用户名: 密码: 验证码:
新型真空预压法室内模拟试验与沉降的预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,世界上土地资源日趋紧张,各国学者都致力于寻找新的手段开发土地。利用从海域中吹填上来的淤泥进行围海造陆,既可以清理海港、码头,还可以疏浚航道,保护环境,同时可以降低运输物源砂料的工程造价,提高地基处理效率,满足工程需要,是一种变废为利、一举两得的好方法。但从海底疏浚出来的淤泥具有含水率和粘粒含量极高、孔隙比极大等特殊的工程地质性质,使得吹填土必须经过一定的处理后才能使用。工程上常采用真空预压法对其进行加固,但采用这种方法的前提是要求土体具有一定的强度,即土体表面形成硬壳,这需要2~3年的时间,极其浪费时间;而在对吹填土进行真空加压的过程中,土体由于受到强大的真空吸力作用,粘粒会随着水一同向竖向排水体处迁移,使得排水体周围包裹着一层厚厚的泥膜,严重制约土体的固结过程,影响工程效率。另外,利用处理后的吹填土作为建筑物地基使用过程中,土体的工后沉降量值很大,而且沉降达到稳定所需要的时间很长,往往可达到几年甚至几十年,由此引发的工程破坏及失稳事故更应引起我们足够的重视,所以有必要对吹填土的次固结变形特性及影响因素进行深入研究。
     本论文结合国家自然科学基金项目“分级真空预压固结法在高塑性吹填土中物理模拟与颗粒运移规律的研究”(NO.41172236)和国家自然科学基金项目“海积软土地基加固过程中有机质的作用和影响”(No.40372122)的资助,针对高粘性吹填土的特殊工程地质性质,提出两种改良的真空预压法:直排式真空预压法和分级式真空预压法,分别进行了室内模拟试验的研究,并对比分析了两种方法加固吹填土的加固效果;同时,针对吹填土的工后沉降量值较大,可能给工程带来严重安全隐患的问题,对天津、大连两地吹填土的固结及次固结特性进行分析,并对次固结系数的影响因素进行了探讨;应用非线性小波阈值法对两种真空预压法的实测沉降数据进行小波降噪处理,剔除沉降中的偶然误差,提取真实的沉降数据;最后,建立了BP神经网络模型对土体最终沉降量进行了预测,评价两种真空预压法的最终固结效果,并对模型进行了验证,达到可以预测土体沉降量的目的,为吹填土地基处理工程分析设计提供科学的理论基础。
     本论文共分八章,第一章为绪论,介绍了选题依据和研究意义,总结了真空预压法、软土次固结特性、小波分析理论以及吹填土沉降预测等方面的国内外研究现状,并给出了论文的主要内容及技术路线和论文的创新点。第二章对比研究了天津、大连两地吹填土的基本性质,总结了吹填土的普遍特征,指出高粘性高有机质含量吹填土的特点。第三章介绍了两种新型真空预压法:直排式真空预压法和分级式真空预压法的室内模拟试验装置和试验方法。第四章对两种新型真空预压法的加固效果进行了对比分析,包括试验的监测数据、土体力学性质、物理性质和化学性质及微观孔隙特征,从宏观和微观相结合的角度反映高粘性吹填土的固结规律,评价两种真空预压法的加固效果。第五章详细分析了天津、大连两地吹填土的固结及次固结特性,并对次固结系数的影响因素进行了深入探讨。第六章利用非线性小波阈值法对两种真空预压法的实测沉降数据进行了降噪分析,剔除偶然因素引起的误差,使得沉降数据更接近真实值。第七章建立了三层BP神经网络模型对降噪后的沉降数据进行了沉降量的预测,并对模型进行了验证。第八章为结论和展望,总结了本文所得到的结论并对下一步研究工作提出建议。
The Dredger fill means a kind of man-made deposits which is pumped by dredgerand mud pump from the offshore or channel to the specified position. Coastal citiesusually take dredger fill as the raw material for land building project. However, the specialsoil needs to be processed to use as it has many characteristics of high moisture content,high porosity ratio, high compressibility, high clay content, low strength, low permeabilityand so on. The premise of using vacuum preloading method in engineering is the bearingcapacity of dredger fill, that means the surface of dredger fill would become hard shellcommonly in2or3years. And under the powerful vacuum suction effect, particles willmove with the water to drain pipes, the large plastic pipes are surrounded with large fineclay of dredger fill and then are formed mud membrane, which seriously influence thedrainage consolidation of dredger fill and cause lower consolidation efficiency. So, it isnecessary to looking for a suitable vacuum preloading consolidation method for high highclay content dredger fill. And when take the dredger fill with high clay content and highorganic matter content as building foundation in the process of use, the post-constructionsettlement is often very large, and the time of settlement reaches to stabilization is verylong, often needs to reach for years, or even decades, very adverse to engineering. So it isvery meaningful to conduct the thorough in view of the secondary consolidationdeformation characteristics of dredgrer fill and influence factors to the forecast for thedevelopment of the settlement of dredger fill.
