用户名: 密码: 验证码:
聚甲醛/弹性体/无机填料共混复合材料的形态、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚甲醛为高结晶线形热塑性聚合物,能在较宽的温度范围内保持其所具有的力学性能、化学性能和电性能,是一种具有优良综合性能的工程塑料。但聚甲醛存在着韧性差、缺口冲击强度低、缺口敏感性大的缺陷,极大地限制了聚甲醛在各个领域中应用范围的扩大,为此,国内外对如何提高聚甲醛的冲击韧性进行了大量研究。为了更好的理解聚甲醛的增韧机理,本论文在传统弹性体TPU可大大增韧POM的基础上,以TPU和CaCO_3两种物质分别和协同增韧增强聚甲醛复合材料体系的形态结构、粒子间距、晶体尺寸与性能的关系进行了系统的研究,获取了很多有价值的信息,为高性能聚甲醛复合材料的开发和应用作了理论铺垫,主要结果如下:
     1.研究了弹性体含量、增容剂等因素对POM/TPU共混体系的性能、形态以及晶体尺寸的影响,发现弹性体TPU可较好的增韧聚甲醛,但单纯用弹性体共混聚甲醛在室温下不能出现超韧行为,在体系中加入相容剂后,体系的界面作用增强,体系可出现超韧行为。相容剂加入前后体系的临界基体层厚度(L_c)各不相同,验证了TPU增韧聚甲醛的机理不符合Wu氏逾渗理论,Wu氏判据只能从一个方面POM/TPU体系的增韧现象。并且弹性体有使POM晶粒细化和破坏POM球晶规整性的作用,相容剂的加入增强了POM与TPU的界面作用,从而导致POM晶粒进一步细化,当体系的晶体尺寸小于临界值(D_c=40μm)时,体系发生脆-韧转变,这与体系和组成无关。这是首次用临界晶体尺寸理论从另一方面较好的解释了POM/弹性体的增韧现象。但是弹性体主要被排斥在POM球晶之外,不能进入POM晶格,体系仅在无定形区域有一定的相容性,且POM
    
    高小铃:聚甲醛/弹性体/无机填料共混复合材料的……
    的结晶和熔融行为对复合材料冲击强度的变化贡献不大。
     2.用碳酸钙填充复合POM,研究了CaCO3的含量、粒径对对聚甲醛的力学
    性能、分散、结晶行为等的影响,揭示了影响无机填料填充复合材料韧性的主
    导因素不是晶粒尺寸的减小,而是碳酸钙在基体中的分散形态及填料与基体间
    的界面粘结状况,粒子在基体中分散均匀,分散尺寸小,与基体间界面粘结好
    有利于材料冲击韧性的提高,因而纳米碳酸钙的增强增强作用优于微米级填料。
     3.针对以往聚合物/弹性体/无机填料复合材料增韧机理研究仅局限于定性
    解释,缺乏系统深入的研究和定量化分析,我们将TPU和CaCO3结合起来增韧
    增强聚甲醛,研究了加工方法、组成比、填料含量及粒径、分散形态、晶体形
    态和尺寸等一系列因素对复合材料性能尤其是冲击韧性的影响,发现当材料的
    基体层厚度L蕊L。(0.55 pm)时,材料可发生脆韧转变,说明Wu氏理论只可
    部分解释三元体系的脆韧转变现象,同时还定量的研究了三元体系的冲击强度
    于球晶尺寸大小的关系,当晶体尺寸小于临界值40 pm(O攫Dc)时,材料可
    发生脆韧转变,这从另一方面解释了POM三元体系的增韧行为。
     .4.首次提出高结晶性聚合物的临界晶体尺寸理论,将该理论与W妞氏理论联
    系起来用于材料脆韧转变的定量化研究,并将增韧机理的定量化研究从二元体
    系拓宽到三元体系,对POM汀PU/CaC伪体系进行配方设计,制备得到了同时
    增强增韧低成本的聚甲醛复合材料;通过比较PO加I/TPu、PoM/C aCO3和
    POM汀PU/CaC03三种体系的增韧机理,发现对弹性体增韧聚合物、具有核壳结
    构的弹性体和填料协同增强增强的高结晶性聚合物来说,基体层厚度和晶体尺
    寸是影响材料性能的两个重要因素,临界基体层厚度理论和临界晶体尺寸理论
    均可用来解释材料的增韧现象,这对制备高韧性高刚性低成本高结晶性聚合物
    复合材料的研究具有指导意义,可根据实际需要来选择和设计复合材料的组成
    比,为高性能、低成本的聚甲醛复合材料工业化打下了良好的基础。
Polyoxymethylene(POM) is one of the widely used engineering plastics with a unique balance of mechanical, thermal chemical, and electrical properties. However, its applications as an engineering thermoplastic are highly limited because of its brittleness at room and low temperatures. In order to improve the impact toughness of POM and extend its application range, a lot of efforts on POM-toughening with different elastomers have been made. Among the elastomers used, TPU is so far the best toughening agent due to its good compatibility with POM. In this work, in order to better understand the toughening mechanisms, we carried out a systematical investigation on the fractured surface, inter-particle distance and the size of spherulite of POM composites toughened and reinforced by TPU and CaCO3 respectively or together. Several valuable conclusions were obtained, which should be considered in the preparation of POM composites with high performance.
