用户名: 密码: 验证码:
养殖固废发酵菌剂研制及其应用效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的畜禽养殖业的大规模发展而导致的环境污染越来越严重,因而环境的治理已势在必行。综合近几年来的规模化畜禽养殖场的环境治理进展,可知好氧堆肥是固体废物无害化、稳定化、资源化的有效方法。但由于传统堆肥法存在发酵时间长、污染环境等一系列问题,因此,现阶段主要采用传统的堆肥法结合现代生物技术手段高效处理固体废弃物,既可减轻环境污染负荷和二次污染又可生产有机肥,是固体废弃物综合利用的一个重要发展方向。本研究主要是针对堆肥发酵时间长、特别是堆肥中的纤维素类物质很难分解的情况进行的。其主要研究结果如下:
     1.以滤纸平板和羧甲基纤维素钠培养基为基础培养基,从采集的样品中筛选出具有分解纤维素能力的38株菌株。采用纤维素刚果红培养基进行粗选,得到10株透明圈较大的菌株。将这10株菌株进行液体发酵培养,测定其酶活力,得到4株分解纤维素能力较强的菌株。对这4株菌株进行碳源、温度、pH值的适应性研究。结果发现,真菌3和真菌6的适应性都比较好。
     2.以新鲜的猪粪为材料,用麦糠调节初始含水量达到65%左右。试验于2002年12月在嘉兴绿神有机肥有限公司的堆肥厂中进行。本试验共设四个处理:无接种剂(CK)、接种真菌3(处理1)、接种真菌6(处理2)接种菌剂培养基(处理3)。菌剂按堆肥厂常用的方法,以堆肥量(重量比)的0.05%,在堆制时均匀混于堆肥中。每7天翻堆一次并且间隔大约10天左右取样一次。对这四个处理的堆肥发酵过程中的温度、水分含量、pH值、挥发性总固体含量、总有机碳含量、全氮含量、铵态氮含量、硝态氮含量、有机氮含量、全磷含量、无机磷含量、有机磷含量、微生物数、转化酶活力、纤维素分解酶活力、多酚氧化酶活力、蛋白酶活力、酸性磷酸酶活力以及过氧化氢酶活力进行了比较研究。结果发现:添加合适的堆肥发酵菌剂能使堆肥的高温期提前,缩短堆肥的发酵腐熟时间;加速水分的散失与有机物的降解,且接种真菌6的效果好于接种真菌3。接种菌剂有利于全氮的相对含量增加;对铵态氮和硝态氮两种无机形态的氮含量的影响不大;但有利于有机氮含量的提高。接种外源菌种起到一定的保氮作用,且接种真菌6的实际应用效果好于接种真菌3。接种外源菌种可以提高全磷、无机磷以及有机磷的相对含量,且接种真菌6比接种真菌3更有利于其相对含量的提高。接种外
    
    源菌种有利于降低堆肥的C加、C/P且真菌6的作用效果更为明显。细菌、放线
    菌和真菌的数量在堆肥初期随着温度的升高而显著减少,在大约50一60天左右达
    到整个堆肥过程的最低值。随着温度的降低细菌、放线菌的数量开始又有所回升
    而真菌的数量一直维持在较低的水平。接种菌剂以及接种不同的菌剂都没有对三
    种微生物数量的变化产生显著的影响。根据变化规律可以将各种酶活力的变化分
    成三类:过氧化氢酶活力呈逐渐上升的趋势;多酚氧化酶活力的变化与堆肥过程
    中温度的变化趋势相似;蛋白酶、酸性磷酸酶、转化酶以及纤维索酶活力呈逐渐
    下降的趋势。接种菌剂对过氧化氢酶、蛋白酶、酸性磷酸酶、转化酶以及纤维索
    酶活力没有产生显著影响而对多酚氧化酶的活力产生了显著的影响且接种真菌
    6比接种真菌3对多酚氧化酶活力的影响更明显。
     3.从前五章的实验结果以及分析中,可以得知真菌6是一株适应性较强并能
    加速堆肥的发酵腐熟,捉高堆肥最终产况:的,、},质的典菌。囚!(lJ本实验}二要足以真
    菌6为主要的接种剂来研究不同的接种方式以及其与商业菌剂的接种效果进行
    比较研究。在本实验进行之前事先取一堆混合均匀的新鲜猪粪为材料·,用麦糠来
    调节初始含水量至65%一70%之间。试验于2003年7月在嘉兴绿神有机肥有限
    公司的堆肥厂中进行。接种由真菌6制成的菌剂,待其达到高温期时从中取出与
    其他菌剂相同重量的堆肥作为菌剂进行高温堆肥回接。本试验共设四个处理,不
    接种(CK)和分别接种真菌6(处理l)、高温堆肥I川接(处理2)、商业菌利,(处
    理3)。一呆l剂按堆)把厂,,1}亨}}Jr内jJ‘法,以堆)J巴量(重直过比)的0.05多6,了卜工}i二制jz,J均匀
    混于堆肥中。每2天翻堆一次。分别在堆肥发酵的第1、6、12、24、33、39、
    sld进行取样。对一这四个处理的堆肥发酵过程中的温度、水分含量、pH值、挥
    发性总固体含量、总有机碳含量、个氮含量、按态氮含量、硝态氮含量、有机氮
    含量、全磷含量、无机磷含量、有机磷含量、微生物数、转化酶活力、纤维素分
    解酶活力、多酚氧化酶活力、服酶活力、蛋白酶活力、酸性磷酸酶活力以及过城
    化氢酶活力进行了比较研究。结果发现:不同接种方式以及接种不同的菌剂对堆
    肥的发酵过程不会产生显著的影响,这可能是山于堆肥接种时的环境条件比较微
    生物的生长繁殖因而导致了各个处理之间的差异不明显。
     4.本实验采用以真菌6为接种剂的堆肥生产的商品有机肥作为肥源,研究有
    机肥对我省二种主要大棚lJ一十菜一小白菜和波菜品质的影响,以期探明接种菌剂后
    /犷
    
    发酵腐熟的堆肥的实际应用效果。本实验共设三个处理,CK空自(小施肥);
    化肥处理;化肥十有机肥。实验结果表明,有机肥在提高大棚蔬菜产量,及提高
    Vc、可溶性糖含量、降低硝酸盐含量方面?
Rapid development of hoggery results in large quantity of wastes and thus has caused great impact on the environment. Proper disposal of wastes is of great importance in animal industry. Presently, composting, which is a cost-cffcctivc and widely adopted way to deal with solid wastes, has been commercialized in China. Many composting factories use various kinds of inoculants in manure composting to stimulate this process. The effects of inoculants on swine manure during the process of composting were investigated in this paper. The results showed:
