用户名: 密码: 验证码:
超高强CuNiSi系弹性导电铜合金制备及相关基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:铍青铜虽具有高强度、高弹性、高硬度、高耐磨性和优良的导电性能,并在模具、导电簧片、导电弹性元器件上获得了广泛的应用。但该合金由于含铍这一剧毒元素,在生产过程中严重危害人们的健康。同时铍青铜在高于200℃环境下服役使用时,其强度、弹性急剧降低,应力松弛率甚至高达40%以上,影响器件使用甚至工作失效。因此需要开发出新型的超高强、高导电、高抗应力松弛的无铍环保型导电弹性铜合金。
     本文采用熔铸法研制了一种超高强、高导电、高抗应力松弛Cu-6.0Ni-1.OSi-0.5Al-0.15Mg-0.1Cr合金,并对该合金的成分设计、形变热处理、加工工艺参数、沉淀相变行为、高温应力松弛行为和海水腐蚀行为进行了系统的研究和分析,得出如下主要结论:
     (1)合金的铸锭组织呈树枝状结构,基本可以分为枝晶骨架、枝晶间的非平衡凝固第二相粒子和过渡区。枝晶骨架主要为α-Cu相,第二相粒子主要为Ni2Si相、Ni3Si (Ni74Si26)和Ni3Al相。Al、Mg、 Cr元素则均匀地分布在基体中。
     (2)合金高温压缩变形的真应力-真应变曲线具有动态再结晶特征,可分为加工硬化、回复和动态再结晶三个阶段。绘制的应变量为0.6时的加工图表明合金适宜的热加工温度范围为850℃-900℃。试样在750℃下热压缩变形后,截面形成了立方织构{001}<100>;800℃变形后形成Gauss织构{011}<100>和旋转立方织构{001}<110>;850℃和900℃变形后则形成Copper织构{112}<111>、S织构{123}<634>和Gauss织构{011}<100>。
     (3)合金合适的形变热处理工艺为:940℃/4h均匀化退火→900℃热轧80%→980℃/4h固溶处理→冷轧50%→450℃C/1h时效处理,获得的性能为:硬度341HV,电导率26.5%IACS,抗拉强度1090MPa,屈服强度940MPa,伸长率3.5%。合金在450℃时效具有很好的抗过时效能力,即使时效20小时后硬度值仍有330.1HV。峰时效态合金在室温、100℃和200℃下加载100小时后的应力松弛率分别为4.05%、6.52%和9.74%。
     (4)合金过饱和固溶体在450℃时效相变贯序为:过饱和固溶体→L12有序化(Ni3Si)→β-Ni3Si相→β-Ni3Si相+δ-Ni2Si相。在450℃时效5min后即发生沉淀析出,析出相尺寸约为3-4nm;时效15min后,析出相尺寸长大为4-5nm;时效60min后,析出相为β-Ni3Si和δ-Ni2Si相,尺寸为6-8nm;时效480min后,析出相为β-Ni3Si, δ-Ni2Si和δ'-Ni2Si相,尺寸为13-15nm。
     (5)过饱和固溶体在500℃C时效处理5min后,即出现了Ni3Si相L12有序化,时效处理10min后合金中出现了条带状的不连续胞状析出。550℃时效处理5min后即发生了不连续胞状析出。600℃C时效处理10min后,合金发生了沉淀析出,主要沉淀析出相为8-Ni2Si,时效1h后,δ-Ni2Si分布上出现了存在不同方向的变体。650℃等温时效10min后,合金发生了δ-Ni2Si析出相沉淀析出,粒子呈棒状,尺寸约为100nm,时效30min后析出相尺寸长大到约150nm,时效60min后析出相长大至200nmo。700℃等温时效10min后,合金发生了8-Ni2Si相沉淀析出,粒子尺寸约为100nm。750℃等温时效10min后,合金发生了8-Ni2Si相沉淀析出,析出相粒子呈棒状,尺寸约为150nm。时效30min后,粒子呈圆盘状,尺寸约为250nm。
     (6)欠时效、峰时效和过时效态三种状态下,合金的静态腐蚀速率分别为0.033226mm/a,0.022975mm/a和0.0019456mm/a,合金的耐蚀能力大小为:过时效>峰时效>欠时效。XPS定量分析结果表明合金样品表面的腐蚀产物主要由Cu2O、CuO和Cu2(OH)3Cl构成。在NaCl溶液的浸泡过程中,铜氧化生成Cu2O,部分Cu2O进一步氧化成为CuO,部分Cu2O、H2O和CuCl结合形成Cu2(OH)3Cl。合金在氯化钠溶液中浸泡后生成了成分为碱式氯化铜Cu2(OH)3Cl和CuCl2·3Cu(OH)2的腐蚀产物,对合金表面具有一定的保护作用。
ABSTRACT:Cu-Be alloys with high strength, elasticity, hardness, wear resistance and good electrical conductivity are widely used for manufacturing of dies, die mosaic pieces and elastic components. However, the alloying element beryllium is toxic and it is harmful to humans during the alloy production. Furthermore, the strength and elasticity of Cu-Be alloys decrease drastically as performed at temperature above200℃, and the stress relaxation rate is about40%, which cause materials failure. Therefore, substantial efforts have been made to develop a new Be-free conductive elastic copper alloy.
     In this paper, an environmental-friendly Cu-6.0Ni-1.0Si-0.5Al-0.15Mg-0.1Cr alloy with ultrahigh strength, good electrical conductivity and excellent anti-stress relaxation resistance was designed and prepared by a medium-frequency induction furnace. The composition design, thermo-mechanical heat treatment, process parameters, precipitation behavior, stress relaxation behavior and corrosion behavior were investigated in detail. Some conclusions were drawn as following.
