用户名: 密码: 验证码:
黄土湿陷性的微结构效应及其评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土具有湿陷性、结构性及非饱和性等特殊性质,往往对工程具有不利影响,是岩土工程研究的热点问题。为评价黄土地区边坡、路基等土工结构的稳定性和地基稳定性等问题,有必要结合非饱和土力学理论、土结构性理论及土工测试技术,深刻认识和科学评价黄土的湿陷变形特性。黄土的湿陷特性受吸力、净应力水平及其路径,土微结构特征(包括颗粒大小、级配、形状、定向性、堆积方式、密实程度、矿物成分等)等多种因素影响。本文首先研究了非饱和黄土湿陷性和结构性与其基本物性指标之间的关系,并基于微结构理论对黄土湿陷性和微结构特性两者之间的相互关系进行了定性和定量的研究。其次,建立了湿陷性指标与其微结构参数之间的函数关系。本文主要研究内容及所取得的研究成果包括下列方面。
     1.对黄土结构性的表现形式、组成要素及影响因素进行了较为全面的分析。在此基础上进一步分析了黄土结构强度的测试方法,研究了黄土结构性与湿陷性之间的关系,同时对黄土湿陷系数与压力和含水量之间的关系进行了研究。
     2.研究了击实功和击实含水量两种因素对非饱和重塑黄土渗透性的影响。采用常规压力板仪测试了重塑黄土在三种不同击实功和五种不同击实含水量下的土水特征曲线,并用变水头法测量了相应的饱和土渗透系数。结合土水曲线和饱和渗透系数,基于Van Genuchten模型和Fredlund模型,探讨了非饱和重塑黄土在不同击实条件下的渗透性。结果表明:重塑非饱和黄土的渗透性与击实含水量和击实功密切相关。在较低基质吸力条件下,渗透性随击实含水量的增加而降低,同时随着基质吸力的增大,不同击实含水量条件下的渗透性差异逐渐减小,当吸力达到1000kPa时,渗透系数与击实含水量基本无关;在轻型击实和简化轻型击实条件下,饱和状态与非饱和状态的渗透系数基本相近,对于重型击实功,在饱和状态时,土体的渗透系数约为轻型击实条件下渗透系数的l/100,随着土基质吸力的增大,渗透性差异逐渐减小。
     3.采用BP人工神经网络方法建立了湿陷系数的计算模型。西安地区黄土的实测资料作为网络模型学习、训练样本和测试样本,对网络模型的计算结果与实测值进行了对比分析。结果表明,该方法能较全面考虑黄土湿陷性的影响因素,与其它计算方法相比BP人工神经网络法快捷、准确性高和适用范围广。在一定程度上,可替代湿陷试验。
     4.基于非饱和土的粒问吸力理论及黄土的微结构特征,研究了黄土的湿陷机理。研究表明,非饱和黄土的湿陷性由其微结构特征控制。西安黄土的微结构特征表现为集粒、团粒问以点接触为主,且胶结物为黏土矿物,胶结程度较弱。黄土的湿陷性是由其特殊的微结构特征和粒间吸力共同作用所致。黄土的孔隙性为其变形提供了空间,而随含水量变化的粒间吸力作用则为湿陷变形提供了驱动力。
     5.建立了基于黄土物性指标的湿陷系数预测模型。湿陷系数是表征黄土湿陷变形特征的重要指标之一,该指标的获得一般是通过室内浸水压缩试验确定。黄土的组成复杂,种类繁多,试验结果的离散性很大,并且试验中难以避免会出现误差,因而很难从土的工程性质方面对土的物理指标和湿陷系数间的关系进行严格的理论分析。通过对黄土湿陷性影响因素的综合分析,认为湿陷性影响因素可以用宏观物理指标含水量(w)、孔隙比(e0)和塑性指数(IP)表示。通过多元线性回归分析,得出湿陷系数与物性指标间的定量关系式,并对该分析模型得到的湿陷系数计算值与实测值进行了对比分析。分析表明该定量预测模型较为合理,特别是对中、强湿陷性的黄土,计算值与实测值较为接近。
     6.将多元统计方法引入到对黄土微观结构参数的研究之中,在进行了参数标准化和相关性检验之后,给出了适合于黄土的主成分分析方法和谱系聚类分析方法。采用图像处理软件系统对黄土SEM照片进行了图像分割并提取了相关信息,对不同固结压力作用下所获取的参数进行了详细研究,进而基于多元统计方法,构造了主成分等黄土的合成微结构参数。对一般常规微结构参数的研究表明:随着固结压力增大颗粒体所占面积比逐步增大,第一主成分也近似线性增大;对于不同的固结压力,黄土的微观样品具有比较明显的聚类特征,类之间的距离也随着固结压力的增大有增大的趋势。另外,分析了灰度阈值对微结构参数的影响。进一步的研究表明:颗粒体面积和周长可以表示为阈值的三角函数;不同观测点颗粒体域微结构参数各主成分随阈值的变化趋势是一致的,且在最大方差阈值附近,第一主成分取值达到最大;不同阈值对应的颗粒体微结构具有非常明显的聚类特征。
     7.通过改变含水量与固结压力,对西安原状黄土进行了湿陷性实验,由此分析了不同含水量与固结压力条件下湿陷性的差异与联系,同时通过电镜扫描(SEM)获取了湿陷前后黄土试样的微结构照片,进而获取了相应条件下的SEM照片的简单微结构参数。分析了湿陷前后微结构参数的变化,探讨了简单微结构参数间相关关系,基于主成分分析法构建了合成微结构参数。研究表明:黄土湿陷前后,其简单微结构参数发生了相应的变化,合成微结构参数,即第一主成分近似线性增大,黄土湿陷系数与其累计主成分呈线性关系。根据这一重要认识,建立了主成分得分的湿陷系数计算方法,进而建立了黄土湿陷性评价方法。该方法可以比较客观地分析和评价黄土地区地基湿陷性。