    1. Filter paper and carboxylic methyl fiber atrium were used as media to isolate and screen cellulose-decomposing microorganisms, and 38 strains were isolated from samples of soil and compost prepared from chicken manure, swine manure and cow manure. Of the isolated 38 strains, 10 strains showed a great capacity in cellulose decomposing, indicated by large and distinct red circles around the colonies in Congo red agar medium. Four strains of fungi were obtained with highest ccllulase activity using liquid medium. Study on the adaptability to carbon sources, temperature and pH showed that two strains have a great potential to be used as composting inoculum.
    2.Fresh swine manure was prepared in this study; bran was used to control moisture content to about 65%. The experiment was carried out in a factory in Jiaxing, a city located in the northern Zhejinag Province at Dec. 2002. There were four treatments: (1) without inoculants (ck); (2) with 0.05% inoculants of fungus 3 on dry weight basis (treatment 1); (2) with 0.05% inoculants of fungus 6 on dry weight basis (treatment 2); (4) inoculants culture medium (treatment 3). Composts were turned over every seven days and samples were taken at an interval of around 10 days.
    
    
    
    Changes in parameters of the three different composts were monitored during the composting process. The parameters were temperature, moisture content, pH value, volatile solid, organic carbon, total N, NH4+-N, NO3--N, organic nitrogen, total P, inorganic phosphorus, organic phosphorus, Microorganism numbers, the activities of invertase, cellulose, polyphenol oxidase, protease and phosphatase, catalase. The results showed: inoculants could accelerate the decomposable velocity of organic matter; increase the relative content of total nitrogen and fungus 6 was belter than fungus 3, did no significantly influence of the content of two inorganic form NH4'-N and NO3--N, but fungus 6 was more propitious to increase the relative content of organic nitrogen, increase the relative content of total phosphorus, inorganic phosphorus and organic phosphorus; decreased the ratio of C/N and C/P than fungus 3.Bacteria, actinomycete, and fungi initially showed a great decrease as the temperature was sharply increased, and reached to a lowest level at about 50-60 days, and thereafter bacteria and actinomycete again increased in number while fungi remain low level when temperature decreased. Inoculation did not show substantial effect on the number of these three kinds of microbes, which could be resulted from the inaccuracy of the counting method. The enzymes fell into three categories according to their change. Catalase activity increased as composting proceeded; polyphenol oxidase activity showed very similar pattern to temperature change; and proteinase, phosphatase, invertase and cellulase activity decreased with the time progress. Inoculation did not show substantial influence on the activities of catalase, proteinase, phosphatase, invertase, and cellulase whereas the activities of polyphenol oxidase were increased by inoculation and fungus 6 brought more effects on polyphenol oxidase than fungus 3.