     According to the above problems, this paper first made through research on the basicproperties of dredger fill from Tianjin and Dalian, discussed the engineering geologicalproperties of high clay content dredger fill. Then used the straight-line vacuum preloadingmethod to reinforce Dalian dredger fill with laboratory simulation test, making sure that pipes type and distance were main purpose in straight-line vacuum preloading process. Inthe process of the laboratory simulation test, monitoring the variations of vacuum degree,settlement and pore water pressure, after the test, tested and analysised the mechanicsproperties, physical and chemical properties, microstructural features, Comparing thereinforcement effect of the six model boxes on different types and distance of drain pipes.The results shown that straight-line vacuum preloading can greatly reduced the vacuumpressure relay frictional cost, improve the strength of the soil and shorten the constructionperiod.
     The above straight-line vacuum preloading experiment can shorten the period ofconsolidation, but the experiment analysis found that the phenomenon of drainageplugging was still serious. Thus, the paper used the step vacuum preloading method toreinforce Tianjin dredger fill with laboratory simulation test in order to improveconsolidation efficiency of high clay dredger fill. The main concept of this method is to setup proved staged and stepped vacuum degree instead of one-time80kPa vacuum loadwith the consolidation of dredger fill, that is soil water separation stage, self-weightdeposit stage, vacuum preloading20kPa-40kPa-80kPa stage, making the water out of thesoil body gradually, achieving the goal of reducing the clay grain migration and unevensettlement. In the test process, monitoring the settlement, displacement and pore waterpressure. after the test, and after each stage, testing and analysised the mechanicsproperties, physical and chemical properties, microstructural features, comparing thereinforcement effect of dredger fill in different stage.
     The soil consolidation deformation includes not only the primary consolidationdeformation, but also the secondary consolidation deformation. The primary consolidationdeformation is a deformation process that gradually eliminating the water in the pore ofsoil and the excess pore water pressure dissipating gradually, the effective stress increasinggradually, until the excess pore water pressure is completely dissipated; the secondaryconsolidation deformation is after the excess pore water pressure is completely dissipated,under the condition of effective stress is invariable, the soil particle surface hydrated filmintegrating and soil particle structure adjusting caused as time growth and slow theincrease of soil skeleton creep deformation. For the dredger fill after vacuum preloading,the post-construction settlement is very large, cannot be ignored. Thus, this paper testedand analysised the primary consolidation deformation and secondary consolidation characteristics of Tianjin and Dalian dredger fill, it is proved the primary consolidationcoefficient and secondary consolidation coefficient were not with a constant, but with theconsolidation pressure changes, compared the primary consolidation and secondaryconsolidation properties; Also discusses the influence of the state of soil consolidation,pre-load, add lotus and add lotus time to the secondary consolidation coefficient
     The settlement curves of the straight-line vacuum preloading and the step vacuumpreloading were not smooth linear, there were many discontinuous points indwell them,existed some certain errors, that made the settlement curves deviating from the real value.The sources on errors were affected by external environment factors and human readingerrors and the instrument measuring precision, and the degree of influence wasunknowable, That influence made the settlement curves deviating from the real value andaffected on the final settlement prediction, to accurately predict the soil settlement was adifficult problem. According to this problem, the nonlinear wavelet threshold denosingmethod was used to disposal the monitoring settlement curves of Tianjin and Daliandredger fill, extracted stable data to better predict the final settlement.