Loess inhabits a special status in geological engineering due to its special characteristics such as collapsibility, constitutive property, unsaturation and its effects on engineering. In order to evaluate the stabilities of earth structures such as slope and subgrade as well as stabilities of ground in loess areas, it is necessary to completely understand and scientifically evaluate collapse deformation behaviours of loess by combined unsaturated soil mechanics, the structural theories and soil test technology. The collapsibility of loess not only is controlled by suction, normal stress lever and path, but also depends on micro structural characteristics which include particle size, gradation, particle shape, directing property, accumulation mode, density and mineral composition and so on. This thesis first studied the relationship between collapsibility and structure and index properties in detail. Then based on theories and research approaches of microstructure, qualitative and quantify studies on relation between collapsibility and structure of loess were carried on. Finally, the function relationship between collapsible index and micro-structural parameters were established. The research contents in this thesis include following aspects.
     1. The express forms, constituent elements and influence factors of structural characteristics are discussed in detail. Then, the relationship between loess structure and collapsibility is further analyzed. The relationship between collapsible coefficient and consolidation pressure and water content is interpreted qualitatively by graphic method.
     2. The influences of compactive water content and compactive efforts on permeability of unsaturated remolded soil are studied. Using the pressure-plate extractor, the soil-water characteristic curves under different compactive water content and different compactive efforts are obtained. The corresponding saturated permeability coefficient is gotten by the variable water head method. Combined with the soil-water characteristic curves and saturated permeability coefficient, based of Van Genuchten model and Fredlund model, the permeability of remoulded unsaturated loess under different compactive conditions are discusses. The results show that compactive water content and compactive efforts both have close relation with permeability of unsaturated remolded soil. When the suction is lower, coefficient of permeability decreases with the increase of compactive water content, and the difference reduces with the increase of suction, and permeability coefficient can be assumed identical when the suction reach 1000kPa. The permeability coefficient of samples compacted with standard proctor compactive efforts and reduced proctor compactive efforts are very similar in both saturated and unsaturated states. For modified compaction, the value of permeability coefficient is about 0.01 in saturated state, and increases as the suction increases.
