用户名: 密码: 验证码:
干旱区土质文物劣化机理及材料耐久性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以干旱地区土遗址及石窟寺壁画地仗为原型,研究干旱气候条件下土质文物的干湿、冻融、盐类风化及风蚀耐久性问题。本研究以水分迁移为主线,围绕温度场的变化和可溶盐的发生发展,模拟土质文物的劣化过程,并提出土质文物耐久性的评定方法。具体研究中,首先在水分迁移过程中施加温度场,通过控制温度场的变化,研究水分迁移过程中土质文物产生的水力学效应;其次,从量的角度出发,研究土质文物的持水特性及非饱和情况下的水分渗透、迁移速率问题;再次,从水分作为载体辅助作用的角度,分析盐分迁移的方向、路径、聚集位置和形式,及盐分通过一系列病害形式表达其发生发展的过程。在可控环境条件(湿度、温度)及已知材料特性条件下,研究土质文物中水盐的迁移聚集和表现形式,可以采取有效手段延缓或者阻止其对土质文物本体的破坏,增强土质文物的耐久性。
     我国西北地区,强烈干湿循环、冻融循环、风蚀等对性质脆弱的土遗址安全构成极大威胁。本文选择新疆交河故城原状生土试样(固结较好)和重塑土试样(欠固结)进行了干湿和冻融循环试验,之后进行了风蚀试验、强度试验和微观结构观测,来研究土遗址的干湿耐久性和冻融耐久性。干湿循环试验结果表明,在试样原始含水率比较低的情况下,试样首先经历了一个质量增大的过程,3个干湿循环后,试样的质量变化进入一个相对稳定的范围。随着增湿与脱湿过程中伴随的水分迁移,试样质量的总趋势是减小的。且随干湿循环次数增大,原状试样的强度减小,风蚀量增大,即耐久性持续变差。相反,随干湿循环次数增大,重塑样的强度反而有所增大,风蚀量减小,即耐久性有所提高。重塑样由于重塑过程中其微观结构受到破坏,强度弱化。干湿循环在某种意义上对重塑土起到“陈化作用”,具有愈合损伤微结构的能力。初期重塑土强度随干湿循环次数的增加逐渐增强,而后强度逐渐衰减抗风蚀能力减弱。
     冻融试验结果表明,在试样初始含水率较低的情况下,前5个冻融循环,试样经历了一个质量增大的过程;在随后的冻融过程中伴随着冻干和吸湿,原状试样质量的总趋势是减小的,重塑样质量的变化趋势维持水平。随冻融循环次数增大,原状试样的微结构出现损伤,强度减小,风蚀量增大,即耐久性持续变差;相反,冻融循环初期,重塑样的强度有所增大,风蚀量减小,耐久性得到了提高。随着冻融循环的增加,重塑样的强度开始下降,这与干湿循环后土体耐久性的变化趋势一致。冻融循环同干湿循环一样可以引起重塑土的“陈化”,愈合了土体的结构,但随着冻融进行,矿物颗粒的微结构损伤不断增大,试样的耐久性降低。
     使用Ku-pF非饱和导水率测定系统,测试了交河生土原状样与重塑样的土水特征曲线和非饱和导水率,从非饱和角度分析了土遗址的盐害机理。试验结果表明,遗址土的非饱和导水率随基质吸力的增大呈指数衰减,当生土的体积含水率小于渗透系数为6×10-8cm/s所对应的含水率时,水分及孔隙盐溶液向土体表面的相对运移速率明显减慢,易溶盐可能发生结晶作用。根据已得到的非饱和导水率,利用一维渗流的盐分运移方程可以描述遗址土中的盐分迁移趋势。不同浓度的Na2SO4溶液渗透试验发现,渗透过程中溶液浓度变化比渗透系数的变化要剧烈的多,间接说明渗透吸力相对于基质吸力对渗透系数的影响要弱。
     使用压力膜仪和柔性壁渗透仪,进行了壁画模拟地仗(细泥层FP和粗泥层CP)的持水特征曲线测量试验和渗透试验,分析了细泥层和粗泥层的土水特征曲线及有机质(麻和麦秸秆)对壁画地仗持水能力影响程度。试验结果表明,在试验尺度内,两种材料制成地仗的土水特征曲线趋势相近,这是因为颗粒组分是决定模拟地仗孔隙大小与分布状态的主要因素,细泥层和粗泥层均采用同种配比和粒径的土样。但由于加筋材料的不同,特征曲线的细观变化亦有所不同。数据显示,壁画模拟地仗的非饱和导水率随基质吸力的增加成指数衰减。壁画不同于土壤,在其受保护的情况下,本体不可能达到饱和,壁画在非饱和情况下的渗透性,才能揭示其真实的水分迁移规律。
     季节的改变和游客的呼吸作用都会对壁画中的水分迁移产生影响。通过对壁画模拟地仗在不同温湿度条件下的吸放湿试验(MAT),壁画与水分迁移相关的劣化机理得以说明。试验使用不同类型的饱和盐溶液控制试样所处的湿度环境,利用植物生长室提供恒温和变温环境;并通过定时称量试样的质量来判断试样和特定空气之间的吸放湿过程。试验结果表明,脱湿过程较吸湿过程快,即较长时间积攒在壁画中的水分可以较快的蒸发脱出壁画,这就暗示我们可以采取措施减小空气流通如抑制游人进出、或季节变化对壁画产生的不利影响,如缩短游客在洞窟中逗留的时间。在高湿度环境下,温度的变化可以引起模拟地仗吸湿和放湿,且壁画地仗中水分呈渐进性的积累;反之,在低湿度环境下,循环变化的温度在引起壁画地仗吸放湿的同时会导致水分总量渐进性减少。试验数据表明,在相对潮湿季节,应尽量避免洞窟对游人开放,从而避免壁画变潮而劣化。
     盐分的毛细迁移试验表明,试样的毛细上升带,自下而上依次为硫酸盐和卤化物。空气湿度影响着水分的蒸发,间接控制着溶液的毛细迁移和盐分的结晶聚集区域(即盐华带)。盐华带标志着毛细水上升的平均高度,该带内水分蒸发,盐分停止迁移并残留下来,在壁画表面发育成大量盐华及内部盐沉积。可溶盐的存在、渗透效应和盐分结晶强化了盐害的破坏。结晶盐因为晶体生长、水化和热膨胀产生的压力,会导致壁画的破坏。壁画地仗中存在大小不一的孔隙,与外界环境相接触的大、中孔隙中发生蒸发时,盐分开始结晶。相邻小孔隙中的水被抽汲出来补充已蒸发的水分,以此联动发生至平衡状态。当孔隙中稀溶液暴露于低的相对湿度条件时,溶液中水分蒸发,盐浓度提高。浓度越高,平衡蒸汽压越小,直至达到一个临界极限,即最低平衡相对湿度时,盐溶液达到饱和状态。环境RH低于此极限值时,盐晶体开始聚集并生长。
Hypaethral earthen architecture and Cave temples wall paintings in arid area were treated as a research prototype. And this paper studies the deterioration mechanism and materials durability of earthen monument during cyclic wetting-drying, cyclic freeze-thaw, Salt crystallization and wind erosion. Firstly, moisture migration tests were imposed by temperature field to investigate the effect of moisture migration process on earthen architecture. Secondly, from the point of migration quantity, the infiltration rate has been presented. Once more, as the perspective of auxiliary function, moisture migration process decides the direction, path, location and forms of salt enrichment; simultaneously, the evolution of salt is expressed by a series of disasters. During controlled environments (humidity, temperature) and measured material properties condition, study of salt disasters in earthen monument can provide an effective means to prevent and retard the destruction on monument ontology. As a result, durability of earthen monument is lengthened.