     At last, according to the problem that commonly theory calculate methods onlyconsidered the primary consolidation settlement, and ignoring the secondary consolidationsettlement, the prediction results had a certain gap with actual settlement, made thecalculation results difficulty to meet the design requirements. So the BP neural networkmodel was put forward to predict the settlement of dredger fill. And training the settlementdata of the straight-line vacuum preloading and the step vacuum preloading after denoised,fully learning the regularity of samples, predicting the final settlement and analysis theprediction results.
     This paper was baesd on laboratory simulation test, proposed two vacuum preloadingmethods: the straight-line vacuum preloading and the step vacuum preloading, usedphysical, chemical and microscopic test means, comparatively analysised the materialmigration rules, the strength properties and microstructure characteristic of the twomethods in the process of consolidation; and analysised the primary consolidation andsecondary consolidation characteristics, discussed influencing factors of the secondaryconsolidation coefficient; at last, using the nonlinear wavelet threshold denosing methodto disposal the monitoring settlement curves, eliminated the influence of the accidentalerrors to the settlement curves, and then set up the BP neural network to predict the final settlement, analysised the reinforcement effect of the two methods, provided a theory basisfor speeding up the consolidation efficiency of dredger fill, and finally served forengineering.
引文
[1]王清,肖树芳.害己软土的工程地质研究现状[J].世界地质,2000,19(3):253~257.
    [2]张中琼.高粘粒含量吹填土快速加固的室内模拟试验研究[D].长春:吉林大学硕士学位论文,2008.
    [3]宋晶,王清,孙铁,李晓茹,张中琼,焦志亮.吹填土自重沉淤阶段孔隙水压力消散的试验研究[J].岩土力学,2010,31(9):2935-2940.
    [4]宋晶,王清,陈慧娥,孙铁,张中琼,张鹏.高粘性高盐量吹填土固结过程孔隙分维特征[J].吉林大学学报(地球科学版),2010,40(2):361-367.
    [5]樊耀星,陈合爱,张长生.真空预压法加固淤泥地基的效果分析[J].南昌大学学报工科版,2006(12).
    [6]易图斌.袋装砂井加固软土的施工技术[J].路基工程,2001,(03).
    [7]AliH. Mahfouz, LiuHanlong, C.F.Chiu, GaoYufeng. ZhangXiuyong. Laboratory study for effects ofvacuum preloading on physical and mechanical properties of soft clayey soils [J].Journal of SoutheastUniversity (English Edition).2005(21).
    [8]岑仰润.真空预压加固地基的试验与理论研究[D].杭州:浙江大学博士学位论文,2003
    [9]郭全元.吹填土真空预压工程实例分析[J].铁道勘察,2006,(3):48~50.
    [10]娄炎.真空排水预压法加固软土技术[M].北京:人民交通出版社,2002.
    [11]宋晶,王清,夏玉斌,陈允进,陈慧娥,苑晓青.真空预压处理高粘性吹填土的物理化学指标[J].吉林大学学报(地球科学版),2011,41(5):1476-1480.
    [12]Kjellman W. Consolidation of clay by means of Atmospheric Pressure [A]. Proc.Conference onSoil Stabilization MIT [C]. Boston,1952.
    [13]Halton,邱基骆译.费城国际机场跑道的软基加固[J].港口工程,1982.1.
    [14]Holton G R. Vacuum stabilization of subsoil beneath runway extension at Philadelphiainternational airport. Proc. Ⅵ ICSMFE,1965.