    3. The results above showed that fungus 6 is a fungus with a great potential to be used as composting inoculums to improve the quality of composting. In order to clarify this assumption, fungus 6 was used as inoculants in this study. Fresh swine manure was prepared in this study; bran was used to control moisture content to about 65%. The experiment was carried out in a fact
引文
1 苍龙,李挥信,胡锋等.赤子爱胜蚓处理畜禽粪的最适湿度和接种密度研究.农村生态环境.2002,18(3):38-42.
    2 曹玉林,沈敏东.发展农业设施栽培的探讨.上海农业科技.2002,12-24.
    3 陈华葵.微生物学[M].北京:农业出版社,1962.
    4 戴洪刚,唐金陵,杨忠军.利用蝇蛆处理畜禽粪便污染的生物技术.农业环境与发展.2002,1:34-35.
    5 丁文川,郝以琼,李宏.污泥堆肥温度对微生物降解有机质的影响.重庆建筑大学学报.1999,21(6):20—23,34.
    6 丁文川,郝以琼,李宏.污泥堆肥温度对微生物降解有机质的影响[J].重庆建筑大学学报.1999,21(6):20-23,34.
    7 冯明谦,汪立飞,刘德明等.高温好氧垃圾堆肥中人工接种初步研究[J].四川环境.2000,19(3):27-30.
    8 顾寄南,毛罕平.国内外设施栽培综合环境控制技术及其发展.农业现代化研究.1999,20(3):184-186.
    9 顾希贤,许月容.垃圾堆肥微生物接种实验.应用与环境生物学报.1995,1(3):274-278.
    10 关松荫.土壤酶及其研究法.农业出版社.1986,7.
    11 官家发.高温堆肥发酵工艺处理城市生活垃圾的部分微生物学问题[J].四川环境.2000,19(3):21-22,30.
    12 黄得扬,陆文静,王洪涛.有机固体废弃物堆肥化处理的微生物学机理研究.环境污染治理技术与设备.2004,5(1):12—18.
    13 黄国锋,吴启堂,孟庆强等.猪粪堆肥化处理的物质变化及腐熟度评价.华南农业大学学报(自然科学版).2002,23(3):1—4.
    14.黄国锋,吴启堂,孟庆强等.猪粪堆肥化处理的物质变化及腐熟度评价[J].华南农业大学学报.2002,23(3):1-4.
    15 黄国锋,钟流举,张振钿等.猪粪堆肥化处理过程中的氮素转变及腐熟度研究[J].应用生态学报.2002,13(11):1459-1462.
    16 黄懿梅,曲东,李国学,张福锁.两种外源微生物对鸡粪高温堆肥的影响.农业环境保护.2002,21(3):208—210.
    17 金永钧,李昆跃.昆明市无公害蔬菜生产发展成效显著.长江蔬菜.2001,(1):10-11.
    18 李承强,魏源送,樊耀波等.不同填充料污泥好氧堆肥的性质变化及腐熟度.环境科学.2001,22(3):60—65.
    19 李桂军.论城市生活垃圾处理方法.甘肃环境研究与监测.2003,16(9):46-47.
    20 李国学,张福锁.固体废物堆肥化与有机复混肥生产化学工业山版社.北京:2000.
    21 李合生.植物生理生化实验原理和技术.高等教育出版社.2000.
    22 李敏超,李花粉,温小乐.畜禽废弃物的污染治理.畜牧与兽医.2002,34(9):16-17.
    23 李朋忠,胡样英,高金成等.白雪公主甜瓜周年无公害栽培技术.蔬菜.2003,(1):3-4.
    24 李仁发,潘晓萍等.施用有机肥对降低蔬菜硝酸盐残留的影响.福建农业科技.1999,6:14-15.
    25 李天来.论我国设施蔬菜生产可持续发展中应注意的几个问题[J].沈阳农业大学学报.2000,31(1):9-14.