     (1) Developed dendrites appeared in the initial casting ingot, including dendrite skeleton, non-equilibrium precipitates and transition zone. The dendrites were rich in Cu, while non-equilibrium precipitates were rich in Ni and Si. The precipitates were Ni2Si, Ni3Si (Ni74Si26) and Ni3Al particles. Elements of Al, Mg and Cr were disturbed in the alloy evenly.
     (2) The stress-strain curves of alloy deformed at evaluated temperature exhibit dynamic recrystallization feature, and the process could be divided into working hardening, dynamic recovery and dynamic recrystallization. Hot processing map was established on the basis of dynamic material model theories and Prasad instability criterion, indicating that appropriate hot processing temperature range for hot deformation was850-900℃. After hot compression deformed at750℃, Cube texture of{001}<100> was formed on the cross section. Gauss texture of{0115<100> and rotated cubic texture of{001}<110> were formed as deformed at800℃; Copper texture of{112}<111>, S texture of{123}<634> and Gauss texture of{011}<100> were formed as deformed at850℃and900℃.
     (3) The appropriate thermo-mechanical heat treatment method for designed alloy is that:homogenization treatment at940℃for4h→hot rolling by80% at900℃→solution treatment at980℃for4h→cold rolling by50%→aging treatment at450℃for1h. After above treatments, the alloy could achieve good properties:hardness was341HV, electrical conductivity was26.5%IACS, tensile strength was1090MPa, yield strength was940MPa, and elongation was3.5%. The hardness was330.1HV even as the alloy was aged at450℃for20h, indicating that the alloy have good anti-over aging resistance. After loading at room temperature,100℃and200℃for100h, the stress relaxation rates of peak-aged specimens were4.05%,6.52%and9.74%, respectively.
     (4) The order of the phase transformation in supersaturated solution solid during ageing at450℃was that:supersaturated solution solid→L12ordering (Ni3Si)→β-Ni3Si→β-Ni3Si+5-Ni2Si. Precipitation occurred as the supersaturated solid solution was aged at450℃for5min, and dimension of precipitates was3-4nm. Dimension of precipitates grew up to4-5nm as aged for15min. Precipitates of (3-Ni3Si and δ-Ni2Si with6-8nm appeared as aged for60min. Precipitates of β-Ni3Si,δ-Ni2Si and δ'-Ni2Si with13-15nm appeared as aged for480min. Precipitates of β-Ni3Si and δ-Ni2Si with100-200nm appeared as aged for24h.
     (5) L12ordering appeared in the supersaturated solid solution as aged at500℃for5min, and discontinuous precipitation appeared as aged for10min. Discontinuous precipitation appeared as aged at550℃for5min. Continuous precipitation appeared as aged at600℃for10min, and two variants with perpendicular growth direction were observed. Rod shape δ-Ni2Si precipitate with size of100nm appeared as aged at650℃for10min, and size of ones grew up to150nm and200nm as aged for30min and60min, respectively.δ-Ni2Si precipitates with size of100nm appeared as aged at700℃for10min. Rod-shape8-Ni2Si precipitate with size of150nm appeared as aged at750℃for10min, while disk shape ones with size of250nm appeared as aged for30min.
     (6) The corrosion rates of designed alloy with treatment states of under-aged, peak-aged and over-aged aged were0.033226mm/a,0.022975mm/a and0.0019456mm/a, respectively. The order of anti-corrosion resistance among the three aged treatment states was that: over-aged> peak-aged> under-aged. XPS results showed that the corrosion product layer mainly contained compounds of CuO, CU2O, CuCl and CuCl2. With increasing immersion time, Cu was oxidized to CU2O, partial Cu2O were further oxidized to CuO, and some CU2O was transformed into Cu2(OH)3C1and CuCl2·3Cu(OH)2, which could protect the matrix from corrosion.
引文
[1]黄伯云,李成功.中国材料工程大典[M].北京:化学工业出版社,2006.
    [2]王强松,娄花芬,马可定,等.铜及铜合金开发与应用[M].北京:冶金工业出版社,2013.
    [3]彭容秋.铜冶金[M].长沙:中南大学出版社,2004.
    [4]朱屯.现代铜湿法冶金[M].北京:冶金工业出版社,2002.
    [5]王毓华,邓海波.铜矿选矿技术[M].长沙:中南大学出版社,20012.
    [6]刘殿文,张文彬,文书明.氧化铜矿浮选技术[M].北京:冶金工业出版社,2009.
    [7]刘平,任凤章,贾淑果.铜合金及其应用[M].北京:化学工业出版社,2007.
    [8]蒋晓春.中国青铜时代起始时间考[J].考古,2010,6:76-82.
    [9]李龙章.湖南两广青铜时代越墓研究[J].考古学报.1995,3:275-312.
    [10]杨难得.湘江中上游商周时期考古学文化研究[D].湖南大学硕士学位论文,长沙,2012.
    [11]冯颖,李益民,何浩,等.Cu-Ni-Al粉末合金的烧结膨胀行为及其机理[J].中南大学学报.2010,41(1):108-110.
    [12]CHO Y R, KIM Y H, LEE T D. Precipitation hardening and recrystallization in Cu-4-7% Ni-3%AI alloys[J]. Journal of Materials Science,1991,26:2879-2886.