     Earthen architecture is mostly found in the arid area, which suffers from strong freeze-thaw cycles, wetting-drying cycles and wind erosion process. This study reported the test results of wetting-drying cycles, freeze-thaw cycles and wind erosion on the durability of earthen architecture.
     Cyclic wetting-drying and freeze-thaw were conducted on the undisturbed and remolded specimens from Jiaohe cultural heritage, Xinjiang, China to understand the durability of earthen architecture to wind erosion and strength attenuation. Test results of wetting-drying cycles showed, under the circumstance of the low original water content, the specimens weight was increased during the beginning three wetting-drying cycles, and then proceeded to a relatively steady state. With the change of moisture content during the condensation-evaporation process, specimen' weight expressed a decreasing tendency. With the increase in wetting-drying cycles, undisturbed specimens showed a decrease in compressive strength and an increase in wind erosion quantity, reflecting a weakening effect of durability. Comparatively, remolded specimens showed an increase in strength and a decrease in wind erosion quantity, or an inhencing effect of durability at the early wetting-drying cycles; but during the later cycles, a decrease in strength and an increase in wind erosion quantity, or weakening durability were found. It was considered the healing of destroyed micro-structure during remolding and the aging of chemical cohesive agents were responsible for the strengthening of remolded specimen at the earlier wetting-drying cycles.
     Test results of freeze-thaw cycles showed, under low original water content, the undisturbed and remolded specimens weight were increased during the beginning five freeze-thaw cycles. With the change of moisture content during the freeze and thaw process, undisturbed specimen' weight expressed a decreasing tendency, and remolded specimens'weight maintained a level of weight. With the increasing freeze-thaw cycles, undisturbed specimens showed a decrease in compressive strength and an increase in wind erosion quantity due to microstructure damage, that is, a weakening in durability. However, the remolded specimens exhibited an enhancement of microstructure at the beginning cycles, characterized by an increase in strength and a decrease in wind erosion, that is, an improvement in durability. It was considered the healing effect of destroyed micro-structure and the aging of chemical cohesive agents were responsible for the strengthening of remolded specimen at the earlier freeze-thaw cycles. At the further freeze-thaw cycles, the remolded specimens turned to exhibit a decreasing tendency on durability following the increasing damage of microstructure.
     Soil water characteristic curves and unsaturated hydraulic conductivity were determined using a Ku-pF unsaturated hydraulic conductivity measurement system on the undisturbed and remolded specimens from ancient city of Jiaohe, a cultural heritage site at Xinjiang, China to understand the salt disease in earthen architecture from the viewpoint of unsaturated soil mechanics. Test results showed that the unsaturated hydraulic conductivity had an exponential decrease with the increasing matrix suction. It was found that when the volume water content was less than the water content corresponding to the permeability coefficient of 6×<10-8cm/s, water migration was obviously slow down and the salts in soil solution might be crystallized. The one-dimension salt migration equation could be used to describe the salt migration in earthen architecture using the measured unsaturated hydraulic conductivity from this research. Permeability test with various Na2SO4 solutions indicated that osmotic suction had a less importance on the permeability coefficient than the matrix suction.
     Taking the simulated base (Coarse plaster and Fine plaster) as the research object, the study utilized the pressure plate extractors and flexible-wall permeameter to research the soil water characteristic curve (SWCC) and permeability. Data were conducted to analysis the variations of water retention capability and unsaturated permeability. Experimental results showed that the general trend of both materials' soil water characteristic curve was similar during the test scale. It was found that the grain fraction of simulated base was the key factor of void size and distribution. Besides, coarse plaster and fine plaster used the same grain fraction to mold specimens, so both materials had similar water retention characteristics. However, owing to the different reinforcement materials, the macroscopic changes of characteristic curve were different. Unsaturated Permeability was exponentially attenuation induced by variations of the suction. Due to the rigorous protection, mural is in an unsaturated condition, so that the permeability given accurately during unsaturated condition could reflect the characteristic of water migration.
     Moisture adsorption-desorption tests (MAT) were conducted on simulated mural plaster specimen under different air temperatures (AT) and relative humidity (RH) to investigate the possible effect of seasonal alteration and visitors'breath on the deterioration of Mogao Grottoes, Dunhuang, China. Saturated salt solutions were used to maintain a constant RH, and plant growth cabinets were used to maintain a constant or varying temperature in the simulating test. The weight of specimens was periodically measured to determine the adsorbed or desorbed moisture by specimens from or to the controlled air. Test data illustrate that the desorption process is far speedy than that of adsorption one, indicating that it is possible to inhibit the disadvantage effect from visitors, such as shorting the staying time in caves. In case of high humidity, an accumulated moisture adsorption was found to be corresponding to the varying temperature. On the other hand, in case of low humidity, an accumulated moisture desorption was corresponded. Test data imply that opening caves more often to visitors in humid seasons should be avoided so as to prevent continuous wetting of wall paintings.
     Salt capillary migration experiment shows that, with the capillary rise, samples surface left for sulfate and halide successively. The RH affects water evaporation, and indirectly control the aqueous capillary migration and salt crystallization area. When a solution in equilibrium with its environment has reached saturation, every drop of RH causes evaporation, supersaturation and precipitation. Some solutions reach this critical condition at ordinary RH, and above the critical equilibrium levels of RH only the precipitated salts can be found. But the equilibrium RH changes with temperature. Daily microclimate cycles due to e.g. solar heating or room heating may induce crystallisation cycles in wall paintings. For this reason, in the cold climate, weekly heating-cooling cycles in churches lead to important changes in the wall temperature, followed by severe damage due to crystallisation cycles.
引文
[1]龚壁卫,周小文,周武华.干-湿循环过程中吸力与强度关系研究[J].岩土工程学报.2006,28(2):207-209.
    [2]FREDLUND D G., RAHARDJO H. Soil Mechanics For Unsaturated Soils[M]. New York: John Wiley & Sons.1993.
    [3]Oscar Segue, Rainer Horn. Structure properties and pore dynamics in aggregate beds due to wetting-drying cycles[J]. Soil Science.2006,169:221-232.
    [4]U. E Shamy, T. Groger. Micromechanical aspects of the shear strength of wet granular soils[C]. International Joural for Numerical and Analytical Methods in Geomechanics.2008,32: 1763-1790.
    [5]Neil J. Porter and A. S. Trenhaile. Short-term rock surface expansion and contraction in the intertidal zone[J]. Earth Surface Processes and Landforms.2007,32:1379-1397.
    [6]卢再华,陈正汉,蒲毅彬.膨胀土干湿循环胀缩裂隙演化的CT试验研究[J].岩土力学.2002,23(4):417-422.
    [7]杨和平,张锐,郑健龙.有荷条件下膨胀土的干湿循环胀缩变形及强度变化规律[J].岩土工程学报.2006,28(11):1936-1941.
    [8]慕现杰,张小平.干湿循环条件下膨胀土力学性能试验研究[J].岩土力学.2008,28(增):580-582.
    [9]周永祥,阎培渝.固化盐渍土经干湿循环后力学性能变化的机理[J].建筑材料学报.2006,9(6):735-741.
    [10]于连顺.干湿交替环境下膨胀土的累积损伤研究[D].南宁:广西大学.2008.
    [11]赵明龙,王建华,梁爱华.干湿循环对水泥改良土疲劳强度影响的试验研究[J].中国铁道科学.2005,26(2):25-28.
    [12]Tahir Gonen, Salih Yazicioglu. The influence of mineral admixtures on the short and long-term performance of concrete[J].Building and Environment.2007,42:3080-3085.
    [13]顾欢达,顾熙.环境因素影响下石灰稳定土稳定性的试验研究[J].苏州科技学院学报(工程技术版).2004,17(1):46-50.
    [14]Dario Camuffo. Physical weathering of stones[J].The Science of the Total Environment, 1995,167:1-14.