    26 李笑梅,马永强,王金凤等.大豆多酚氧化酶、过氧化氢酶的酶学特性研究.食品科学.2001,22(6):32—35.
    
    
    27 梁兰英.紫外分光光度法测定土壤中的硝态氮.甘肃环境研究与监测.2001,14(2):80-81.
    28 刘婷,陈朱蕾,周敬宣.外源接种粪便好氧堆肥的微生物相变化研究.华中科技大学学报(城市科学版).2002,19(2):57-59.
    29 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社.1999,13-14,423-425,159-160.
    30 妙旭华,赵文超.甘肃省畜禽养殖污染状况及粪便的综合利用.甘肃环境研究与监测.2002.15(4):305-307.
    31 南京农业大学主编.土壤农化分析.农业出版社.1986,33-36.
    32 朴哲,崔宗均,温耀伟等.高温堆肥体系中主要营养元素的动态变化.中国农学通报.2001,17(1):17-21.
    33 秦遂初.作物营养施肥与诊断实验.农业出版社.1992.
    34 邵宏华.城郊禽场滋味难受.中国环境报.1996年11月9日
    35 石春芝,蒲一涛,郑宗坤等.垃圾堆肥接种固氮菌对堆肥含氮量的影响.应用与环境生物学报.2002,8(4):419—421.
    36 史玉英,沈其荣,娄无忌.纤维素分解菌群的分离筛选.南京农业大学学报[J].1996,19(3):59-62.
    37 汪兴汉.南方施栽培现状及前景对策.长江蔬菜.2000,12:1-4.
    38 王宏丽,李良晨.沼气处理畜禽舍废弃物及其环境效益.畜牧兽医杂志.1999,18(2):42—44.
    39 王立新,袁影,袁梅.利用畜禽粪饲喂地鳖虫的研究.动物科学与动物医学.2002,19(2):50-53.
    40 吴景贵,王明辉,任成礼等.非腐解有机物培肥对水田土壤水解酶活性动态变化的影响.土壤通报.1998,29(6):253—256.
    41 席北斗,刘鸿亮,孟伟等.高效微生物菌群在垃圾堆肥中的应用.环境科学.2001,22(5):122-125.
    42 刑廷铣.畜牧业生产对生态环境的污染及其防治.云南环境科学.2001,20(1):39-43.
    43 杨国义,夏钟文,李芳柏等.不同通风方式对猪粪高温堆肥氮素和碳素变化的影响.农业环境科学学报.2003,22(4):463-467.
    44 姚海林,吴文,刘峻明,谷志孟.城市生活垃圾的消纳处理方法及其利弊分析.岩石力学与工程学报.2003,22(10):1756—1759.
    45 叶姜瑜.一种纤维素分解菌鉴别培养基[J].微生物学通报.1997,24(4):251-252.
    46 喻景权,杜尧舜.蔬菜设施栽培可持续发展中的连作障碍问题.沈阳农业大学学报.2000,31(1):124-126.
    47 张文龙,王建彬,周景明.畜禽业生产中的环境污染及治理对策.家畜生态.2001,22(3):51—55.
    48 张相锋,王洪涛,聂永丰等.猪粪和锯末联合堆肥的中试研究[J].农村生态环境.2002,18(4):19-22.
    49 张正云译.综合猪场粪水施用于农田的预处理.国外农业环境保护.1989(4):33-35.
    50 赵永勋,张洪全,张跃华.微生物菌剂对有机废弃物发酵作用的研究[J].佳木斯大学学报(自然科学版).2001,19(2):183-186.
    51 中国科学院南京土壤研究所微生物室编.土壤微生物研究法.1985,4.
    52 中国农业部/美国能源部项目专家组.中国生物质资源可获得性评价[M].北京:中国环境科学出版社.1998.
    53 朱维琴,朱正华,章永松.农业有机废弃物资源化与温室二氧化碳施肥在生产上的利用.现代化农业.2002,(2):19-21.
    
    
    54 祝令香,徐建,于巍等.一株纤维素降解菌的鉴定[J].农业生物技术学报.2001,9(3):255—257.
    55 庄舜尧,孙秀廷.氮肥对蔬菜硝酸盐积累的影响.土壤学进展.1995,23(3):29-35.
    56 Arja H. Vuorinen, Maritta H. Saharinen; Evolution of microbiological and chemical parameters during manure and straw co-composting in a drum composting system [J]. Agriculture, Ecosystems and Environment, 1997, 66:19-29.