    [13]陆永浩,乔利杰,褚武扬.CuNiAl形状记忆合金形变、相变以及裂纹形核的相互关系[J].金属学报,2001,37(7):686-690.
    [14]CHEN Y L, Hu Y H, TSA C W, et al. Alloying behavior of binary to coronary alloys based on Cu-Ni-Al-Co-Cr-Fe-Ti-Mo during mechanical alloying[J]. Journal of Alloys and Compounds,2009,477:696-705.
    [15]YEH J W, CHANG S Y, HONG Y D. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements[J]. Materials Chemistry and Physics,2007,103:41-46.
    [16]王艳辉,汪明朴,洪斌,等.Cu-15Ni-8Sn-4Si合金铸态组织结构及成分偏析研究[J].矿冶工程,2002,22(3):104-107.
    [17]王军,殷俊林,严彪.Cu-Ni-Sn合金的发展和应用[J].上海有色金属,2004,25(4):184-188.
    [18]李震夏.世界有色金属材料成分与性能手册[M].北京:冶金工业出版社,1992
    [19]刘施峰,汪明朴,李周.真空熔铸法和快速凝固法制备的Cu-15Ni-8Sn-XSi合金的组织研究[J].矿冶工程,2005,25(3):73-78.
    [20]SOFFA W A, LAUGHLIN D E. High-strength age hardening copper-titanium alloys:redivivus[J]. Progress in Materials Science,2004,49:347-366.
    [21]NAGARJUNA S, Thermal conductivity of Cu-4.5 Ti alloy[J]. Materials Research Bulletin,2004,27 (1) 69-71.
    [22]NAGARJUNA S, SARMA D S. Effect of cobalt additions on the age hardening of Cu-4.5Ti alloy[J]. Journal of Materials Science.37(10)1929-1940.
    [23]SAZAKI Y. High Temperature Oxidation of Liquid Cu-Ti Alloy at 1473K. Defect and Diffusion Forum,2009, (283-286)194-199.
    [24]TSUBAKINO H, NOZATO R,YAMAMOTO A. Precipitation sequence for simultaneous continuous and discontinuous modes in Cu-Be binary alloys[J]. Materials Science and Technology.1993,9(4):288-294.
    [25]DJRIc B, JOVANOVIc M, DROBNJAK J. A study of precipitation in Cu-Be alloys[J]. Metallogr.1980,13:235-247.
    [26]曹昱,刘锦文.微量元素对Cu-Ni-Zn-Mn弹性合金性能的影响[J].金属功能材料,1999,6(3):117-121.
    [27]熊惟浩.新型弹性合金CuNiZnMn的研制[D],湖南长沙,中南工业大学,1991.
    [28]王艳辉,汪明朴,洪斌.Cu-15Ni-8Sn导电弹性材料的研究现状与进展[J].材料导报,2003,17(3).
    [29]唐人剑,王军,殷俊林.新型弹性合金研究[J].材料导报,2005,19(1):54-55.
    [30]严复民.弹性合金[M],上海:上海科学技术出版社,1986,188.
    [31]李国俊.仪器仪表用有色金属的现状与展望[J],材料导报,1991,5(9):21-29.
    [32]李国俊.高弹性合金的现状与研究趋势[J].材料导报,1993,7(4):15-19.
    [33]孙建春,刘筱薇,周安若.弹性合金的研究现状及趋势[J].材料热处理,2006,35(18):52-55.
    [34]齐新占.高弹性极限新型恒弹性合金的研究现状[J].材料科学与工程,1997,15(13):61-66.
    [35]徐华,文庆明,海争平.铍青铜的铸造技术[J].热加工工艺,2009,(15):56-58.
    [36]李连清.高强度铍青铜系列材料[J].宇航材料工艺,2003,33(2):61-61.
    [37]MANGAN M A, SHIFLET G J. Three dimensional investigation of Cu-Ti discontinuous precipitation [J]. Scripta Materialia,1997,37(4):517-522.
    [38]DINDA S, WARKEL W R. The effect of grain boundary segregation on liquid metal induced embrittlement of stee 1[J]. Materials Science and Engineering, 1976,24:198-208.
    [39]MICHELS H T, CADAFF I B, LEVINE E. Precipitation-hardening in Cu-3.6wt%Ti [J]. Metall. Trans,1972,3(3):667-674.
    [40]DATTA A, SOFFA W. The structure and properties of age hardened Cu-Ti alloys[J], Acta Metallurgica,1976,24(9):987-1001.
    [41]周林,雷霆.高镍锌白铜的性能研究[J].云南冶金,2000,29(6):30-33.
    [42]宋练鹏,叶江,尹志民.高强耐磨Cu-Ni-Sn合金的研究[J].湖南有色金属.2001,17(4):29-31.
    [43]左小伟,王恩刚,屈磊,等.Cu-Fe合金的强磁场固溶时效行为[J].材料研究学报.2009,(5):483-489.
    [44]王媛,唐娟,崔振铎,等.Ni-Ti形状记忆合金性能及表面活化研究进展[J].金属热处理.2004,29(12):40-45.
    [45]陈志国,郑子樵.Al-Ag-(Sc)合金的时效析出行为[J].中国有色金属学报.2004,14(z1):280-284.
    [46]郑史烈,吴年强.高弹性导电合金Cu-Ni-Sn的研究现状[J],材料科学与工程,1997,15(3):61-65.
    [47]BAHMANI M, ELLIOTT R, VARAHRAM N.The relationship between fatigue strength and microstructure in an austempered Cu-Ni-Mn-Mo alloyed ductile iron[J]. Journal of Materials Science.1997,32 (20):5383-5388.