    [15]曹玲,罗先启.三峡库区千将坪滑坡滑带土干-湿循环条件下强度特性试验研究[J].岩土力学.2007,28(增):93-97.
    [16]龚壁卫,吴宏伟,王斌.应力状态对膨胀土SWCC的影响研究[J].岩土力学.2004,25(12):1915-1918.
    [17]M. Qadir, S. Schubert. Degradation Processes and Nutrient Constraints in Sodic Soils[J]. Land Degradation & Development.2002,13:275-294.
    [18]Yucel Guneya, Dursun Sarib, Murat Cetin, et al. Impact of cyclic wetting-drying on swelling behavior of lime-stabilized soil[J].Building and Environment.2007,42:681-688.
    [19]Chaosheng Tang, Bin Shi, Chun Liu. Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils[J]. Engineering Geology.2008,101:204-217.
    [20]Abdelmalek Bouazzaa, Stephan Jefferisb, Thaveesak Vangpaisal. Investigation of the effects and degree of calcium exchange on the Atterberg limits and swelling of geosynthetic clay liners when subjected to wet-dry cycles[J]. Geotextiles and Geomembranes.2007,25: 170-185.
    [21]N. Saiyouril, P. Y. Hicherl, D. Tessier. Microstructural approach and transfer water modelling in highly compacted unsaturated swelling clays [J]. Mechanics of Cohesive-frictional Materials.2000,5:41-60.
    [22]杨和平,肖夺.干湿循环效应对膨胀土抗剪强度的影响[J].长沙理工大学学报(自然科学版).2005.2(2):1-5.
    [23]I.A.Sadisun, H.Shimada, M.Ichinose. Study on the physical disintegration characteristics of Subang claystone subjected to a modified slaking index test[J]. Geotechnical and Geological Engineering.2005,23:199-218.
    [24]I.A. Sadisun, H.Shimada, K.Matsui. Determination of strength degradation of Subang Formation claystone due to weathering[C]. In:Proceedings of 3rd Asian Symposium on Engineering Geology and the Environment, Indonesia.2001,37-46.
    [25]L.F. Pires, M. Cooper, F.A.M. Cassaro, et, al. Micromorphological analysis to characterize structure modifications of soil samples submitted to wetting and drying cycles[J]. Catena. 2008,72:297-304.
    [26]Luiz F. Pires, Fabio A.M. Cassaro, Klaus Reichardt, et al. Soil porous system changes quantified by analyzing soil water retention curve modifications[J]. Soil & Tillage Research. 2008,100:72-77.
    [27]H.Kevin, H.Alida. Weathering by wetting-drying:Some experimental results[J]. Earth Surface Processes and Landforms.1996,21:365-376.
    [28]P. D. Sumner, M. J. Loubser. Experimental sandstone weathering using different wetting and drying moisture amplitudes[J]. Earth Surface Processes and Landforms.2008,33:985-990.
    [29]Luiz F. Pires, Osny O.S. Bacchi, Klaus Reichardt. Assessment of soil structure repair due to wetting and drying cycles through 2D tomographic image analysis[J]. Soil & Tillage Research. 2007,94:537-545;
    [30]宋章,程谦恭,张炜.原状黄土显微结构特征与湿陷性状分析[J].工程地质学报.2007,15(05):646-653.
    [31]S.Majdalani, E. Michel, L. Dipietro, et al. Effects of wetting and drying cycles on in situ soil particle mobilization[J]. European Journal of Soil Science.2008,59:147-155.
    [32]解耀华.交河古城保护与研究[M].新疆:新疆人民出版社.1999.
    [33]李最雄.丝绸之路古遗址保护[M].北京:科学出版社.2003.
    [34]张虎元,刘平,王锦芳.土建筑遗址表面结皮形成与剥离机理[J].岩土力学.2009,30(7):1883-1891.
    [35]严耿升,张虎元,王旭东等.古代生土建筑风蚀的主要影响因素分析[J].敦煌研究.2007,5:78-82.
    [36]黄克忠.岩土文物建筑的保护[M].北京:中国建筑工业出版社.1998.
    [37]Agnew, Neville, Michael Taylor, Alejandro Alva Balderrama, et al.6th International Conference on the Conservation of Earthen Architecture[c] Adobe 90 preprints:Las Cruces, New Mexico, U.S.A., October 14-19,1990. Los Angeles:The Getty Conservation Institute, 1990.
    [38]曲永新.马王堆一号汉墓保存的地质条件[J].地质科学.1976,1:88-95.
    [39]Jacques Brunet, Jean Vouve, Philippe Malaurent. Conservation of Subterranean Historic and Prehistoric Monuments-The Importance of the Environment and Microclimate[C].//Agnew, Neville, ed., Conservation of Ancient Sites on the Silk Road:Proceedings of an International Conference on the Conservation of Grotto Sites.Los Angeles:The Getty Conservation Institute. 1997:259-268.
    [40]Miura, Sadatoshi, Tadateru Nishiura, etal. Climate in the Mogao grottoes[J]. Hozon Kagaku. 1990,29:1-7. (in Japanese)
    [41]Li Zuixiong. Deterioration and Treatment of Wall Paintings in Grottoes along the Silk Road in China and Related Conservation Efforts, First Progress Report in Conservation of Ancient Sites on the Silk Road:Proceedings of the Second International Conference on the Conservation of Grotto Sites, Mogao Grottoes, Dunhuang, People's Republic of China, June 28-July 3,2004. Los Angeles:The Getty Conservation Institute.2010:46-55.
    [42]Sadatoshi Miura, Tadateru Nishiura, Zhang Yong jun, et al. Microclimate of Cave Temples 53 and 194, Mogao Grottoes[C]. Agnew, Neville, ed., Conservation of Ancient Sites on the Silk Road:Proceedings of an International Conference on the Conservation of Grotto Sites. Los Angeles:The Getty Conservation Institute.1997:294-300.
    [43]Torraca, G. Environmental protection of mural paintings in caves. In International Symposium on the Conservation and Restoration of Cultural Properties:Conservation and Restoration of Mural Paintings, Tokyo,17-21 November,1983. Tokyo:Organizing Committee of the International Symposium on the Conservation and Restoration of Cultural Property.1983.1-18.
    [44]Sadatoshi Miura, Tadateru Nishiura, Zhang Yong jun, et al. Microclimate of Cave Temples 53 and 194, Mogao Grottoes. First Progress Report in Conservation of Ancient Sites on the Silk Road Proceedings of an International Conference on the Conservation of Grotto Sites. Los Angeles:The Getty Conservation Institute.1997.
    [45]张国彬,薛平,侯文芳等.游客流量对莫高窟洞窟内小环境的影响研究[J].敦煌研究.2005,4:83-86.
    [46]Kirsty Altenburg, Sharon Sullivan, Li Ping, et al. The Challenge of Managing Visitors at the Mogao Grottoes. First Progress Report in Conservation of Ancient Sites on the Silk Road: Proceedings of the Second International Conference on the Conservation of Grotto Sites, Mogao Grottoes, Dunhuang, People's Republic of China, June 28-July 3,2004. Los Angeles: The Getty Conservation Institute.2010:152-159.
    [47]Shin Maekawa, Zhang Yongjun, Wang Baoyi, et al. Environmental Monitoring at the Mogao Grottoes. Agnew, Neville, ed., Conservation of Ancient Sites on the Silk Road Proceedings of an International Conference on the Conservation of Grotto Sites. Los Angeles:The Getty Conservation Institute.1997.
    [48]Martha Demas, Shin Maekawa, Jonathan Bell, and Neville Agnew. Sustainable Visitation at the Mogao Grottoes:A Methodology for Visitor Carrying Capacity. First Progress Report in Conservation of Ancient Sites on the Silk Road:Proceedings of the Second International Conference on the Conservation of Grotto Sites, Mogao Grottoes, Dunhuang, People's Republic of China, June 28-July 3,2004. Los Angeles:The Getty Conservation Institute. 2010:160-169.