     3. Based on the analysis of the main factors influencing coefficient of loess collapsibility, model for calculating coefficient of the collapsibility is established by applying the theory of artificial neural network (ANN). A large amount of tested data in Xi'an is used as learning and training samples to train and test the ANN model. The calculated results of the ANN model and the test values are compared and analyzed. The results show that the proposed method can consider the influencing factors on collapsibility of loess more completely, comparing with other theory methods. This method is quick, accurate in calculating and shows flexibility in application. Therefore it is expected to use this method to determine the collapsible coefficient instead of testing.
     4. Based on inter-particle suction theory and micro structural characteristics of loess, the mechanism of loess collapse was analyzed. The results indicate that the microstructure of unsaturated loess has clear effect on its collapsibility. The silts in microstructure of intact simple coated by cements formed into aggregates. Clay minerals are cemented into clay platelets. Aggregates and clay platelets contacted in a point patter. And if the cements are clay minerals, the structural system will be easily collapse.The analysis results show that the collapse of loess is outgrowth of effects of both micro structure and suction. Structure character provides the space for deformation, while the changes of suction among particles with water content provide driving force for collapse.
     5. The quantitative relation between loess collapsibility and its physical index are established. Coefficient of collapse, one of important indexes of describing deformation characteristics of loess collapsible, is determined by collapsible test in laboratory. It is difficult to make theoretical analysis of relation between coefficient of collapsibility and soil parameters in engineering properties due to the complex composition, large numbers of types, and dispersion of test results and error of test. On the basis of general analysis of the factors affecting loess collapsibility, it is believed that the physical factors mainly are water content, void ratio and plasticity index. Using mult-variables regression analysis, a quantitative model of loess collapsibility equation of collapsible coefficient (δs) against water content(w), void ratio(eo) and plasticity index (IP) is established. Comparative analysis are carried out between calculated values and measured values. The analysis shows that the proposed model is reasonable for predicting the collapsibility of loess,especial for strong and mediate collapsible loess.
     6. Multivariate statistical technique is employed to study the parameters of micro-structure, after standardizing parameters and checking their correlation, principal component analysis and cluster analysis methods, which are tested to be suitable for loess, are proposed. Utilizing image processing system, SEM images of loess are processed and related information are achieved. Micro-structure parameters of SEM photos under different consolidation pressure are studied in detail. Synthetical micro-structure parameters of SEM photos, like principle components, are constructed based on multivariate statistical method. The study results for simple micro-structure parameters indicate that the quantity of particle increase with the increasing of consolidation pressure. With the increasing of consolidation pressure, the first component increases linearly. Under different consolidation pressure, the samples of loess display obvious cluster character. The distance between clusters increases with the increasing of consolidation pressure nonlinearly. In addition, the influences of threshold on micro-structural parameters from SEM photo are studied. The results indicate that grain area and perimeter can be expressed by trigonometric functions of threshold. Principal components of micro structural parameters of grain areas in various observation points have the same trend, and nearby the maximum variance of threshold, the first principal component reaches the maximum value. Micro structures of various grains for different thresholds have obvious convergent character.
     7. The collapsible tests of the original loess from Xi'an with various water content and consolidation pressure were carried out. The differences and the relations of collapsibility of loess under various conditions are analyzed based on the results of these tests. The Electron Scanning Microscope images are obtained both on loess samples of before and after collapsing, then corresponding micro-structural parameters are obtained. Comparative analysis of simple micro-structural parameters is made. The relationship among these parameters is discussed and the synthetic micro-structural parameters are constructed as well. The results indicate that the proportion of particle and the first principle component increase with the increase of consolidated pressure; there is a linear relationship between collapsibility and the first principle of loess. Based on this understanding, the calculation method of coefficient of collapse is established. The collapsibility of loess can be evaluated objectively using the proposed method.
引文
[1]刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社,1997.
    [2]中国科学院土木建筑研究所土力学研究室.黄土基本性质的研究[M].北京:科学出版社,1961.
    [3]刘东生.黄河中游的黄土[M].北京:科学出版社,1964.
    [4]刘东生.黄土的物质成份和结构[M].北京:科学出版社,1966.
