acad Sci USA, 2000, 97: 8711-8716
    129. Varveri C, Boutsika K. Characterization of cucumber mosaic cucumovirus isolates in Greece [J]. Plant Pathology, 1999, 48: 95-100
    130. Verberne M C, Verpoorte R, Boln J F, et al. Overproduction of salicylic acid in plant by bacterial transgenes enhances pathogen resistance [J]. Nature Biotechnology, 2000, 18: 779-783
    131. Vernooij B, Friedrich L, Morse A, et al. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction [J]. Plant Cell, 1994, 6: 959-968
    132. Vipaporn Phuntumart, Pascal Marro, Métraux Jean-Pierre, et al. A novel cucumber gene associated with systemic acquired resistance [J]. Plant Science, 2006, 171: 555-564
    133. Walling L L. The myriad plant responses to herbivores [J]. Journal of Plant Growth Regulation, 2000, 19: 195-216
    134. Ward E R, Uknes S J, Williams S C, et al. Coordinate gene activity in response to agents that induce systemic acquired resistance [J]. Plant Cell, 1991, 3:1085-1094
    135. Wildermuth M C, Dewdney J, Wu G, et al. Isochorismate synthase is required to synthesize salicylic acid for plant defense [J]. Nature, 2001, 414: 562-565
    136. Xie Z, Zhang Z L, Zou X, Huang J, et a1. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells [J]. Plant Physiol, 2005, 137(1): 176-189
    137. Yoda H, Ogawa M, Yamaguchi Y, et a1. Identification of early-responsive genes associated with the hypersensitive response to tobacco mosaic virus and characterization of a WRKY-type transcription factor in tobacco plants [J]. Mol Genet Genomics, 2002, 267(2): 154-161
    138. Yu D , Chen C , Chen Z. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression [J]. Plant Cell, 2001, 13: 1527-1540
    139. Zhang Y L, Fan W H, Kinkema M, et al. Interaction of NPR1 with basic leucine zipper protein transcription factors t hat bind sequences required for salicylic acid induction of the PR-1 gene [J]. Proc Natl Acad Sci USA, 1999, 96: 6523-6528

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700