    57 Atlas R M and Bartha R. Microbial ecology: fundamentals and applications. Massachusetts: Addison-wesley publishing reading, 1981.
    58 Bernal M. P; C. Paredes, M. A. Sanchez-Monedero& J. Cegarra; Maturity and Stability Parameters of Composts Prepared with Wide Range of Organic Wastes; Bioresource Technology. 1998, 63:91-99.
    59 Bernal M; P. C. Paredes, et al. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology. 1998, 63:91-99.
    60 Bertoldi, M. de, Zucconi, F., Civilini, M. Temperature, pathogen control and product quality. In: The staff of BioCycle (Ed.), The BioCycle Guide to the Art and Science of Composting. The JG Press, Emmaus, PA, USA1991, pp. 195-199.
    61 Bishop, P. L., Godfrey, C., 1983. Nitrogen variations during sludge composting. BioCycle 24, 34-39.
    62 Bishop. P. L. C. Godfrey. Nitrogen transformations during sludge composting [J]. BioCycle. 1983, 24:34-39.
    63 Burns R. G. Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biology & Biochemistry. 1982, 14:423-427.
    64 Button C H. A review of the aerobic treatment of pig slurry: purpose, theory and method. Journal of Agricultural Engineering Research. 1992, 53, 249-272.
    65 Campbell C D, Darbyshire J F. The composting of tree bark in small reactors self-heating experiments. Biological Wastes, 1990, 31 (2): 145-161.
    66 Chen, Y., Inbar, Y., Malcolm, R. L., 1989. Chemical properties and solid-state CPMAS ~(13)C-NMR of composted organic matter. Science of the Total Environment 81/82, 201-208.
    67 De Bertoldi, M., Vallini, G. & Pera, A. The biology of composting: a review. Waste Manage. Res. 1983, 1:157-176.
    68 E. Guerra-Rodriguez, M. Vazquez, et al. Co-composting of barley wastes and solid poultry manure [J]. Bioresource Technology, 2000, 75:223-225.
    69 Fang M.; J. W. C. Wong, et al. Changes in biological parameters during co-composting of sewage sludge and coal ash residues. Bioresource Technology. 1998, 64:55-61.
    70 Fang. M. J; W. C. Wong. Effects of lime amendment on availability of heavy metals and maturation in sewage sludge composting [J]. Environ Pollut. 1999b, 106:83-89.
    71 Fang. M; J. W. C. Wong, K. K. Ma, M. H. Wong, Co-composting of sewage sludge and coal fly ash: nutrient transformations, Bioresour Techno, 1999; 67:19-24.
    72 Finstein M S, Miller F C, Strom P F. Waste treatment composting as a controlled system. Biotechnology, 1986, 8(3): 396-443.
    73 Garcia, C., Hernandez, T., Costa, F., Ceccanti, B. & Ciardi, C. Changes in ATP content, enzyme activity and inorganic nitrogen species during composting of organic wastes. Can, J. Soil Sic. 1992, 44:137-144.
    74 Georgakakis, D., Krintas, Th., Optimal use of the Hosoya system in composting poultry
    
    manure [J]. Bioresource Technology, 2000, 72:227-233.
    75 Golueke C G. Overview of composting research. Biocycle, 1984, 25(4): 54-55.
    76 Haug R T. The practical handbook of compost engineering. Florida: Lewis Publishers, Boca Raton, 1993.
    77 Haug, T. R. Biological fundamentals. In The Practical Handbook of composting Lewis Publishers. Engineering. 1993, 121-159.
    78 Hoitink, H. A. J, Fahy, P. C., Basis for the control of soilborne plant pathogens with composts. Ann. Rev. Phytopathol. 1986, 24:93-114.
    79 Inoko. A; K. Miyamatsu; K. Sugabara, et al. On some organic constiruents of city refuse composts produced in Japan [J]. Soil Sci Plant Nutr. 1979, 25:225-234.
    80 Itavaara, M., Venelampi, O., Karjomaa, S. Testing methods for determining the compostability of packaging materials. In: Barth, J. (Ed.), Proceedings of Biological Waste Management "Wasted Chance". BWM Infoservice, Germany. 1995.
    81 Jenn-Hung Hsu, Shang-Lien Lo. Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure, Environmental Pollution. 1999, 104: 189-196.
    82 Kelleher B. P; J. Leahy. A. M. Henihan. et al. Advances in poultry litter disposal technology-a review. Bioresource Technology. 2002, 83:27-36.