    [5]王永焱.中国黄土研究的新进展[M].西安:陕西人民出版,1985.
    [6]刘祖典.西北黄土的物理力学性质[M].北京:地质出版社,1950.
    [7]刘东生,孙继敏,吴文祥.中国黄土研究的历史、现状和未来—事实与故事相结合的讨论[J].第四纪研究,2001,21(3):185-207.
    [8]王永炎,林在贯,等.中国黄土的结构特征及物理力学性质[M].北京:科学出版社,1990.
    [9]刘祖典,李靖,郭增玉,等.陕西关中黄土变形特性和变形参数的探讨[J].岩土工程学报,1984,6(3):24-34.
    [10]刘祖典,郭增玉,张庆洪.黄土地基变形计算的形变法[J].陕西机械学院学报,1986,(2):6-17.
    [11]滕志宏.黄土高原黄土地层分区及其地层结构[J].西北工业大学学报,1990,20(2):85-92.
    [12]刘东生,等.中国的黄土堆积[M].北京:科学出版社,1965.
    [13]苗天德.湿陷性黄土的变形机理与本构关系[J].岩土工程学报,1999,21(4):383-387.
    [14]杨小微.湿陷性黄土地基基础设计[J].哈尔滨建筑大学学报,1999,32(1):119-121.
    [15]黄海国,庄乐和.黄土地基震陷变形量的计算[J].地质灾害与防治,1990,1(3):48-59.
    [16]雷祥义.西安黄土显微结构类型[J].西北大学学报,1983,4l(4):56-63.
    [17]关文章.西安兰州两地区黄土的湿陷类型及特点[J].桂林冶金地质学院学报,1989,9(1):74-80.
    [18]王永焱,滕志宏.中国黄土微结构及其在时代上和区域上的变化[J].科学通报,1982,17(2):102-105.
    [19]段汝文,李兰,王峻,等.陇西地区黄土的强度特性[J].西北地震学报,15(1):67-71.
    [20]何光,朱鸿博.黄土震陷研究[J].岩土工程学报,1990:12(6):99-103.
    [21]谢定义,陈正汉.非饱和土力学特性的理论与测试[C].非饱和土理论与实践学术研讨会文集,1992.
    [22]陈正汉,王永胜,谢定义.非饱和土的有效应力探讨[J].岩土工程学报,1994,16(3):62-69.
    [23]陈正汉,谢定义,刘祖典.非饱和土固结的混合物理论(Ⅰ)[J].应用数学和力学,1993,14(2):127-137.
    [24]陈正汉.重塑非饱和黄土的变形、强度、屈服和水量变化特性[J].岩土工程学报,1999,21(1):82-90.
    [25]张苏民.湿陷性黄土(Q_3)的增湿变形特征[J].岩土工程学报,1990,12(04):21-31.
    [26]毕毅.黄土地基湿陷性研究与工程应用中若干问题[J]。土工基础,1999,13(3):35-37.
    [27]胡小红,薛自新.湿陷性黄土地基处理实例分析[J].陕西水力发电,1999,15(1):42-45.
    [28]罗宇生.湿陷性黄土地基评价[J].岩土工程学报,1998,20(4):87-91.
    [29]陈昌富,王贻荪,尚守平.黄土类深基坑土钉支护内部稳定可靠性分析[J].工业建确筑,1999,29(9):1-6.
    [30]陈秋南,周国华,张帆等.湿陷性黄土地区地铁深基坑支护设计[J].湖南科技大学学报,2009,24(1):49-52
    [31]崔国明,何向东,马彦亮.强夯技术在湿陷性黄土土坝地基处理中的应用[C].第一届中国水利水电岩土力学与工程学术讨论会论文集(下册),2006.
    [32]雷胜友.加筋黄土的三轴试验研究[J].西安公路交通大学学报,2000,20(2):2-5.
    [33]胡再强,邵生俊,陈存礼.黄土库岸崩塌问题研究分析[J].西部探矿工程,1996,8(增刊):77-81.
    [34]谢定义.黄土力学特性与应用研究的过去、现在和未来[J].地下空间,1999,19(4):273-285.