    1. The effect of elatomer content and compatibilizer on the morphology (inerparticle distance and the spherulite size) and properties of POM/TPU blends was investigated. The impact strength is found to increase as a function of TPU content. A supertough behavior is not observed for POM/TPU blends at room temperature, but can be achieved after adding compatibilizer, which enhance the interfacial interaction. The impact strength is found not only depend on the inter-particle distance but also the interfacial interaction between POM and TPU. This result isn't compatible to the Wu's criterion. The dependence of impact strength on crystal size is considered for the first time, and a single curve is constructed regardless the composition and interfacial interaction. The critical crystal diameter is 40 u m, that is A=40, which indicates the crystal size of POM indeed play a role to determine the
    
    
    
    toughness, and has to be considered when discussing the toughening mechanism.
    2. By compounding CaCO3 with POM, the influence of CaCO3 content, diameter on the mechanical properties, dispersion and crystallization of POM/ CaCO3 composties was investigated. The major factor of toughening is rather the CaCO3 dispersion in matrix and the interfacial adhesion than the decrease of POM crystal diameter. A better toughening effect is observed when the dispersion of particles is homogenous, the dispersion size is small and the strong adhesiong between filler and matrix. The toughening and reinforcing effect of nanometer CaCO3 is better than that of micron CaCO3.
    3. Toughening mechanism of polymer/elastomer/filler composites was limited to qualitative explanation without quantitative analysis in the past. TPU and CaCO3 were combined to toughen and reinforce POM to investigate the processing method, composition, the content and diameter of filler, dispersion morphology, crystal morphology and diameter on the POM/TPU/CaCO3 ternary composites' properties, especially izod impact strength. It can be found that when the matrix ligament thickness of such ternary system is lower than the critical value (Zc), the brittle-ductile transition occurs. This result shows the Wu's theory can partially interpret the toughening phenomenon of ternary composites. In addition, the relationship between the impact strength and the crystal diameter was performed quantitatively. Brittle-ductile transition occurs when the crystal diameter is smaller than the critical crystal diameter(Dc=40 u m), which explains the toughening phenomenon at the other angle.