    [15]三立正人,大西关雄.大阪南港用降低地下水位的方法加固地基[J].水利水运科技情报,1985.2.
    [16]小原幸一等,游越华译.超软地基的加固工程-大气压加固法的试验施工[J].港口译丛,1980,2.
    [17]Mikasa M A. Soil improvement by dewatering Osaka South Proc[C].1981.
    [18]Arutiunian R N. Vacuum-Accelerated Stabilization of Liquefied Soils in Landslide Body [C].1983.
    [19]正木树山等.港湾大面积填筑地基的加固技术[J].港口工程,1984,1.
    [20]黄文熙.十年来中国水利科学的成就[J].科学通报,1959,2:686-689.
    [21]中国人民解放军.大型油罐工程中采用试水预压加固软弱地基[J].建筑技术通讯(建筑工程),1972,12:4-10.
    [22]唐敏,张美燕.天津新港地区软基加固可行性研究[J].港口工程,1983,1:17-25+52.
    [23]龚晓南.地基处理手册第二版[M].北京:中国建筑工业出版社,2000.
    [24]陈环,严弛等.真空预压加固软基效果分析[J].天津大学学报,1991(07):63-67.
    [25]刘翼熊,叶柏荣,钱征.排水预压法加固港口软土地基的一些新进展[M].天津:天津科学技术出版社,1987,11.
    [26]陈环,鲍秀清.负压条件下土的固结有效应力[J].岩土工程学报,1984,6(5):39-47.
    [27]闫澎旺,陈环.用真空加固软土地基的机制与计算方法[J].岩土工程学报,1986,8(2):35-44.
    [28]陈环.真空预压法机理研究十年[J].港口工程,1999,4.
    [29]高志义.真空预压法的机理分析[J].岩土工程学报,1989,7(4):45-55.
    [30]娄炎.真空排水预压法的加固机理及其特征的应力路径分析[J].南京水利科学研究院水利水运科学研究,1990,3(1):99-106.
    [31]董志良.真空预压加固软基技术的理论与实践[C].1998年广东省土力学与基础工程学术交流大会论文集,1998,12.
    [32]李丽慧,王清,王剑平,王年香.真空排水预压下土体变形的应力路径分析[J].工程地质学报,2001,9(2):170.
    [33]候红英.真空预压法在大型刚性基础上地基处理中的应用研究[D].吉林大学硕土学位论文,2001.
    [34]龚晓南,岑仰润.真空预压加固软土地基机理探讨[J].哈尔滨建筑大学学报,2002,35(2):7-10.
    [35]彭劼,刘汉龙,陈永辉.真空-堆载联合预压法加固机理讨论[J].河海大学学报(自然科学版),2003,31(5):560-563.
    [36]梅国雄,徐楷,宰金珉,殷宗泽.真空预压加固软土地基变形机理的探讨[J].岩土工程学报,2006,28(9):1168-1172.
    [37]王绪民,赵若华,苗永刚.堆载预压与真空预压加固软土地基机理的比较分析[J].工程勘察,2009,9:9-12.
    [38]雷鸣,王星华,唐依民.基于孔压实测资料的真空预压机理及沉降计算探讨[J].水文地质工程地质,2010,37(6):81-90.
    [39]张仪萍,严露,俞亚南,刘伟超.真空预压加固软土地基变形与固结计算研究[J].岩土力学,2011,32(1):149-154.
    [40]沈珠江,陆舜英.软土地基真空排水预压的固结变形[J].岩土工程学报,1986,8(3):7-15.
    [41]高志义,张美燕,刘立珏,姜朴.真空预压加固的离心模型试验研究[J].港口工程,1988(3):45-50.
    [42]尚世佐.真空联合堆载预压在上海某装卸区的试验研究[J].水运工程,1988(3):3-10.
    [43]朱建才,温晓贵,龚晓南,岑仰润.真空排水预压法中真空度分布的影响因素分析[J].哈尔滨工业大学学报,2003,35(11):1400-1404.