    [49]K. M., Wilson-Yang, George Burns. The Stability of the Tomb of Nefertari 1904-1987[J]. Studies in Conservation.1989,34:153-170.
    [50]张明泉,张虎元,曾正中等.莫高窟壁画酥碱病害产生机理[J].兰州大学学报(自然科学版).1995,31(1):96-101.
    [51]Zhang Huyuan, Yan Ling, Wang Jinfang. Salt Hazard of Earthen Monuments Induced by Capillary Rise[C]. Proceedings of International Symposium on Conservation of Ancient Sites & ISRM-Sponsored Regional Symposium. Dunhuang:[Dunhuang Academy].2008.
    [52]Carlos Rodriguez-Navarro.Eric Doehne. Salt weathering:influence of evaporation rate, supersaturation and crystallization pattern[J],Earth Surf. Process.Landforms.1999,24:191-209.
    [53]A E Charola, Herodotu. Salts in the Deterioration of Porous Materials:an Overview[J]. SAIC. 2000,39(03):327-343.
    [54]徐光苗.寒区岩体低温、冻融损伤力学特性及多场藕合研究[D].武汉:中国科学院武汉岩土力学研究所.2006.
    [55]洪宝宁,刘鑫.土体微细结构理论与试验[M].北京:科学出版社.2010.
    [56]陈铁林,沈珠江.岩土破损力学的系统论基础[J].岩土力学.2004,25(增刊):21-26.
    [57]沈珠江.岩土破损力学:理想脆弹塑性模型[J].岩土工程学报.2003,25(3):254-257.
    [58]赖远明,吴紫汪,朱元林等.大坂山隧道围岩冻融损伤的分析[J].冰川冻土.2000,22(3):206-210.
    [59]Miao Tiande, Zhang Changqing, Wei Xuehua. Creep of frozen soil by damage mechanics[J]. Science in China(Series B).1995,38(5):996-1002.
    [60]张长庆,魏雪霞,苗天德.冻土蠕变过程的微结构损伤行为与变化特征[J].冰川冻土1995,17(增刊):60-65.
    [61]张长庆,苗天德,王家澄等.冻结黄土蠕变损伤的电镜分析[J].冰川冻土.1995,17(增):54-59.
    [62]詹炳根,孙伟,沙建芳等.冻融循环对混凝土碱硅酸反应二次损伤的影响[J].东南大学学报(自然科学版).2005,35(4):598-601.
    [63]何平,程国栋,朱元林.冻土粘弹塑损伤耦合本构理论[J].中国科学(D辑).1999,29(增1):34-39.
    [64]Lemaitre J损伤力学教程[M].倪金刚,陶春虎译.北京:科学出版社.1996.
    [65]Edwin J Chamberlain, Anthony J Gow. Effect of freezing and thawing on the permeability and structure of soils[J]. Engineering Geology.1979,13(4):73-92;
    [66]Konrad J. M. Physical processes during freeze-thaw cycles in clayey silts[J]. Cold Regions Science and Technology.1989,16(3):291-303.
    [67]Viklander P. Laboratory study of stone heave in till exposed to freezing and thawing [J]. Cold Regions Science and Technology.1998,27:141-152.
    [68]齐吉琳,张建明,朱元林.冻融作用对土结构性影响的土力学意义[J].岩石力学与工程学报.2003,22(增2):2690-2694.
    [69]崔托维奇H A.冻土力学[M].张长庆,朱元林译.北京:科学出版社.1985.
    [70]齐吉林,马巍.冻融作用对超固结土强度的影响[J].岩土工程学报.2006,28(12):2082-2086.
    [71]Jilin Qi, Pieter A. Vermeer, Guodong Cheng. Review of the Influence of Freeze-thaw Cycles on Soil Geotechnical Properties[J]. Permafrost and Periglac. Process.2006,17:245-252.
    [72]Taskin Oztas, Ferhan Fayetorbay. Effect of freezing and thawing processes on soil aggregate stability[J]. Catena.2003,52:1-8.
    [73]Sigrun Hjalmarsdottir Kv?rn?, Lillian ?ygarden. The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway [J]. Catena.2006,67:175-182.
    [74]Nicholas A. Beier, David C. Sego. Cyclic freeze-thaw to enhance the stability of coal tailings[J]. Cold Regions Science and Technology.2009,55:278-285.
    [75]杨成松,何平,程国栋等.冻融作用对土体干容重和含水率影响的试验研究[J].岩石力学与工程学报.22(增2):2695-2699.
    [76]梁波,张贵生,刘德仁.冻融循环条件下土的融沉性质试验研究[J].岩土工程学报.2006,28(10):12]3-1217.
    [77]Alkire, B D, Morrison, J M. Change in soil structure due to freeze-thaw and repeated loding[J]. Transportation Research Record.1983,918:15-22.
    [78]王晓春,张倬元.寒区工程与冻融力学[J].地学前缘.2000,7(增):99-104;
    [79]M.G. Ferrick, L.W. Gatto. Quantifying the Effect of a Freeze-Thaw Cycle on Soil Erosion Laboratory Experiments[R]. Cold Regions Research and Engineering Laboratory, U.S. Army Engineer Research and Development Center.2004.
    [80]齐吉琳,程国栋, P. A. Vermeer.冻融作用对土工程性质影响的研究现状[J].地球科学进展.2005,20(8):887-893.
    [81]Jilin Qi, Wei Ma, Chunxia Song. Influence of freeze-thaw on engineering properties of a silty soil[J]. Cold Regions Science and Technology.2008,53:397-404.
    [82]Lawrence W. Gatto. Soil freeze-thaw induced changes to a simulated rill:potential impacts on soil erosion[J]. Geomorphology.2000,32:147-160.
    [83]Dayan Wang, Wei Ma, Yonghong Niu, et al. Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay[J].Cold Regions Science and Technology.2007, 48:34-43.
    [84]冯勇,何建新,刘亮等.冻融循环作用下细粒土抗剪强度特性试验研究[J].冰川冻土.2008,30(6):1013-1017.
    [85]Hugh A.L. HenrySoil freeze-thaw cycle experiments:Trends, methodological weaknesses and suggested improvements[J].Soil Biology & Biochemistry.2007,39:977-986.
    [86]Chamberlain E J. Physical changes in clays due to frostaction and their effect on engineering structures[C]//Proceedings of International Symposium on Frost in Geotechnical Engineering, Finland:Technical Research of Finland(VTT).1989:863-893.
    [87]Nicholas A. Beier, David C. Sego. Cyclic freeze-thaw to enhance the stability of coal tailings[J]. Cold Regions Science and Technology.2009,55:278-285.
    [88]OTHMAN M A, BENSON C H. Effect of freeze-thaw on the hydraulic conductivity and morphology of compacted clay[J].Canadian Geotechnical Journal.1983,30(2):236-246.
    [89]Chamberlain E J, Gow A J. Effect of freezing and thawing on the permeability and structure of soils[J], Engineering Geology.1981,13(1):73-92.
    [90]姚晓亮,齐吉琳,宋春霞.冻融作用对青藏粘土工程性质的影响[J].冰川冻土.2008,30(1):165-169.
    [91]宋春霞,齐吉琳,刘奉银.冻融作用对兰州黄土力学性质的影响[J].岩土力学.2008,29(4):1077-1086.
    [92]陈炜韬,王鹰,王明年等.冻融循环对盐渍土粘聚力影响的试验研究[J].岩土力学.2007,28(11):2343-2347.
    [93]包卫星,杨晓华.冻融条件下盐渍土抗剪强度特性试验研究[J].公路.2008,1:5-10.
    [94]Maria Hohmann-Porebska. Microfabric effects in frozen clays in relation to geotechnical parameters[J]. Applied Clay Science.2002,21:77-87.