    [48]李国俊.高弹性合金的现状与研究趋势[J].材料导报,1993,7(4):15-19.
    [49]雷若姗,汪明朴,郭明星,等.低浓度Cu-0.5%Nb纳米弥散强化铜合金退火行为的研究[J].材料科学与工艺,2007,15(6):763-766.
    [50]郭明星.纳米弥散强化铜合金短流程制备方法及其相关基础研究[D].中南大学,2007,长沙.
    [51]李国俊.仪器仪表用有色金属的现状与展望[J].材料导报,1991,5(9):21-29.
    [52]刘平,赵冬梅,田保红.高性能铜合金及其加工技术[M].北京:冶金出版社,2004.
    [53]孙爱俊,周水军.高性能铜合金材料产品开发的战略思考[J].农业装备技术,2007,33(6):60-61.
    [54]范莉,刘平,贾淑果,等.高强度Cu-Ni-Si系引线框架材料研究发展[J].材料热处理技术,2008,37(20):104-107.
    [55]KIM Y G, SEONG T Y, HAN J H. Effect of heat treatment on precipitation behaviour in a Cu-Ni-Si-P alloy[J]. J. Mater. Sci.1986,21:1357-1362.
    [56]RDZAWSKI Z, STOBRAWA J. Mechanical Processing of Cu-Ni-Si-Cr-Mg alloy [J]. Materias Science and Technology,1993,2:142-148.
    [57]徐玉松,王效莲,李学浩.高强度钛青铜热处理工艺及组织性能研究[J].江苏科技大学学报:自然科学版,2008,22(1):34-38.
    [58]张良.高强中导Cu-Ni-Si合金熔体热力学与相变动力学的研究[D].长沙:中南大学学士学位论文,2009.
    [59]任伟.Cu-Ni-Si合金价电子结构与性能的研究[D].洛阳:河南科技大学硕士学位论文,2010.
    [60]李国俊.高弹性合金的现状与发展趋势[J].材料导报,1993,7(4):15-19.
    [61]张旦闻,赵冬梅,董企铭等.组合时效对Cu-Ni-Si合金性能的影响[J].功能材料,2004,35:2160-2167.
    [62]朱治愿,周虎,王冀恒.Cu-Ni-Al-Si合金固溶-时效处理[J].金属热处理,2007,32(4):83-85.
    [63]冯端.物理金属学[M].北京:科学出版社,1986.
    [64]姜训勇,李忆莲,王童.高强度高导电铜合金[J].上海有色金属,1995,16(5):284-288.
    [65]麻向军,王伟民.导电铜合金强化的研究现状[J].机械研究与应用,1998,1:48-49.
    [66]潘志勇,汪明朴,李周,等.添加微量元素对Cu-Ni-Si合金性能的影响[J].材料导报,2007,21(5):86-89.
    [67]山本佳纪,佐佐木元,太田真.高强度铜合金材料开发和特性[J].伸铜技术研究会志,1999,38:204-209.
    [68]山根寿己.高强度高传导性铜合金设计基础[J].伸铜技术研究会志,1990,29:13-17.
    [69]唐人剑,王军,殷俊林.新型弹性合金研究[J].材料导报,2005,19(1):54-55.
    [70]尹志民,张生龙.高强高导铜合金研究热点及发展趋势[J].矿冶工程,2002,22(2):1-5.
    [71]WATANABE C, HIRAIDE H, ZHANG Z G, MONZEN R. Microstructure and mechanical properties of Cu-Ni-Si alloys[J]. J. Soc. Sci., Japan.2005,54: 717-723.
    [72]赵祖德.铜及铜合金材料手册[M].北京:科学出版社,1993.
    [73]雷静果.高强度Cu-Ni-Si-Cr合金的时效特性[J].有色金属,2003,55(4):17-20.
    [74]林高用,张胜华.Cu-Ni-Si-Cr-Fe合金强化特性的研究[J].金属热处理,2001,4:28-30.
    [75]汪黎,孙扬善,付小琴,等.Cu-Ni-Si基引线框架合金的组织和性能[J].东南大学学报(自然科学),2005,35(5):729-732.
    [76]曹育文,马莒生,唐祥云,等.Cu-Ni-Si系引线框架用铜合金成分设计[J].中 国有色金属学报,1999,9(4):723-727.
    [77]CORSON M G Electrical conductor alloys [J]. Electrical World,1927,89: 137-139.
    [78]潘志勇,汪明朴,李周.超高强度Cu-Ni-Si合金的研究进展[J].金属热处理,2007,32(7):55-59.
    [79]赵冬梅,董企铭,刘平.铜合金引线框架材料的发展[J].材料导报,2001,15(5):18-20.
    [80]王东锋,康布熙,刘平.固溶态Cu-Ni-Si合金的相变动力学[J].材料开发与应用,2003,18(5):1-4.
    [81]赵冬梅,董企铭,刘平.超高强度Cu-Ni-Si合金时效过程研究[J].材料热处理学报,:2002,23(2):20-23.
    [82]赵冬梅.董企铭.刘平,等.Cu-Ni-Si合金二次时效时的再结晶行为[J],中国有色金属学报2004,14(7):1241-1245.
    [83]王东锋,汪定江,康布熙.Cu-Ni-Si合金时效析出相的长大机制研究[J],热加工工艺,2006,35(4):14-16.
    [84]王东锋,汪定江,康布熙.基于正交设计的Cu-Ni-Si合金时效工艺研究[J].热加工工艺,2006,35(20):36-38.