    83 Kulcu. R; O. Yaldiz. Determination of aeration rate and kinetics of composting some agricultural wastes. Bioreource Technology. 2004, 93:49-57.
    84 Ladd J. N. and Jackson R. B. 1982, Biochemistry of ammonification. In Nitrogen in Agricultural. Soils, ed. F. J. Stevenson, pp. 173-228. American Society of Agronomy, Madison, WI.
    85 Levi-Minzi, R., Ri. aldi, R., Saviozzi, A., Organic matter and nutrients in fresh and mature farmyard manure. Agricultural Wastes. 1986, 16:225-236.
    86. Li kai Zhou et al., 1990, Biodegradation of petroleum hydrocarbons and phenol substances in soil and soil enzyme activities, Journal of applied ecology, 1 (2): 149-155.
    87 Mahimairaja S, Bolan NS, Hedley MJ, et al. Losses and transformation of nitrogen during composting of poultry manure with different amendments: an incubation experiment. Bioresour Techno. 1994, 47:265-273.
    88 Mahimairaja. S; NS. Bolan. MJ. Hedley, et al. Losses and transformation of nitrogen during composting of poultry manure with different amendments: an incubation experiment. Bioresour Technol. 1994, 47:265-273.
    89 Martins O, Dewes T. Loss of nitrogenous compounds during composting of animal wastes. Bioresour Techno. 1992; 42:103-111.
    90 McKinley, V. L., Vestal, J. R. Effects of different temperature regimes on microbial activity and biomass in composting municipal sewage sludge. Can. J. Microbial. 1985, 31:919-925.
    91 Miller F C. Composting as process based on the control of ecologically selective factors. In: Blaine-Metting F ed. Soil microbial ecology: Applications in agriculture and environmental management. New York: Marcel Dekker, 1992. 352-376.
    92 Miller F C. Matric waster potential as an ecological determinant in compost, a substrate dense system. Microbial Ecologu, 1989, 18(1): 59-71.
    93 Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Anal Chem, 1959, 31(3): 426-428.
    
    
    94 Morisaki, N. C. G.. Phae, et al. Nitrogen transformation during thermophilic composting [J]. J Ferment Bioengineer. 1989, 67:57-61.
    95 Nannipieri, P., Johnson, R. L. & Paul, E. A.. Criteria for measurement of microbial growth and activity in soil. Soil Biol. Biochem, 1978, 10:143-147.
    96 Nannipieri, P., Pedrazzini, F., Arcara, P. G. & Piovanelli, C. Changes in amino acids, cnzymc activities, and biomass during soil rnicrobial growth. Soil Sic, 1979, 127, 26-34.
    97 Nannipieri. P; I. Sastre et al. Determination of extracellular neutral phosphomonocsterasc activity in soil, Soil Biol. Biochem. 1996, 28(1): 107-112.
    98 Oswatd W J. Algal production-problems, achievements and potential. Algal biomass, G. Shelef. Elsevier/North Biomedical Press, Amsterdam. 1980
    99 Redy. K. R. Klaleel, R., Overcash. M. R. Nitrogen, phosphorus and carbon transformations in a coastal plain soil treated animal manures. Agric. Wastes. 1980, 2:225-238.
    100 Ruzena Gajdos. Bioconversion of organic waste by the year 2010: To recycle elements and save energy. Resources, Conservation and Recycling, 1998, 23:67-86
    101 Sommer S. G., Effect of composting on nutrient loss and nitrogen availability of cattle deep litter: European Journal of Agronomy. 2001, 14:123-133.
    102 Stevenson F. J. Cycles of soil carbon, nitrogen, phosphorus, sulfur, micronutrients. Wiley, New York. 1986.
    103 Suzelle Barrington, Denis Choini_ere, Maher Trigui, William Knight, E. ect of carbon source on compost nitrogen and carbon losses, Bioresour Techno, 2002, 83, 189-19.
    104 Tiquia S. M, N. F. Y. Tam. Fate of nitrogen during composting of chicken litter, Environmental Pollution. 2000, 110:535-541.
    105 Tiquia, S. M., Tam, N. F. Y., Hodgkiss, I. J. Microbial activities during composting of spent pig-manure sawdust litter at different moisture contents. Biores. Technol. 1996b, 55:201-206.
    106 Tiquiaa S. M., N. F. Y. Tam, Fate of nitrogen during composting of chicken litter, Environmental Pollution. 2000, 110:535-541.
    107 Wellinger. A. Psychrophillic methane generation from pig mature, Process Biochem. 1989, (1): 26——30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700