    [35]高国瑞.黄土湿陷变形的结构理论[J].岩土工程学报,1990,2(4):1-10.
    [36]张苏民,张炜.减湿和增湿时黄土的湿陷性[J].岩土工程学报,1992,14(1):57-61.
    [37]刘祖典.影响黄土湿陷系数因素分析[J].工程勘察,1994,(5):6-11.
    [38]胡瑞林,李向全,官国琳,等.粘性土微结构定量模型及其工程地质特性研究[M].北京:地质出版社,1995.
    [39]关文章.湿陷性黄土工程性能新篇[M].西安:西安交通大学出版社,1992.
    [40]蒲毅彬,陈万业,廖全荣.陇东黄土湿陷过程的CT结构变化研究[J].岩土工程学报,2000,22(1):49-54.
    [41]雷胜友,唐文栋。黄土在受力和湿陷过程中微结构变化的CT扫描分析[J].岩石力学与工程学报,2004,23(24):4166-4169.
    [42]高凌霞.西安地区黄土湿陷性影响因素综合分析[D].长安大学,2001.
    [43]李萍,李同录.黄土物理性质与湿陷性的关系及其工程意义[J].工程地质学报,2007,15(4):506-512.
    [44]张苏民.湿陷性黄土(Q_3)的增湿变形特征[J].岩土工程学报,1990,12(4):21-31.
    [45]张茂花.湿陷性黄土增(减)湿变形性状试验研究[D].西安:长安大学,2002.
    [46]雷祥义.西安黄土显微结构类型[J].西北大学学报,1983,41(4):56-63.
    [47]雷祥义.中国黄土的孔隙类型与湿陷性[J].中国科学(B辑),1987,(12):1309-1316.
    [48]中华人民共和国国家标准.,湿陷性黄士地区建筑规范(GB 50025-2004).北京:中国建筑工业出版社,2004.
    [49]刘悦.黄土湿陷性评价中的模糊信息优化处理方法[J].西北大学学报,2000,(2):79-82.
    [50]谢婉丽,王家鼎,张新军,等.模糊信息优化方法在黄土湿陷性评价中的应用[J].西北大学学报(自然科学版),2005,35(1):96-99.
    [51]徐东升,汪稔.模糊测度在黄土湿陷性评判中的应用[J].岩土力学,2007,增刊:217-221.
    [52]李瑞娥,谷天峰,王娟娟,等.基于模糊信息优化技术的黄土湿陷性评价[J].西安建筑科技大学学报(自然科学版),2009,41(2):214-218.
    [53]高凌霞,罗跃纲,杨向军.基于BP人工神经网络的非饱和黄土湿陷系数计算方法[J].大连民族学院学报,2006,5:24-26.
    [54]井彦林,仵彦卿,杨丽娜,等.基于数据挖掘技术的黄土湿陷性评价[J].西北农林科技大学学报(自然科学版),2006,34(4):130-134.
    [55]许领,戴福初,金艳丽.从非饱和土力学角度探讨黄土湿陷机制[J].水文地质工程地质,2009,(4):62-65.
    [56]吴义样,张宗枯,凌泽民.土体微观结构的研究现况评述[J].地质评论,1992,34(3):250-258.
    [57]高国瑞.兰州黄土显微结构与湿陷机理探讨[J].兰州大学学报,1979,(2):123-134.
    [58]高国瑞.黄土显微结构分类与湿陷性[J].中国科学,1980,(12):1204-1208.
    [59]高国瑞.中国黄土的微结构[J].科学通报,1980,(20):945-948.
    [60]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报,1999,21(6):651-656.
    [61]谢定义,齐吉琳,朱元林.土的结构性参数及其与变形一强度的关系[J].水利学报,1999,(10):1-6.
    [62]谢永涛,张鸿儒.关于“土结构性及其定量化参数研究的新途径”的讨论[J].岩土工程学报,2000,(4):512-513
    [63]沈珠江.结构性粘土的弹塑性损伤模型[J].岩-7工程学报,1993,15(3):1-6.