    4. It is the first time that the critical crystal diameter theory combined with Wu's theory to study the brittle-ductile transition in polymers of high crystallinity, especially in ternary composites. Based on these results, we can design the composition of POM/TPU/CaCO3 composites with high toughness, modulus but low cost. By the comparison of toughness mechanism in POM/TPU, POM/CaCO3 and POM/TPU/CaCOa, it reveals that toughening behavior may be obtained in the condition of L
引文
[1] 林启昭主编,高分子复合材料及其应用,中国铁道部出版社,1988
    [2] Eric Drexler. Unbounding the Future: the Nanotechnology Revolution. New York. William Morrow and Compony. Inc. 1991: Chap 1.7
    [3] Chris Oriakhi. Nano sandwiches. Chemistry in Britain. 1998.34(1): 59~62
    [4] 郭刚,于杰,罗筑等,聚合物基纳米复合材料研究进展,贵州科学,2002,20(2):22-28
    [5] 梁宏斌,倪靖滨,王艳敏,聚合物/纳米复合材料研究进展,化学工程师,2001,84(3):26-31
    [6] 王立新,袁金凤,任丽等,聚合物基纳米复合材料的研究进展,塑料工业,2000,28(6):1-3
    [7] 朱军,李毕忠,聚合物/无机纳米复合材料研究进展,化工新型材料,2000,28(10):3-8
    [8] 舒文艺,分子复合材料的研究开发现状,塑料,1995,24(2):25-31
    [9] 章永化,龚克成,有机—无机混杂纳米材料,高技术通讯,1995,5(7):56
    [10] Shang S W, Williams J W, Sodrbolm K J M, Using the bond energy density to predict the reinforcing ability of a composite, J Mater Sci, 1992, 27: 4949-4956
    [11] Shang S W, Williams J W, Sodrbolm K J M, How the work of adhesion affects the mechanical properties of silica-filled polymer composites, J Mater Sci, 1994, 29: 2406-2416
    [12] Shang S W, Williams J W, Sodrbolm K J M, Work of adhesion influence on the theological properties of silica filled polymer composites, J Mater Sci, 1995, 30: 4323-4334
    [13] Merz E H, Flaver G G, Baer M, Polym Sci, 1956, 22:3257
    [14] 温变英,李振中,权英,增韧机理概说,塑料,1998,28(4):7-11
    [15] Schmitt J, Keskkula H, J Appl Polym Sci, 1960, 3:132
    [16] Buckall C B, Smith R R, Stress-whitening in high-impactpolystyrenes, Polymer, 1965, 6:437
    [17] Buchnall C B, Fracture and failure of multiphase polymers and polymers composites, Adv Polym Sci, 1978, 27:121-148
    [18] Newman S, Strella S, Stress-strain behavior of rubber-reinforced glassy polymers, J Appl Polym Sci, 1965, 9: 2297
    [19] Buchnall C B, Clayton D, Keast W D, Rubber-toughening of plastics em dash 2. Creep mechanism in HIPS/PPO blends, J Mater Sci. 1972, 7: 1443-1453
    [20] Donald R, Buchnall C, Pure and Appl Chem, 1976, 46:277
    [21] 朱晓光,漆宗能,聚合物韧研究进展,材料研究学报,1997,11(6):623-637
    
    
    [22] Bragaw C G, Polym Preprints, 1970, 11: 368
    [23] Wu S, Phase structure and adhesion in polymer blends: A criterion for rubber toughening,Polymer, 1985, 26: 1855-1863
    [24] Wu S, A generalized criterion for rubber toughening, The critical matrix ligament thickness, J Appl Polym, 1988, 35: 549-561
    [25] Margolina A and Wu S, Percolation model for brittle-tough transition in nylon/rubber blends, Polymer, 1988, 29:2170-2173