    [95]Geonha Kim. Hydraulic conductivity change of bio-barrier formed in the subsurface by the adverse conditions including freeze-thaw cycles[J]. Cold Regions Science and Technology. 2004,38:153-164.
    [96]杨梅学,姚檀栋,Hirose Nozomu, et al青藏高原表层土壤的日冻融循环[J].科学通报.2006,51(16):1974-1976.
    [97]王铁行,胡长顺.多年冻土地区路基温度场和水分迁移场藕合问题研究[J].土木工程学报.2003,36(12):93-97.
    [98]董瑞琨,许兆义.含水率变化对冻融指标影响试验研究[J].中国水土保持.2003,8:18-25.
    [99]Froese J C,Cruse R M,Ghaffarzadeh M. Erosion mechanics of soils with an impermeable subsurface layer[J].Soil Science Society of America Journal.1999,63(6):1836-1841.
    [100]McCool D K, Walter M T, KingL G. Runoff index values for frozen soil areas of the pacific northwest [J]Journal of Soil and Water Conservation (America).1995,50(5):466-469.
    [101]Eigenbxod K D. Effects of cyclic freezing and thawing on volume changes and permeabilities of soft fine-grained soils[J]. Canadian Geotechnical Journal.1996,33(4): 29-537.
    [102]Viklander Peter. Permeability and volume changes in till due to cyclic freeze/thaw[J]. Canadian Geotechnical Journal.1998,5(3):471-477.
    [103]李述训,程国栋,刘继民等.兰州黄土在冻融过程中水热输运实验研究[J].冰川冻土.1996,18(4):319-324.
    [104]Yang Cheng song, He Ping, Cheng Guodong, et al. Freeze thaw experiment influence on moisture content distrution of soil[J]. Journal of Glaciology and Geocryology.2004,26: 50-55.
    [105]Sally Shoop, Rosa Affleck, Robert Haehnel, et al. Mechanical behavior modeling of thaw-weakened soil[J]. Cold Regions Science and Technology.2008,52:191-206.
    [106]岳汉森.土壤在冻融过程中水-热-盐藕合运移数学模型之初探[J].冰川冻土.1994,16(4):308-313.
    [107]王璐璐,陈晓飞,马巍.不同土壤冻融特征曲线的试验研究[J].冰川冻土.2007,29(6):1004-1011.
    [108]Kevin Hall, Colin Thorn. The historical legacy of spatial scales in freeze-thaw weathering: Misrepresentation and resulting misdirection[J]. Geomorphology.2010,xxx:xxx-xxx.
    [109]Qu Jianjun, Cheng Guodong, Zhang Kecun,etc. An experimental study of the mechanisms of freeze/thaw and wind erosion of ancient adobe buildings in northwest China[J].Bulletin of Engineering Geology and the Environment.2007,66:153-159.
    [110]涂晓,陈平.高昌古城土遗址加固工程冻融试验研究[J].四川建筑.2008,28(6)74-75.
    [111]屈建军,王涛,董治宝,张伟民,刘玉璋.沙尘暴风洞模拟实验的综述[J].干旱资源与环境.2004,18(增):109-115.
    [112]Chepil W S. Properties of soil which influence wind erosion (I-V)[M].Soil Science, 1950-1951:69-70
    [113]李晓丽,申向东.裸露耕地土壤风蚀跃移颗粒分布特征的试验研究[J].农业工程学报. 2006,22(5):74-77.
    [114]马月存,陈源泉,隋鹏等.土壤风蚀影响因子与防治技术[J].生态学杂志,2006,25(11):1390-1394
    [115]董治宝,陈广庭.内蒙古后山地区土壤风蚀问题初论[J].土壤侵蚀与水土保持学报.1997,3(2):84-90.
    [116]张春来,董光荣,董治宝等.用风洞试验方法计算土壤风蚀量的时距问题[J].中国沙漠.1996,16(2):200-204.
    [117]董治宝,陈渭南,李振山等.风沙土开垦中的风蚀研究[J].土壤学报.1997,34(1):74-80.
    [118]董治宝.建立小流域风蚀量统计模型初探[J].水土保持通报.1998,18(5):55-62.
    [119]荣姣凤,张海涛,毛宁.土壤风蚀量随风速的变化规律研究[J].干旱地区农业研究.2004,22(2):149-153.
    [120]何文清,赵彩霞,高旺盛等.不同土地利用方式下土壤风蚀主要影响因子研究—以内蒙古武川县为例[J].应用生态学报.2005,16(11):2092-2096.
    [121]移小勇,赵哈林,张铜会等.挟沙风对土壤风蚀的影响研究[J].水土保持学报.2005,19(3):58-61.
    [122]Chun-Lai Zhang, Xue-Yong Zou, Ping Yang, et al. Wind tunnel test and 137Cs tracing study on winderosion of several soils in Tibet[J].Soil & Tillage Research.2007,94:269-282.
    [123]刘东,任树梅,杨培岭.PAM对土壤抗风蚀能力的影响[J].中国水土保持SWCC.2006,12:33-36.
    [124]H.A. Viles, A.S. Goudie. Rapid salt weathering in the coastal Namib desert:Implications for landscape development[J]. Geomorphology.2007,85:49-62.
    [125]Emil Jagoutz. Salt-induced rock fragmentation on Mars:The role of salt in the weathering of Martian rocks[J]. Advances in Space Research.2006,38:696-700.
    [126]Janet S. Wright. An overview of the role of weathering in the production of quartz silt[J]. Sedimentary Geology.2007,202:337-351.
    [127]徐叔鹰.论盐风化过程及其地貌意义[J].铁道师范学报(自然科学版).1992,8(3):24-30.
    [128]徐叔鹰.干旱区盐风化过程的初步研究[J].干旱区地理.1993,16(2):14-19.
    [129]宋启卓.盐渍土盐胀特性研究及工程病害处理方法分析[D].上海:上海交通大学.2006.
    [130]M.A.M. Aref, E. El-Khoriby, M.A. Hamdan. The role of salt weathering in the origin of the Qattara Depression, Western Desert, Egypt[J]. Geomorphology.2002,45:181-195.
    [131]孙斌,郭正堂,尹秋珍等.西宁第四纪黄土—古土壤序列中的可溶盐、来源及环境意义[J].第四纪研究.2006,26(4):649-655.
    [132]Zanqun Liu, Geert De Schutter, Dehua Deng. Micro-analysis of the role of interfacial transition zone in "salt weathering" on concrete[J]. Construction and Building Materials. 2010,24:2052-2059.
    [133]Zanqun Liu, Dehua Deng, Geert De Schutter, et al. Micro-analysis of "salt weathering" on cement paste[J]. Cement & Concrete Composites.2011,33:179-191.
    [134]L. Pela, H. Huininka, K. Kopinga, et al. Efflorescence pathway diagram:understanding salt weathering [J]. Construction and Building Materials.2004,18:309-313.
    [135]D. Benaventea, M.A. Garcia del Cura, A. Bernabeu, et al. Quantification of salt weathering in porous stones using an experimental continuous partial immersion method[J]. Engineering Geology.2001,59:313-325.
    [136]V. Lbpez-Acevedo, C. Viedma, V. Gonzalezb, et al. Salt crystallization in porous construction materials, Ⅱ. Mass transport and crystallization processes[J]. Journal of Crystal Growth.1997,182:103-110.
    [137]翁通.盐渍土毛细水作用及击实特性研究[D].西安:长安大学,2006.
    [138]M. Angeli, R. Hebert, B. Menendez, et al. Influence of temperature and salt concentration on the salt weathering of a sedimentary stone with sodium sulphate[J]. Engineering Geology. 2010,115:193-199.
    [139]陈肖柏,邱国庆,王雅卿等.重盐土在温度变化时的物理、化学性质和力学性质[J].中国科学(A辑).1988(2):245-25.