    [64]邵生俊,周飞飞,龙吉勇.原状黄土结构性及其定量化参数研究[J].岩土工程学报,2004,26(4):531-536.
    [65]沈珠江.结构性粘土的非线性损伤力学模型[J].水利水运科学研究,1993,(4):247—25
    [66]沈珠江.土体结构性的数学模型—21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95-97.
    [65]马莉英,齐伟.黄土状土的蠕变方程及其蠕变特性[J].试验技术与试验机,1997,37(1):41-42.
    [66]郭增玉,张朝鹏,夏旺民.高湿度Q:黄土的非线性流变本构模型及参数[J].岩石力学与工程学报,2000,19(6):780-784.
    [67]郭增玉,冯同新.高湿度Q_2黄土的试验流变特性[J].地下水,2004,26(1):70-73.
    [68]马莉英,肖树芳,王清.黄土的流变特性模拟与研究[J].实验力学,2004,19(2):178-182.
    [69]吴燕开,陈红伟,张志征.饱和黄土的性质与非饱和黄土流变模型[J].岩土力学,2004,25(7):1143-1146.
    [70]杨军,姚正学,王念秦.流变力学原理在黄土滑坡研究中的应用[J].甘肃科学学报,2006,18(1):40-43.
    [71]刘保健,张晓荣,程海涛.应变控制下压实黄土的动三轴试验研究[J].岩土力学,2007,28(6):1073-1076.
    [72]林斌.考虑损伤效应的黄土流变模型研究[D].长安大学,2005.
    [73]唐益群,张曦,周念青,等.地铁振动荷载作用下饱和软粘土性状微观研究[J].同济大学学报(自然科学版),2005,33(5):626-630.
    [74]HU R L, YEUNG M R, LEE C F, et al. Mechanical behavior and microstructural variation of loess under dynamic compaction[J]. Engineering Geology,2001,59(3-4):203-217.
    [75]周翠英,牟春梅.软土破裂面的微观结构特征与强度的关系[J].岩土工程学报,2005,27(10):1136-1141.
    [76]王国欣,黄宏伟,肖树芳.软土微结构特征的试验研究[J].水利学报,2005,36(2):190-196.
    [77]Ferber Valery, Auriol Jean-Claude, Cui Yu-Jun, etc. Wetting-induced volume changes in compacted silty clays and high-plasticity clays[J]. Canadian Geotechnical Journal,2008,45(2):252-265.
    [78]柴寿喜,杨宝珠,王晓燕,等.含盐量对石灰固化滨海盐渍土力学强度影响试验研究[J].岩土力学,2008,29(7):1772-1777.
    [79]Moore C A, Donaldson C F. Quantifying soil microstructure using fractals[J]. Geotechnique,1995,45(1):105-116.
    [80]施斌,刘志彬,姜洪涛.论土体结构各层次的功能及其相互关系[J].工程地质学报,2007,14(5):577-584.
    [81]Dinesh R, Vijayakumar S. Influence of swelling on the microstructure of expensive clays[J]. Canadian Geotechnical Journal,2001,38(1):175-182.
    [82]Hu R L, Yeung MR, Lee CF, et al. Mechanical behavior and microstructural variation of loess under dynamic compaction [J]. Engineering Geology, 2001,59(3-4):203-217.
    [83]尹亚雄,王生新,韩文峰等.加气硅化黄土的微结构研究[J].岩土力学,2008,29(6):1629-1633.
    [84]周翠英,牟春梅.软土破裂面的微结构特征与强度的关系[J].岩土工程学报,2005,27(10):1136-1141.
    [85]McDowell G, Bolton M. A. Micromechanical model for isotropic cyclic loading of isotropically elastically compressed soil[J]. Granular Matter,1999,1(4):183-193.
    [86]孔令伟,吕海波,汪稔等.湛江海域结构性海洋土的工程特性及其微观机制[J].水利学报,2002,(9):82-88.
    [87]冯夏庭,王川婴,陈四利.受环境侵蚀的岩石细观破裂过程试验与实时观测[J].岩石力学与工程学报,2002,21(7):935-939.