    [26] Broggreve R J M, Gaymans R J, Schuijer J et al., Brittle-tough transition im nylon-rubber blends: Effect of rubber concentration and particle size, Polymer, 1978, 28: 1489-1496
    [27] Margolina A, Toughening mechanism for nylon/rubber blends: The effect of temperature, Polym Commun, 1990, 31: 95-96
    [28] Strake J U, Michler G H, Grellmann W et al., Fracture toughness of polypropymene copolymer: influence of interparticle distance and temperature, Polymer, 1998, 39: 75-82
    [29] 吕素平,漆宗能,聚合物共混体脆韧转变的损伤竞争理论-1.损伤竞争准数与脆韧转变判据,中国科学B辑.1994,24(10):1028-1034
    [30] Wu X Z, Xu X G, Zhu X G, et al., PPS-Regional meeting of Asia/Australia abstracts(Shanghai), 1991, 121
    [31] Kucauchi T, Ohta T, Energy absorption in blends of polycarbonate with ABS and SAN, J Mater Sci, 1984, 19: 1699-1709
    [32] Sue H, Huang J, Yee A F, Interfacial adhesion and toughening mechanisms in an alloy of polycarbonate/polyethylene, Polymer, 1992, 33: 4868-4871
    [33] Koo K K, Inoue T, and Miyasaka K, Toughened plastics consisting of brittle particles and ductile matrix, Polym Eng Sci, 1985, 25:741-746
    [34] Angola J C, Fujita Y, Sakai T and Inoue T, Compatibilizer-aided toughening in polymer blends consisting of brittle polymer particles dispersed in a ductile polymer matrix, J Polym Sci, Part B: Polym Phys, 1988, 26: 807-816
    [35] Li D M, Zheng W G, Qi Z N, The J-intergral fracture toughness of PP/CaCO_3 composites, J Mater Sci, 1994, 29: 3754-3758
    [36] Fu Q, Wang G H, Shen J S, Polyethylene toughened by CaCO_3 particle: Brittle-dutile transition of CaCO_3-toughened HDPE, J Appl Poly Sci, 1993, 49: 673-677
    
    
    [37] Fu Q, Wang G H, Effect of morphology on brittle-ductile transition of HDPE/CaCO_3 blends, J Appl Poly Sci, 1993, 49:1985-1988
    [38] Fu Q, Wang G H, Polyethylene toughened by CaCO_3 particle—Percolation model of brittle-ductile transition in HDPE/CaCO_3 blends, Poly Int, 1993, 30:309-312
    [39] 傅强,王贵恒,刘春晓,HDPE/CaCO_3共混物中的“芯壳”模型,高分子材料科学与工程,1993,3(3):120-125
    [40] Fu Q, Wang G H, The effect of matrix toughness on the brittle-ductile transition of HDPE/CaCO_3 blends, Chinese J Polym Sci, 1994,12(4):
    [41] Fu Q, Wang G H, Polyethylene toughened by CaCO_3 particle: The interface behavior and fracture mechanism in high density polyethylene/CaCO_3 blends, Polymer, 36: 2397-2401
    [42] 李兰,朱晓光,梁涵渊等,形态结构对聚丙烯/三元乙丙橡胶/硅灰在复合材料力学性能的影响,工程塑料应用,1995,23(5):31
    [43] 邹华,赵素和,聚甲醛共混改性研究进展,现代塑料加工应用,2000,12(4):54-57
    [44] 温变英,张学东,王久芬,聚甲醛的改性,化工新型材料,1998,1:18-20
    [45] 徐卫兵,周正发,朱士旺,POM/PU共混物增容剂的合成与应用,塑料工业,1995,2:39-41
    [46] 徐卫兵,周正发,朱士旺,EPDM-g-MMA对POM/EPDM共混物的增容作用,现代塑料加工应用,1995,7(3):6-9