    [140]陈肖槽,邱国庆,王雅卿等.降温时之盐分重分布及盐胀试验研究[J].冰川冻土1989.11(3):232-238.
    [141]李国玉,喻文兵,马巍等.甘肃省公路沿线典型地段含盐量对冻胀盐胀特性影响的试验研究[J].岩土力学.2009,30(8):2276-2280.
    [142]WU Q. ZHU Y Experimental studies on salt expansion for coarse grain soil under constant temperature[J]. Cold Region Science and Technology.2002,34(2):59-65.
    [143]徐学祖,Lebedenko P, Chuvilin E M, et al冻土与盐溶液系统中热质迁移及变形过程试验研究[J].冰川冻土.1992,14(4):289-295.
    [144]B.J. Smitha, P.A. Warkea, J.P. McGreevy,et al. Salt-weathering simulations under hot desert conditions:agents of enlightenment or perpetuators of preconceptions[J]. Geomorphology. 2005,67:211-227.
    [145]C. Cardell, F. Delalieux, K. Roumpopoulos, et al. Salt -induced decay in calcareous stone monuments and buildings in a marine environment in SW France[J].Construction and Building Materials.2003,17:165-179.
    [146]D. Benavente, J. Martinez-Martinez, N. Cueto.et al. Salt weathering in dual-porosity building dolostones[J]. Engineering Geology.2007,94:215-226.
    [147]M. Ulusoy. Different igneous masonry blocks and salt crystal weathering rates in the architecture of historical city of Konya[J]. Building and Environment.2007,42:3014-3024.
    [148]Qinglin Guo, Xudong Wang, Huyuan Zhang et al. Damage and conservation of the high cliff on the Northern area of Dunhuang Mogao Grottoes, China[J]. Landslides.2009,6:89-100.
    [149]王旭东,张虎元,郭青林等.敦煌莫高窟崖体风化特征及保护对策[J].岩石力学与工程学报.2009,28(5):1055-1063.
    [150]Qu Jianjun, Dong Guangrong, Wen Zixiang. Sand drift encroachment in the Dunhuang Mogao Grottoes District and its control[J]. Science in China (Series D).1997,40(2): 197-206.
    [151]Wang Wanfu, Dong Zhibao, Wang Tao, et al. The equilibrium gravel coverage of the deflated gobi above the Mogao Grottoes of Dunhuang, China[J].Environ Geol.2006,50: 1077-1083.
    [152]李最雄,西浦忠辉.敦煌壁画加固材料的选择试验[J].敦煌研究.1988(3):60-64.
    [153]段修业,孙洪才.莫高窟第108窟酥碱起甲壁画的修复报告[J].敦煌研究.1990(3):92-96.
    [154]李云鹤,李实,李铁朝等.聚醋酸乙烯和聚乙烯醇在修复壁画中的应用研究[J].敦煌研究.1990(3):9-22.
    [155]张明泉,曾正中,张虎元等.敦煌壁画盐害及其地质背景[C].敦煌研究文集-保护篇.1993: 356-367.
    [156]郭宏,李最雄,裘元勋等.敦煌莫高窟壁画酥碱病害机理研究之二[J].敦煌研究.1998,4:159-184.
    [157]郭宏,李最雄,裘元勋等.敦煌莫高窟壁画酥碱病害机理研究之三[J].敦煌研究.1999,3:153-175.
    [158]陈港泉,于宗仁.莫高窟第351窟壁画疱疹和壁画地仗可溶盐分析[J].敦煌研究.2008,6:39-49.
    [159]苏伯民,陈港泉.不同含盐量壁画地仗泥层的吸湿和脱湿速度的比较[J].敦煌研究.2005,5:62-65.
    [160]王锦芳,严耿升,杨善龙.莫高窟崖体可溶盐分布特征研究[J].水文地质工程地质.2010,37(6):116-120.
    [161]王亮,詹予忠,沈国鹏.粘土砖的腐蚀劣化机理[J].四川建筑科学研究.2008,34(1):142-145.
    [162]张虎元,刘平,王锦芳等.土建筑遗址表面结皮形成与剥离机制研究[J].岩土力学.2009,30(7):1883-1891.
    [163]张虎元,闫玲,王锦芳.土质文物毛细输盐机制研究[C].//2008古遗址保护国际学术讨论会暨国际岩石力学学会区域研讨会论文集.甘肃:敦煌研究院.2008:118-124.
    [164]Lewin S Z.The mechanism of masonry decay through crystallization [J]. Conservation of Historic Stones Buildings and Monuments.1982,(1):120-144.
    [165]A. Arnold Determination Of mineral salts from monuments[J].Studies in conservation. 1984,29:129-138.
    [166]马在平,黄继忠,张洪.云冈石窟砂岩中碳酸盐胶结物化学风化及相关文物病害研究[J].中国岩溶.2005,24(1):71-82.
    [167]黄克忠,马清林.中国文物保护与修复技术[M].北京:北京科学出版社.2009
    [168]Nobuaki Kuchitsu, Takeshi Ishizaki, Tadateru Nishiura. Salt weathering of the brick monuments in Ayutthaya, Thailand[J].Engineering Geology.1999,55:91-99.
    [169]Takahiro Hosono, Etsuo Uchida, Chiyuki Suda, et al. Salt weathering of sandstone at the Angkor monuments, Cambodia:identification of the origins of salts using sulfur and strontium isotopes[J]. Journal of Archaeological Science.2006,33:1541-1551.
    [170]Fredlund D. G., Rahardjo H. Soil Mechanics for Unsaturated Soils[M]. New York:John Wiley and Sons Inc.1993.
    [171]Kok-Kwang Phoon, M.ASCE, Anastasia Santoso, etal. Probabilistic Analysis of Soil Water Characteristic Curves from Sandy Clay Loam[J]. GeoCongress,ASCE.2008:917-925.
    [172]Eduardo DELL'Avanzi. Comparison Between Predicted and Measured Hydraulic Conductivity of an Unsaturated Soil[J]. Unsaturated Soil, ASCE.2008:1513-1524.
    [173]黄义,张引科.非饱和土土水特征曲线和结构强度理论[J].岩土力学.2002,23(3):268-272.
    [174]S. Salager, M.S.El Youssoufi, C. Saix. Experimental study of the water retention curve as a function of void ratio[J]. Geo-Denver 2007:New Peaks in Geotechnics, ASCE.2007:1-10.
    [175]栾茂田,李顺群,杨庆.非饱和土的理论土水特征曲线[J].岩土工程学报.2005,27(60):611-615.
    [176]Van Genuchten. M.T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils[J], Soil Science.1980,44:892-898.
    [177]Van Genuchten, M.T., Leij, F.J.,Yates, S.R. The RETC code for quantifying the hydraulic functions for unsaturated soils[J]. U.S.Salinity Laboratory, California.1999.
    [178]刘艳华,龚壁卫,苏鸿.非饱和土的土水特征曲线研究[J].工程勘察.2002,3:8-11.
    [179]刘启光,马连湘,刘杰主编.化学化工物性数据手册—无机篇[M].北京:化学化工出版社.2002.
    [180]沈照理,朱宛化,钟佐燊.水文地球化学基础[M].北京:地质出版社.1993.
    [181]M. Angeli, J.P. Bigas, D. Benavente, et al. Salt crystallization in pores:quantification and estimation of damage[J]. Environ Geol.2007,52:205-213.
    [182]Mason, G., N.R. Morrow. Capillary behavior of a perfectly wetting liquid in irregular triangular tubes[J]. J. Colloid Interface Sci., 1991(141):262-274.
    [183]Tuller, M., D. Or, L. M. Dudley. Adsorption and capillary condensation in porous media: Liquid retention and interfacial configurations in angular pores[J]. Water Resour. Res..1999, 35(7):1949-1964.