    [88]缪林昌,崔颖,陈可君,等.非饱和重塑膨胀土的强度试验研究[J].岩土工程学报,2006,28(2):274-276.
    [89]Simms P H, Yanfuk E K. Measurement and estimation of pore shrinkage and pore distribution in a clayey till during soil-water characteristic curve tests[J]. Canadian Geotechnical Journal,2001,38(4):741-754.
    [90]熊承仁,刘宝琛,张家生,等.重塑非饱和土黏性土的抗剪强度参数与物理状态变量的关系研究[J].中国铁道科学,2003,24(3):17-20.
    [91]贾其军,赵成刚,韩子东.低饱和度非饱和土的抗剪强度理论及其应用[J].岩土力学,2005,26(4):580-585.
    [92]Fredlund D G, Xing A, Fredlund M D, Barbour S L. The relationship of the unsaturated soil shear strength to the soil-water characteristic curve[J]. Canadian Geotechnical Journal,1996,33(3):440-448.
    [93]邵龙潭.相间相互作用原理与土壤水动力学基本方程[J].水科学进展,2002,13(5):605-610.
    [94]杨代泉,沈珠江.非饱和土孔隙气、水、汽、热耦合运动之模拟[J].岩土工程学报,2000,22(3):357-361.
    [95]邢义川,谢定义,李永红.非饱和黄土湿陷过程中有效应力变化规律[J].岩石力学与工程学报,2004,23(7):1100-1103.
    [96]陈正汉.关于土力学理论模型与科研方法的思考(续)[J].力学与实践,2004,26(1):63-67.
    [97]李云峰.黄土渗透性与空隙性关系的研究[M].北京:地质出版社,1994.
    [98]张宗祜.中国黄土.北京:地质出版社,1980.
    [99]刘东生等.黄土与环境[M].北京:科学出版社.1985.
    [100]秦耀东.土壤物理学[M].北京:高等教育出版社,2003.
    [101]张炜,张苏民.非饱和黄土的结构强度特性[J].水文地质,1992,14(1):12-15.
    [102]卢肇钧.粘性土抗剪强度研究的现状与展望[J].土木工程学报,1999,32(4):1-9.
    [103]倪万魁,颜斌,刘海松,等.湿陷性黄土工程特性及地基处治技术研究[R].西安:长安大学,2005.
    [104]党进谦,李靖.非饱和黄土的结构强度与抗剪强度[J].水利学报,2001,(7):79-83.
    [105]刘海松,倪万魁,颜斌,等.黄七结构强度与湿陷性关系初探[J].岩土力学,2008,29(3):22-26.
    [106]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报,1999,21(6):651-656.
    [107]谢定义,齐吉琳,朱元林.土的结构性参数及其与变形-强度的关系[J].水利学报,1999,(10):1-6.
    [108]谢定义,齐吉琳,张振中. 考虑土结构性的本构关系[J].土木工程学报,2000,33(4):35-40.
    [100]关文章.湿陷性黄土工程性能新篇[M].西安:西安交通大学出版社,1992.
    [110]厉伟.湿陷性黄土固有属性的研究探讨[J].科技情报开发与经济,2000,10(6):51-52.
    [111]Miller C J. Impact of soil type and compaction Conditions on soil water characteristic[J]. Journalof Geotechnical and Geoenvironmental Engineering, ASCE,2002,128(9):733-742.
    [112]Vanapalli S K, Fredlund D G, Pufahl D E. Relationship between soil-water characteristic curves and as-compacter water content versus soil suction for clay till [A]. Proceedings of the eleventh pan american conference on soil mechanics and geotechnical engineering,1999,991-998.
    [113]KAWAI K, KARUBE D, KATO S. The model of water retention curve considering effects of void ratio[M]//H.,Toll, D. G., Leong, E. C. (Eds),Unsaturated Soils for Asia. Rahardjo, Rotter dam:Balkema.2000:329-334.
    [114]Craig H B, John M T. Hydraulic conductivity of thirteen compacted clays[J]. Clays and Minerals,1995,43(6):669-681.