    [85]王东锋,杨后川,孔立堵.Cu-Ni-Si合金的时效析出贯序研究[J].兵器材料科学与工程,2005,28(1):25-28.
    [86]娄花芬,赵冬梅,董企铭.加工硬化效应对Cu-3.2Ni-0.75Si合金时效组织和性能的影响[J].材料开发与应用.2003,18(1):1-4.
    [87]OKAMOTO M. Trans. Inset. Met. Jan.1939,3(9):336-348.
    [88]ROBERTSON W D, GRENIER E G, NOLE V F. The structure and associated properties of an age hardening copper alloy[J]. Trans. Met. Soc. AIME.1961,221: 503-512.
    [89]TEPLITSKIY M D, NIKOLAYEV, REVINAN I. Investigating of the dispersed particles in aging alloys of copper-nickel-silicon and copper-cobalt-silicon. [J] Physics of Metals and Metallography,1975,6(40):99-103.
    [90]LOCKYER S A, NOBLE F W. Precipitate structure in a Cu-Ni-Si alloy [J]. Material Science,1994,29:218-226.
    [91]HUANG F X, MA J S, NING H L, et al. Precipitation in Cu-Ni-Si-Zn alloy for lead frame [J]. Materials Letters,2003,57:2135-2139.
    [92]赵冬梅.高强、高导Cu-Ni-Si合金时效相变规律及其强化机制研究[D].西安:西安交通大学博士学位论文,2003.
    [93]罗正贵,闻荻江.铜的腐蚀及防护研究进展[J].武汉化工学院学报,2005,(02):17-21.
    [94]刘金义,张宝根.铜及其合金表面的腐蚀与保护[J].电子工艺技术,2010,(02):116-120.
    [95]刘琼,王庆娟,杜忠泽.铜在自然环境中的腐蚀研究[J].新技术新工艺,2008,(08):80-82.
    [96]李自托,董泉玉,杨从贵.国外有机类铜缓蚀剂综述[J].工业水处理,2005,(01):18-20.
    [97]杨敏,王振尧.铜的大气腐蚀研究[J].装备环境工程,2006,(04):38-44.
    [98]高青,毛磊,吴立成,等.铜在大气中的腐蚀[J].河北科技大学学报,2003,(04):29-34.
    [99]FITZGERALD K P, NAIRN J, SKENNERTON G, et al. Atmospheric corrosion of copper and the colour, structure and composition of natural patinas on copper [J], Corrosion Science.2006(09):241-248.
    [100]安百刚,张学元,韩恩厚.沈阳大气环境下纯铜的相互气腐蚀行为[J].金属学报.2007(01):96-101.
    [101]LOBNIG R E, FRANKENTHAL R P, SICONOLFI D J, et al. Mechanism of atmospheric corrision of copper in the presence of submicron ammonnium sulfate particles at 373K [J]. Electronchemistry Society.1994.141:2935-2941.
    [102]李正奉,周志辉.纯水中铜腐蚀及其缓蚀剂的研究和应用[J].武汉大学学报,2003,36(z2):165-168.
    [103]赵月红,林乐耘,崔大为.铜及铜合金在我国实海海域暴露16年局部腐蚀规律[J].腐蚀科学与防护技术.2003,5:64-69.
    [104]王宏智,陈君,周建奇.紫铜海水管焊接部位在海水中的腐蚀特征[J].中国有色金属学报.2006,04:79-83.
    [105]黄桂桥.铜合金在海洋飞溅区的腐蚀[J].中国腐蚀与防护学报,2005,(02):65-69.
    [106]王永红,鹿中晖,李英志.西部内陆盐土中铜、铝的腐蚀行为[J].中国腐蚀与防护学报2005,5:59-63.
    [107]王永红,章钢娅,鹿中晖,等.铅、铝、铜土壤腐蚀随季节变化规律[J].中国腐蚀与防护学报,2007,6:326-328.
    [108]王菊琳,许淳淳.青铜在土壤中局部腐蚀过程的化学行为[J].化工学报,2004,07:92-96.
    [109]吴进怡,柴柯,肖伟龙,等.25钢在海水中的微生物单因素腐蚀[J].金属学 报,2010,6:755-760.
    [110]刘光洲,吴建华.海洋微生物腐蚀的研究进展[J].腐蚀与防护,2001,10:430-433.
    [111]黄国胜,刘光洲,段东霞,等.硫酸盐还原菌对铜镍合金腐蚀的影响[J].腐蚀与防护,2004,06:242-244.
    [112]顾彩香,尚燕杰,范春华,等.深海环境微生物腐蚀研究的进展[J].航海技术,2012,3:61-63.
    [113]LOEKYER S A, NOBLE FW. Precipitate structure in a Cu-Ni-Si alloy[J]. Journal of Materials Science,1994,29(1):218-226.
    [114]程建奕,汪明朴,李周,等,Cu-1.5Ni-0.27Si合金形变热处理[J].中国有色金属学报,2003,13(5):1061-1066.
    [115]MONZEN R, WATANABE C. Microstructure and mechanical properties of Cu-Ni-Si alloys [J]. Materials Science and Engineering A,2008, A483:117-123.
    [116]祁全洪.析出强化加工铜合金的生产工艺实践[J].江苏冶金.1999,2:54-55.
    [117]雷前.超高强Cu-Ni-Si合金的相变特征及性能研究[D].长沙:中南大学硕士学位论文.2009.
    [118]LI Z, PAN Z Y, ZHAO Y Y, et al. Microstructure and properties of high-conductivity, super-high-strength Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg alloy[J]. Journal of Materials Research.2009,24(6):2123-2129.