    [184]Markus Tuller, Dani Or. Unsaturated hydraulic conductivity of structured porous media:A review of liquid configuration-based models[J]. Vadose Zone Journal.2002(1):14-37.
    [185]赵海英,李最雄,韩文峰等.西北干早区土遗址的主要病害及成因[J].岩石力学与工程学报.2003,22(增2):2875-2880.
    [186]王旭东.中国西北干早环境下石窟和土遗址保护加固研究[D].兰州:兰州大学.2003.
    [187]SIKKA,Sandeep. Theme:decay and conservation,research and practice topic, conservation of historic earth structures in the Western Himalayas[A]. In:9th International conference on the Study and Conservation of Earthen Architecture Terra 2003[C]. yazd-IRAN. 2003:513-530.
    [188]6th International Conference on the Conservation of Earthen Architecture[C].Las Cruces, New Mexico,U.S.A.October.14-16.1990,269-280.
    [189]贾文熙.土质文物的风化机理与保护诌议[A].文物养护与复制适用技术[M].西安:陕西旅游出版社.1997.
    [190]张志军.秦兵马俑文物保护研究[M].西安陕西人民教育出版社.1998:104-106.
    [191]周双林.谈谈考古发掘中文物的现场保护[J].文物世界.1999(4):17-20.
    [192]潘别桐,黄克忠.文物保护和环境地质[M].北京.中国地质大学出版社.1992.
    [193]郭宏.文物保护环境概论[M].北京科学出版社.2001.
    [194]D Aragon,Jean. Earth as an element of persistence in South Afican Xhosa culture of Earthen Architecture Terra 2003 [C]. yazd-IRAN.2003:120-127.
    [195]李肖.交河故城的形制布局[M].北京:文物出版社.2003.
    [196]姜波.汉唐都城礼制建筑研究[M].北京:文物出版社.2003.
    [197]马清林,苏伯民,胡之德等.中国文物分析鉴别与科学保护[M].北京科学出版社.2001.
    [198]李最雄,张虎元,王旭东.古代土建筑遗址的加固研究[J].敦煌研究.1995,(3):1-17.
    [199]李最雄,王旭东,张志军等.秦俑坑土遗址的加固试验[J].敦煌研究.1998,(4):151-158.
    [200]李最雄,王旭东,田琳.交河故城土建筑遗址的加固试验[J].教煌研究.1997,(3):171-181·
    [201]李最雄,王旭东,郝利民.室内土建筑遗址的加固试验—半坡土建筑遗址的加固试验[J].敦煌研究.1998,(4):144-149.
    [1]Q.B.Bui, J.C.Morel, B.V.Venkatarama Reddy. Durability of rammed earth walls exposed for 20 years to natural weathering[J]. Building and Environment.2009,44:912-919.
    [2]李最雄,王旭东,孙满利.交河古城保护加固技术研究[M].北京:科学出版社.2008.
    [3]Zheng XiaoJing, Zhu Wei, Xie Li. A probability density function of liftoff velocities in mixed-size wind sand flux[J]. Science in China Series G:Physics, Mechanics & Astronomy. 2008,51(8):976-985.
    [4]汪丽,史永跃,李新生.原状黄土和重塑黄土的湿陷性[J].西安航空技术学校学报.2007,25(1):38-40.
    [5]汤连生.黄土湿陷性的微结构不平衡吸力成因论[J].工程地质学报.2003,11(01):30-35.
    [6]Yucel Guneya, Dursun Sarib, Murat Cetin. Impact of cyclic wetting-drying on swelling behavior of lime-stabilized soil[J]. Building and Environment.2007,42:681-688.
    [7]Fredlund D. G, Rahardjo H. Soil Mechanics for Unsaturated Soils[M]. New York:John Wiley and Sons Inc.1993.
    [8]Hans-Jurgen Butt, Karlheinz Graf, Michael Kappl. Physics and Chemistry of Interfaces[M]. Darmstadt:betz-druck GmbH.2006
    [9]D.Benavente, M.A.Garciadel Cura, S.Ordoneza. Salt influence on evaporation from porous building rocks[J]. Construction and Building Materials.2003,17:113-122
    [10]L.Bocquet, E.Charlaix, S.Ciliberto et al. Moisture-induced ageing in granular media and the kinetics of capillary condensation [J]. Nature.1998,396:24-31.
    [11]卢再华,陈正汉,蒲毅彬.膨胀土干湿循环胀缩裂隙演化的CT试验研究[J].岩土力学.2002,23(4):417-422.
    [12]Chaosheng Tang, Bin Shi, Chun Liu. Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils[J]. Engineering Geology.2008,101:204-217.
    [13]杨和平,张锐,郑健龙.有荷条件下膨胀土的干湿循环胀缩变形及强度变化规律[J].岩土工程学报.2006,28(11):1936-1941.
    [14]范兴科,蒋定生,赵合理.黄土高原浅层原状土抗剪强度浅析[J].土壤侵蚀与水土保持学.1997,3(4):69-75.
    [15]宋章,程谦恭,张炜.原状黄土显微结构特征与湿陷性状分析[J].工程地质学报.2007,15(05):646-653.
    [16]Oscar Seguel, Rainer Horn. Structure properties and pore dynamics in aggregate beds due to wetting-drying cycles[J]. Soil Science.2006,169:221-232.
    [17]Luiz F. Pires, Osny O.S. Bacchi, Klaus Reichardt. Assessment of soil structure repair due to wetting and drying cycles through 2D homographic image analysis[J]. Soil and Tillage Research.2007,94:537-545.
    [1]严耿升,张虎元,郭青林等.土质文物风蚀模型[J].敦煌研究.2009,6:93-99.
    [2]Qu Jianjun, Cheng Guodong, Zhang Kecun,etc. An experimental study of the mechanisms of freeze/thaw and wind erosion of ancient adobe buildings in northwest China[J], Bulletin of Engineering Geology and the Environment.2007,66:153-159.
    [3]张长庆,魏雪霞,苗天德.冻土蠕变过程的微结构损伤行为与变化特征[J].冰川冻土.1995,17(增):60-65.
    [4]苗天德,魏雪霞,张长庆.冻土蠕变过程的微结构损伤理论[J].中国科学(B辑).1995,25(3):309-317.
    [5]陈铁林,沈珠江.岩土破损力学的系统论基础[J].岩土力学.2004,25(增刊):21-26.
    [6]陈炜韬,王鹰,王明年等.冻融循环对盐渍土粘聚力影响的试验研究[J].岩土力学.2007,28(11):2343-2347.
    [7]Qi Jilin, Ma Wei, Song Chunxia. Influence of freeze-thaw on engineering properties of a silt soil[J].Cold Regions Science and Technology.2008,53:397-404.
    [1]谈云志,王世梅.土水特征曲线的研究现状及发展趋势[J].建筑技术与开发.2005,32(5):32-34.
    [2]W.Scott Sillers, Delwyn G. Fredlund, Noshin Zakerzadeh. Mathematical attributes of some soil water characteristic curve models[J]. Geotechnical and Geological Engineering.2001,19: 243-283.
    [3]Fredlund D. G., Rahardjo H. Soil Mechanics for Unsaturated Soils[M]. New York:John Wiley and Sons Inc.1993.
    [4]朱首军.渭北旱塬梯田土壤水分特征曲线的测定及分析[J].西北林学院学报.1999,14(4):23-26.
    [5]徐力刚,杨劲松,张妙仙.土壤水盐运移的简化数学模型在水盐动态预报上的应用研究[J].土壤通报.24,35(1):8-11.
    [6]Rafael Baker, Sam Frydman. Unsaturated soil mechanics critical review of physical foundations[J]. Engineering Geology.2009,106:26-39.
    [7]付华,朱兴运,闫顺国.盐渍化土壤渗透势的电导测定及其应用[J].草业学报.1994,3(3):71-75.