    [115]Daniel D E, Corey A T. Water content-density criteria for compacted soil liners[J]. Journalof Geotechnical and Geoenvironmental Engineering.,1990,116(12):1811-1830.
    [116]Dirksen, C. Unsaturated hydraulic conductivity[M]. In Soil analysis: physicalmethods. Edited by K. Smith and C. Mull ins. Marcel Dekker, New york,1991:209-269.
    [117]Dirksen, C. Soil physics measurements[M]. Catena Verlay GMBH, Reiskirchen, Germany,1990.
    [118]M. TH. van Genuchten. A closed-form equation for predicting the hydraulic conductivity for unsaturated soils[J] Soil Science Society of America Journal. 1980, (44):892-898.
    [119]Fredlund D G, Anqing Xing. Equations for soil-water characteristic curve[J]. Canadian Geotechnical Journal.1994, (31):521-532.
    [120]Daniel D E, Corey A T. Water content-density criteria for compacted soil liners[J]. Journal of Geotechnical and Geoenvironmental Engineering. 1990,116(12):1811-1830.
    [121]James M T, Craig H B and Lisa R B. Soil-water characteristic curve for compacted clays[J]. Journal of Geotechnical and Geoenvironmental Engineering. 1997,123(11):1060-1069.
    [122]任新玲.影响黄土湿陷系数因素的数理统计分析[J].山西交通科技,1995,(4):19-21.
    [123]高凌霞.黄土湿陷系数与物性指标间的定量关系[J].大连民族学院学报,2004,(5)
    [124]刘悦.黄土湿陷性评价中的模糊信息优化处理方法[J].西北大学学报,2000,(2):79-82.
    [125]郭文兵.地表下沉系数计算的人工神经网络方法研究[J].岩土工程学报,2003,25(2):212-215.
    [126]刘兴远.神经网络在土木工程应用中的几点认识[J].岩土工程学报,2003,(4):514-516.
    [127]罗跃纲,陈长征,曾海泉.钢包回转台大臂损伤诊断[J].重型机械,2001,(1):43-45.
    [128]汤连生,王洋,张鹏程等.非饱和黏性土粒间吸力测试研究[J].岩土工程学报,2003,25(3):304-307.
    [129]汤连生.黄土湿陷性的微结构不平衡吸力成因论[J].工程地质学报,2003,11(1):30-35.
    [130]陈晓平,俞季民.用土的物理性指标确定土的压缩系数[J].岩土工程学报,1991,13(4):81-86.
    [131]胡瑞林,李向全,官国琳,等.土体微结构力学一观念·观点·核心[J].地球学报—中国地质科学院院报,1999,20(2):150-156.
    [132]叶为民,黄雨,崔玉军,等.自由膨胀条件下高压密膨胀粘土微观结构随吸力变化特征[J].岩石力学与工程学报,2005,24(24):4570-4575.
    [133]杨庆,张传庆,栾茂田.基于微结构定量分析的非饱和土广义有效应力原理[J].大连理工大学学报,2004,44(4):556-559.
    [134]李顺群,郑刚,赵瑞斌,等.黏土微结构参数的相关分析和主成分分析[J].岩土工程学报,2009,31(7)1120-1126.
    [135]MOORE C A, DONALDSON C F. Quantifying soil microstructure using fractals[J]. Geotechnique,1995,1(45):105-116.
    [136]李顺群,郑刚,崔舂义,等.黏土微结构各向异性评估的谱系聚类方法[J].岩土工程学报,2010,32(1):109-114.
    [137]王恒旭,胡永华,王文成,等.主成分分析在杞县大蒜种植区土壤质量评价中的应用[J].中国农学通报,2006,22(8):297-301.
    [138]张润楚.多元统计分析[M].北京:科学出版社,2006.
    [139]周翠英,牟春梅.软土破裂面的微观结构特征与强度的关系[J].岩土工程学报,2005,27(10):1136-1141.
    [140]邵生俊,周飞飞,宋春霞.考虑黄土结构性变化的地基增湿压缩变形分析[J].土木工程学报,2006,39(6):94-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700