    [119]ASTM Standard E328-02(2008),2008, "Standard Test Methods for Stress Relaxation Tests for Materials and Structures" ASTM International, West Conshohocken, PA,2008, DOI:10.1520/E0328-02R08, www.astm.org.
    [120]LEI Q, LI Z, XIAO T, et al. A new ultrahigh strength Cu-Ni-Si alloy [J]. Intermetallics.2013,42:77-84.
    [121]陈存中.有色金属熔炼与铸锭.冶金工业出版社.2006.北京.
    [122]LEI Q, LI Z, DAI C, et al. Effect of aluminum on microstructure and property of Cu-Ni-Si alloys[J]. Materials Science and Engineering A.2013,572:65-74.
    [123]RENSEI F. Development of copper alloy for lead frame [J]. Journal of the Japan Copper and Brass Research Association,1997,36:25-32.
    [124]SHEWMON P G.Diffusion in solids[M]. New York:McGraw-hill,1963: 61-101.
    [125]SELLARS CM, LUTON MJ. Dynamic recrystallization in nickel and nickel-iron alloy during high temperature deformation [J]. Acta Metallurgica, 1969,17:1033-1043.
    [126]HUMPHERYS F, HATHERLEY M. Recrystallizatiaon and related phenomena[M]. Pergamon Press, Oxford,1996.
    [127]毛卫民,赵新兵.金属的再结晶与晶粒长大[M],北京:冶金工业出版社,1994.
    [128]FATEMI-VARZANEH S M, ZAREI-HANZAKI, BELADI H. Dynamic recrystallization in AZ31 magnesium alloy [J]. Materials Science and Engineering A.2007,456:52-57.
    [129]PRASAD Y V R K, RAO K P. Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300-950℃ [J]. Materials Science and Engineering A,2005, 391(1-2):141-150.
    [130]吴文祥,孙德勤,曹春艳,等.5083铝合金热压缩变形流变应力行为[J].中国有色金属学报,2007,17(10):1667-1670.
    [131]BLAZ L, NOWOTNIK A. High temperature deformation of aluminium bronze[J]. Materials Science and Technology,2001,17(8):971-975.
    [132]蔺永诚,陈明松,钟掘.42CrMo钢的热压缩流变应力行为[J].中南大学学报(自然科学版),2008,39(3):549-553.
    [133]胡赓祥,蔡殉,戎永华.材料科学基础[M].上海:上海交通大学出版社,2006.
    [134]ZENER C, HOLL J H. Effect of Strain-Rate upon the Plastic Flow of Steel [J]. Journal of Applied Physics,1944,15(1):22-28.
    [135]TAKUDA H, FUJIMOTO J H, HATTA N. Modelling on flow stress of Mg-Al-Zn alloys at elevated temperature [J]. Journal of Materials Processing Teachnology,1998,80-81:513-516.
    [136]SELLARS C M, MCTEGART W J. On the mechanism of hot deformation [J]. Acta Metallurgica,1966,14:1136-1138.
    [137]王延辉,龚冰,李冰.H65黄铜合金热变形流变应力特征研究[J].塑性工程学报,2008,15(6):113-117.
    [138]KAIBYSHEV R, SITDIKOV O, GOLOBORADKO A, et al. Grain refinement in as cast 7475 aluminum alloy under hot deformation [J]. Materials Science and Engineering A,2003,344:348-356.
    [139]KO B C, KIM J H, YOO Y C. The effect of temperature and strain rate on flow sress and strain of AA5083 alloy during high temperature deformation [J]. J. Kor. Soc. Technol. Plastic.1998,7(2):168-176.
    [140]罗丰华,尹志明,左铁镛.Cu Zn(Cr, Zr)合金的热变形行为[J].中国有色金属学报,2000,10(1):12-16.
    [141]MCQUEEN H J, RYAN N D. Constitutive analysis in hot working[J]. Materials Science and Engineering A,2002,322:43-63.
    [142]MCQUEEN H J, YUE S, RYAN N D, et al. Hot working characteristics of steels in austenitic state [J]. Journal of Material Processing Technology.1995, 53:293-310.
    [143]ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics,1944,15:22-32.
    [144]PRASAD Y V R K, GEGEL H L, DORAIVELU S S M, et al. Modeling of dynamic material behavior in hot deformation:forging of Ti-6242[J]. Metallurgical and Materials Transactions A.1984,15A:1883-1892.
    [145]GRONOSTAJSKI Z. The deformation processing map for control of microstructure in CuA19.2Fe3 aluminium bronze [J]. Journal of Materials Processing Technology,2002,125-126:119-123.
    [146]LUAN B F, WU G H, SUN D L. High temperature compression behavior of Al2O3 particle reinforced 6061 aluminium alloy composite [J]. Transactions of Nonferrous Metals Society of China,2003,13(1):148-151.
    [147]林启权,张辉,彭大暑,等.2519铝合金热压缩变形流变应力行为[J].热加工工艺,2002,3:3-5.
    [148]MOMENI A, DEHGHANI K. Hot working behavior of 2205 austenite-ferrite duplex stainless steel characterized by constitutive equations and processing maps [J]. Matericals Science and Engineering A,2011,528:1448-1454.
    [149]VENUGOPAL S, MANNAN S L, PRASAD Y V R K. Instability map for cold and warm working of as-cast 304 stainless steel [J]. Journal of Materials Processing Technology.1997,65:107-115.