    [8]陈效民,茹泽圣,徐中祥.滨海盐渍土非饱和导水率的研究[J].南京农业大学学报.1995,18(3):68-71.
    [9]吕殿青,王全九,王文焰等.一维土壤水盐运移特征研究[J].水土保持学.2002,12(4):91-94.
    [10]鲁文质,刘新岭,肖招金.亚硝酸钠和硫酸钠在甲醇、水中的溶解度测定与模拟[J].上海化工.2007,32(1):18-21.
    [1]A.B. Pandey, B.S. Majumdar, D.B. Miracle. Effects of Thickness and Precracking on the Fracture Toughness of Particle-Reinforced Al-Alloy Composites [J]. Metallurgical ansd Materials Transactions.1998,29A:1237-1243.
    [2]熊正洪.也谈加筋土强度模型与应力-应变特性[J].工程力学.1994,11(1):60-69.
    [3]R.Zenasni, A. Arguelles, Ⅰ.vina, et al.. Influence of weave type and reinforcement in the fracture behaviorof woven fabric reinforced thermoplastic composites[J]. Journal of Materials Science.2005,40:2987-2989.
    [4]张孟喜,闵兴.单层立体加筋砂土性状的三轴试验研究[J].岩土工程学报.2006,28(8):931-936.
    [5]张孟喜,张贤波,段晶晶.H-V加筋黏性土的强度与变形特性[J].岩土力学.2009,30(6):1563-1568.
    [6]魏丽,柴寿喜,蔡宏洲等.麦秸秆加筋材料抗拉性能的实验研究[J].岩土力学.2010,31(1):128-132.
    [7]魏丽,柴寿喜,蔡宏洲.麦秸秆防腐评价及加筋滨海盐渍土的补强机制[J].工程勘察.2009,1:5-7.
    [8]赵炼恒,李亮,杨峰等.加筋土坡动态稳定性拟静力分析[J].岩石力学与工程学报.2009,28(9):1904-1917.
    [9]赵林毅,李燕飞,于宗仁等.丝绸之路石窟壁画地仗制作材料及工艺分析[J].敦煌研究.2005,4:75-82.
    [10]郭娟.再生麻纤维的结构与性能研究[D].青岛:青岛大学.2009.
    [11]薛禹群.地下水动力学[M].北京:地质出版社.1997.
    [12]于升松,谭红兵,邵明昱等.察尔汗盐湖S4层晶间卤水的粘滞性[J].海洋与湖沼.2000,31(5):553-557.
    [13]Chunze Piao, Chikaosa Tanimoto, Keigo Koizumi, et al. Hydrogeological survey and satellite remote sensing in the Dunhuang area[J].Geosciences Joumal,2003,7(4):331-34.
    [14]郭宏,李最雄,裘元勋,等.敦煌莫高窟壁画酥碱病害机理研究之二[J].敦煌研究.1998,4:159-184.
    [15]郭宏,李最雄,裘元勋等.敦煌莫高窟壁画酥碱病害机理研究之三[J].敦煌研究.1999,3:153-175.
    [16]苏伯民,陈港泉.不同含盐量壁画地仗泥层的吸湿和脱湿速度的比较[J].敦煌研究.2005,5:62-65.
    [17]张明泉,张虎元,曾正中等.敦煌莫高窟保护中的主要环境问题分析[J].干旱区资源与环境.1997,11(1):34-38.
    [18]张明泉,张虎元,曾正中等.莫高窟壁画酥碱病害产生机理[J].兰州大学学报自然科学版.1995,31(1):96-101.
    [19]Kok-Kwang Phoon, M.ASCE, Anastasia Santoso, etal. Probabilistic Analysis of Soil Water Characteristic Curves from Sandy Clay Loam[J]. GeoCongress,ASCE.2008:917-925.
    [20]Eduardo DELL'Avanzi. Comparison Between Predicted and Measured Hydraulic Conductivity of an Unsaturated Soil[J]. Unsaturated Soil, ASCE.2008:1513-1524.
    [21]黄义,张引科.非饱和土土水特征曲线和结构强度理论[J].岩土力学.2002,23(3):268-272.
    [22]S. Salager, M.S.E1 Youssoufi, C. Saix. Experimental study of the water retention curve as a function of void ratio[J]. Geo-Denver 2007:New Peaks in Geotechnics, ASCE.2007:1-10.
    [23]栾茂田,李顺群,杨庆.非饱和土的理论土水特征曲线[J].岩土工程学报.2005,27(60):611-615.
    [24]Fredlund D. G., Rahardjo H. Soil Mechanics for Unsaturated Soils[M]. Wiley-Interscience. 1993.
    [25]Ho Young Jo, Craig H. Benson, Charles D. Shackelford, et al. Long-Term Hydraulic Conductivity of a Geosynthetic Clay Liner Permeated with Inorganic Salt Solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE.2005,131(4):405-417.
    [1]刘刚,薛平,侯文芳等.莫高窟85窟微气象环境的监测研究[J].敦煌研究.2000(1):36-41.
    [2]闫增峰.生土建筑室内热湿环境研究[D].西安:西安建筑科技大学.2003.
    [3]胡敏.建筑结构湿过程对室内环境的影响及其分析方法的研究[D].长沙:湖南大学.2006.
    [4]苏伯民,陈港泉.不同含盐量壁画地仗泥层的吸湿和脱湿速度的比较[J].敦煌研究.2005,5:62-65.
    [5]Zhang Huyuan, Yan Ling, Wang Jinfang. Salt Hazard of Earthen Monuments Induced by Capillary Rise[C]. Dunhuang:Proceedings of International Symposium on Conservation of Ancient Sites & ISRM-Sponsored Regional Symposium.2008.
    [6]刘启光,马连湘,刘杰主编.化学化工物性数据手册—无机篇[M].北京:化学化工出版社.2002.
    [7]Q.B.Bui, J.C.Morel, B.V.Venkatarama Reddy. Durability of rammed earth walls exposed for 20 years to natural weathering[J] Building and Environment.2009,44:912-919.
    [8]Fredlund D. G., Rahardjo H. Soil Mechanics for Unsaturated Soils[M]. Wiley-Interscience. 1993.
    [9]Camuffo, D. Microclimate for Cultural Heritage[M]. Amsterdam:Elsevier Science B.V..1998.
    [10]Camuffo, D.. Surface Moisture and Conservation[J]. European Cultural Heritage Newsletter on Research.1988,2,(5):6-10.
    [11]郭宏,李最雄,裘元勋,等.敦煌莫高窟壁画酥碱病害研究之一[J].敦煌研究.1998(3):153-163.
    [12]郭宏,李最雄,裘元勋等.敦煌莫高窟壁画酥碱病害研究之二[J].敦煌研究.1998(4):159-172.
    [13]郭宏,李最雄,裘元勋等.敦煌莫高窟壁画酥碱病害研究之三[J].敦煌研究.1999(6):153-175.
    [14]张明泉,张虎元,曾正中等.莫高窟地仗层物质成分及微结构特征[J].敦煌研究.1995(3):23-28.
    [15]闫玲.壁画地仗酥碱病害非饱和水盐迁移试验研究[D].兰州:兰州大学.2009.
    [16]南京水利科学研究院.GB/T50123-1999.土工试验方法标准[s].北京:中国计划出版社.1999.
    [17]Hans-Jurgen Butt, Karlheinz Graf, Michael Kappl. Physics and Chemistry of Interfaces [M]. Darmstadt:betz-druck GmbH.2006.
    [18]D.Benavente, M.A.Garciadel Cura, S.Ordoneza. Salt influence on evaporation from porous building rocks[J].Construction and Building Materials.2003,17:113-122.
    [19]沈照理,朱宛化,钟佐燊.水文地球化学基础[M].北京:地质出版社.1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700