    [47] Zhang X F, Zhang Y, Peng Z L, et. al., Dynamically vulcanized nitrile rubber/polyoxymethylene thermoplastic elastomers, J Appl Polym Sci, 2000, 77: 2641-2645
    [48] Flexman E A, Huang D D, Snyder H L, Fracture mechanism and morphology of high impact polyacetal, Polym Prep, 1988, 29(2): 189-192
    [49] 徐卫兵,戈明亮,河平笙,聚甲醛/蒙脱土纳米复合材料非等温结晶动力学研究,应用化学,2001,18(9):721-725
    [50] Xu W B, He P S, Nonisothermal crystallization kinetics of Polyoxymethylene/meontmorillomite nanocomposites, J Appl Polym Sci, 2001, 80: 304
    [51] Chiang W Y, Lo M S, Properties of copolymer-type polyacetal/polyurethane blends, J Appl Polym Sci, 1988, 36: 1685-1700
    [52] Chiang W Y, Huang C Y, The effect of the soft segment of polyurethane on copolymer-type
    
    polyacetal/polyurethane blends, J Appl Polym Sci, 1989, 38: 951-968
    [53] 于建,聚甲醛的合金化及复合学增强研究,工程塑料应用,2001,29(7):47-51
    [54] 温变英,张学东,李迎春,聚甲醛/聚氨酯高韧合金的研究,塑料工业,2000,28(1):7-9
    [55] 温变英,聚甲醛的强韧化改性研究,弹性体,2002,12(4):12-15
    [56] Palanivelu K, Balakrishnan S, Rengasamy P, Thermoplastic polyurethane toughened polyacetal blends, Polymer Testing, 2000, 19: 75-83
    [57] 姚日生,边侠玲,聚甲醛/聚醚型聚氨酯共混体系的溶混性及微晶结构,高分子材料科学与工程,1999,15(1):97-99
    [58] 于建,王书武,黄国锋,NBR对POM树脂的增韧行为,高分子材料科学与工程,2000,16(1):109-112
    [59] 汪晓东,励杭泉,酚醛树脂增容聚甲醛/丁腈橡胶共混物的力学性能与结晶形态,高分子材料科学与工程,2001,17(2):39-44
    [60] Chiang W Y, Huang C Y, Properties of copolymer-type polyacetal/ ethylenepropylene-diene terpolymer blends, J Appl Polym Sci, 1993, 47:105-112
    [61] Kumar G, Neelakantan N R, Subramanian N, On the compatibilization and dynamic vulcanization of Polyacetal/ethylene Propylene diene terpolymer blends, J Appl Polym Sci, 1994, 52: 483-490
    [62] 冯定松,过俊石,谢洪泉等,合成橡胶工业,1997,20(3):166
    [63] 洪成海,汪晓东,刘迪男等,聚甲醛的增韧研究进展,延边大学学报(自然科学版),2002,28(1):67-71
    [64] Kanai H, Sullivan V, Auerbach A, Impact modification of engineering thermoplastics, J Appl Poly Sci, 1994, 53: 527-541
    [65] Kumar G, Neelakantan N R, Subramanian N, Polyacetal and thermoplastic polyurethane elastomer toughened polyacetal: crystallinity and frature mechanics, J Appl Polym Sci, 1995, 30:1480-1486
    [66] 于建,王书武,黄国锋,丁腈橡胶对聚甲醛树脂的增韧机理研究,高分子学报,2000,1:90-94
    [67] 汪晓东,张强,酚醛树脂的增容作用对聚甲醛/丁腈橡胶共混物的韧性、结晶形态和亚微相态的影响,高等学校化学学报,2001,22(4):673-677
    [68] Wu S, Control of intrinsic brittleness and toughness of polymers and blends by chemical
    
    structure: A Review, Polym Inter, 1992, 29: 229-47
    [69] 汪晓东,金日光,励杭泉,聚甲醛合金的结晶形态与力学性能,高分子材料科学与工程,1994,5:91-95
    [70] 刘伟利,增韧聚甲醛抗冲性能的影响因素,中国塑料,1991,5(1):74-76
    [71] Jiang W, An L J, Jiang B Z, Brittle-tough transition in elastomer toughening thermoplastics: Effects of elastomer stiffness, Polymer, 2001, 42: 4777-4780
    [72] Mori, et al. Toughenedpolyacetal resin composition, U. S. Pat. 6,433,106,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700