    [150]NARYANA S V S, NAGESWARA R B. On the flow localization concepts in the processing maps of titanium alloy Ti-24Al-20Nb [J]. Journal of Materials Processing Technology,2000,104(1-2):103-109.
    [151]PRASAD Y V R K, RAO K P. Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300-950℃[J]. Materials Science and Engineering A,2005, 391:141-150.
    [152]PRASAD Y V R K, SESHACHARYULU T. Processing maps for hot working of titanium alloys[J]. Materials Science and Engineering A,1998,243:82-88.
    [153]LI M Q, LI X L, LONG L, et al. Deformation behavior and processing map of high temperature deformation of TA15 alloy[J]. Rare Metal Materials and Engineering,2006,35:1354-1358.
    [154]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社.2011.
    [155]郑子樵.材料科学基础[M].长沙:中南大学出版社.2005.
    [156]董企铭,苏娟华,刘平,等.Cu-0.7Cr-0.3Zr合金时效强化行为的研究[J].材料科学与工艺,2004,6,12(6):630-632.
    [157]毛卫民,赵新兵.金属的再结晶与晶粒长大[M],北京:冶金工业出版社。1994.
    [158]刘平,曹兴国,康布熙等.快速凝固Cu-Cr-Zr-Mg合金时效析出与再结晶的交互作用及其对性能的影响[J].功能材料,2000,2:47-49.
    [159]刘平,康布熙,曹兴国,等.快速凝固Cu-Cr-Zr-Mg合金的原位再结晶与不连续再结晶[J].洛阳工学院学报.1998,19(2):6-10.
    [160]徐长征,王庆娟,黄美权.冷变形Cu-0.36Cr(wt%)合金的抗软化性能和再结晶行为[J].金属热处理,2007,32(5):38-42.
    [161]汪复兴.金属物理.北京:机械工业出版社,1981.
    [162]YANG X, MIURA H, SAKAI T. Recrystallization behavior of fine-grained magnesium alloy after hot deformation [J]. Transaction Nonferrous Metal Society of China,2007,17(6):1139-1142.
    [163]NAOTSUGU I. Behavor of precipitation and recrystallization effect upon texture of Cu-Cr-Zr alloy [J]. Journal of the Japan Copper and Brass Research Association,1993,32:115-121.
    [164]诺维柯夫[苏].金属热处理理论[M].北京:机械工业出版社,1987.
    [165]雷静果,刘平,井晓天,等.Cu-Ni-Si合金时效电导率的数值分析[J].特种铸造及有色合金.2005,25(4):211-213.
    [166]张新明,毛新平,邓至谦等.铍铜带材弯曲应力松弛的力学行为[J].中国有色金属学报,11(6):988-992.
    [167]FOX A. Stress relaxation in bending of copper beryllium alloy strip [J]. Journal of Testing and Evaluation.1980,8(3):119-126.
    [168]YEONG C Y, NAM S W. Activation processes of stress relaxation during hold time in 1Cr-Mo-V steel [J]. Materials Science and Engineering:A 1999,1-2:188-193.
    [169]刘勇,刘瑞堂.等轴组织BT14合金应力松弛行为及机制[J].材料热处理学 报,2008,29(3):131-133.
    [170]毛新平,张新明,邓至谦,等.铍铜合金抗应力松弛稳定性能及组织的研究[J].湖南有色金属,2001,17(1):30-34.
    [171]程建奕,余方新,杜大明,等.纳米弥散第二相对变形弥散强化铜合金亚结构的影响[J].粉末冶金工业.2000,20(2):27-31.
    [172]ZHAO D M, DONG Q M, LIU P, et al. Structure and strength of the age hardened Cu-Ni-Si alloy[J]. Materials Chemistry and Physics.2003,79:81-86.
    [173]XIE H, JIA L, LU Z L. Microstructure and solidification behavior of Cu-Ni-Si alloys [J]. Materials Characterization.2009,60:114-118.
    [174]CORSON M G. Electrical conductor alloys[J]. Electrical World.1927,89: 137-139.
    [175]PAN Z Y, WANG M P, LI Z, et al. Progress of study of super-high strength Cu-Ni-Si alloy [J]. Heat Treat. Met.2007,7:55-59.
    [176]CRYLLS R J, TUCK C D S. Identification of orthorhombic phase in a high strength cupronickel [J]. Scripta Materialia.1996,43:121-126.
    [177]OKAMOTO M. Trans. Inset. Met. Jan.1939,3:336.
    [178]ROBERTSON W D, GRENIER E G. The structure and associated properties of an age hardening copper alloy [J]. Trans. Met. Soc. AIME.1961,221:503.
    [179]TOMAN K. The structure of Ni2Si [J]. Acta Crystallogr.1952,5(3):329-331.
    [180]LASHKO N F. Nauk. SSSR,1951,81:606.
    [181]MIEDEMA A R, DE CHATEL P F, DE BOER F R. Cohesion in alloys-fundamentals of a semi-empirical model [J]. Physica B,1980,100B:1-28.
    [182]丁学勇,王文忠.二元系熔体中组元活度的计算式[J].金属学报B,1994,30B:444-447.
    [183]丁学勇,范鹏,韩其勇.三元系金属熔体中的活度和活度相互作用系数模型[J].金属学报,1994,30(2):50-60.
    [184]DE BOER F R, BOOM R, MATTWNS W C M, et al. Cohesion in Transition Metal Alloys[M]. North-Holland:Elsevier Science Publishers BV,1998.
    [185]郑志刚.合金热力学性质的Miedema理论计算[D].南宁:广西大学硕士学位论文.2005
    [186]SWANSON H E, TATGE E. Standard X-ray diffraction powder patterns [J]. Natl. Bur. Stand. (U.S.) Circ.1953,539:1-95.
    [187]OYA Y, SUZUKI Z. The nickel-rich portion of the Ni-Si phase diagram [J]. Z. Metallkd.1983,74:21-24.
    [188]LEI Q, LI Z, WANG J, et al. Phase transformations behavior in a Cu-8.0Ni-1.8Si alloy [J]. Journal of Alloys and Compounds.2011,509: 3617-3622.
    [189]李宏磊.Cu-3.2Ni-0.75Si合金的时效析出强化效应分析[J].中南大学学报.2006,37 (3):467-471.
    [190]XIE H, JIA L, LU Z L. Microstructure and solidification behavior of Cu-Ni-Si alloys [J]. Materials Characterization.2008,60(2):114-118.
    [191]JIA Y L, WANG M P, CHEN C, et al. Orientation and diffraction patterns of d-Ni2Si precipitates in Cu-Ni-Si alloy [J]. Journal of Alloys and Compounds, 2013,557:147-151.
    [192]潘志勇.超高强、高导电Cu-Ni-Si合金的组织与性能研究[D].长沙:中南大学博士学位论文.2010.
    [193]王艳辉.Cu-15Ni-8Sn-XSi合金和Cu-9Ni-2.5Sn-1.5Al-0.5Si合金中的相变及其对合金性能的影响[D].长沙:中南大学博士学位论文,2004.
    [194]贾延琳.引线框架用Cu-Ni-Si系合金的制备及相关基础问题研究[D].中南大学博士学位论文,2013.
    [195]王润.金属材料物理性能[M].北京:冶金工业出版社,1984:36-50.
    [196]CHRISTIAN J W. The Theory of Transformation in Metal and Alloys [M]. Pergamon Press,1965.472-481.
    [197]魏芳,赵中魁,周铁涛,等.Li对Al-Zn-Mg-Cu系合金GP区转变动力学的影响[J].中国有色金属学报,2003.13(4):876-880.
    [198]王东锋,康布熙,刘平,等.Cu-Ni-Si合金的时效与析出研究[J].材料开发与应用.2003,18(2):4-6.
    [199]L. Zhang, Z. Li, Q. Lei, et al. Hot deformation behavior of Cu-8.0Ni-1.8Si-0.15Mg alloy [J]. Materials Science and Engineering A.2011,528:1641-1647.
    [200]张良.超高强Cu-6.0Ni-1.4Si-0.15Mg-0.1 Cr合金的组织与性能[D].长沙:中南大学硕士学位论文,2011.
    [201]万传琨.高强度耐海水腐蚀白铜(铜镍)合金综述[J].材料导报,1992,(1):27-32.
    [202]ZHANG J, WANG Q, WANG Y, et al. Highly corrosion-resistant Cu70 (Ni,Fe,Mn,Cr)30 cupronickel designed using a cluster model for stable solid solutions[J]. Journal of Alloys and Compounds,2010,505:179-182.
    [203]BADAWY W A, ISMAIL K M, FATHIA M.Corrosion control of Cu-Ni alloys in neutral chloride solutions by amino acids [J]. Electrochimica Acta,2006,51: 4182-4189.
    [204]STERN M.A method for determing corrosion rates from linear polarization data [J]. Corrosion,1958,14:60-64.
    [205]STERN M, GEARY A L. Electrochemical polarization I. A theoretical analysis of the shape of polarization curves[J]. Journal of the Electrochemical Society, 1957,104(1):56-63.
    [206]ZHANg X,PEHKONEN S O, KOCHERGINSKY N, et al. Copper corrosion in mildly alkaline water with the disinfectant monochloramine[J]. Corrosion Science,2002,44:2507-2528.
    [207]RAMMELT U, REINHARD G. On the applicability of a constant phase element (CPE) to the estimation of roughness of solid metal electrodes [J]. Electrochimica Acta,1990,35(6):1045-1049.
    [208]LEBRINI M, FONTAINE G, GENGEMBRE L, et al. Corrosion behaviour of galvanized steel and electroplating steel in aqueous solution AC impedance study and XPS[J]. Applied Surface Science,2008,254:6943-6947.
    [209]PROCACCINI R,VAZQUEZ M, CERE S.Copper and brass aged at open circuit potential in slightly alkaline solutions[J]. Electrochimica Acta,2009,54: 7324-7329.
    [210]CHEN J L, LI Z, ZHU A Y, et al. Corrosion behavior of novel imitation-gold copper alloy with rare earth in 3.5% NaCl solution[J]. Materials and Design, 2012,34:618-623.
    [211]SANCHEZ S R D, SCHIFFRIN D J. The flow corrosion mechanism of copper base alloys in sea water in the presence of sulphide contamination[J]. Corrosion Science,1982,22(6):585-607.
    [212]YUAN S J, PEHKONEN S O. Surface characterization and corrosion behavior of 7030 Cu-Ni alloy in pristine and sulfide-containing simulated seawater [J]. Corrosion Science,2007,49:1276-1304.
    [213]DE SANCHEZ S R, BERLOUIS L E A, SCHIFFRIN D J. Difference reflectance spectroscopy of anodic films on copper and copper base alloys[J]. Journal of Electroanalytical Chemistry,1991,307:73-86.
    [214]罗宗强,张卫文,辛保亮,等.Cu-17Ni-3Al-X合金在中性盐雾中的腐蚀行为[J].中国有色金属学报,2012,22(1):106-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700