    [44]温晓贵,朱建才,龚晓南.真空堆载联合预压加固软基机理的试验研究[J].工业建筑,2004,4(5):40-43.
    [45]朱建才,温晓贵,龚晓南.真空排水预压加固软基中的孔隙水压力消散规律[J].水利学报,2004,(8):123-128.
    [46]张功新,董志良,莫海鸿等.真空预压中真空度及其测试和分析[J].华南理工大学学报(自然科学版),2005,33(10):57-61.
    [47]张功新,莫海鸿,董志良等.真空预压中真空度与孔隙水压力的关系分析[J].岩土力学,2005,26(12):1949-1952.
    [48]颜永国.真空荷载下不同颗粒级配软土真空度传递规律试验研究[J].水运工程,2010,10:110-112.
    [49]朱群峰,高长胜,杨守华,等.超软淤泥地基处理中真空度传递特性研究[J].岩土工程学报,2010,32(9):1429-1433.
    [50]李宁,李向凤,吴跃东.真空压力传递规律与渗透系数关系的试验研究[J].路基工程,2011,(4):101-103.
    [51]李就好.真空-堆载联合预压法在软基加固中的应用[J].岩土力学,2003,20(4):58-62.
    [52]Chu J, Yan S W, Yang H.Soil improvement by the vacuum preloading method for an oil storagestation[J].Geotechnique,2000,50(6):625-632.
    [53]严蕴,房震,花剑岚.真空堆载预压处理软基效果的室内试验研究[J].河海大学学报(自然科学版),2002,30(5):118-121.
    [54]闫澍旺,傅海峰,刘润等.真空预压机理模拟装置及典型示范结果[J].天津大学学报,2005,38(7):611-614.
    [55]吴春勇.真空联合堆载预压软土路基稳定控制与沉降预测[D].长春:吉林大学博土学位论文,2007.
    [56]吴春勇.真空预压加固深度分析与探讨[J].东北水利水电,2010,12:1-4.
    [57]朱超,张季超,刘晨.真空预压处理广州南沙区软基的加固深度探讨[J].岩土工程学报,2010,32(2):422-425.
    [58]吴迪.真空预压地基处理的加固深度研究[J].水利与建筑工程学报,2011,9(6):51-54.
    [59]张诚厚.真空作用面位置及排水板间距对加固效果的影响[J].岩土工程学报,1990(1):56-60.
    [60]Harvey, Judith A.F. Vacuum Drainage to Accelerate Submarine Consolidation at Chek Lap Kok,Hong Kong.Ground Engineering.1997(7):34-36.
    [61]王永强.真空预压荷载下地基土的静载试验分析[J].中国港湾建设,1999,2,27-28.
    [62]Leong E.C et al.,Soil Improvement by surcharge and vacuum preloading[J]. Geotechnique,2000(5):601-605.
    [63]张泽鹏,李约俊,冯淦清等.塑料排水板在真空预压加固软基中的应用[J].广州大学学报(自然科学版),2002,1(2):68-71.
    [64]娄炎.“真空预压加固”中使用的密封膜[J],公路,2003(9):98-100.
    [65]胡珩.真空预压法加固机理和加固效果研究[D].南京:河海大学硕士论文,2007.
    [66]徐宏,邓学均,齐永正,赵维炳.真空预压排水固结软土强度增长规律性研究[J].岩土工程学报,2010,32(2):285-290.
    [67]孙立强,闫澎旺,李伟,吴坤标.超软土真空预压室内模拟试验研究[J],岩土力学,2011,32(4):984-990.
    [68]闫澎旺,孙立强,李伟,吴坤标.真空预压加固超软土工艺的室内模拟试验研究[J].岩土工程学报,2011,33(3):341-347.
    [69]刘声向.真空联合堆载预压法在软基处理工程中的应用研究[D].长沙:湖南大学硕士论文,2009.
    [70]罗戌.真空联合堆载预压法软基基加固特性及地下水位变化研究[D].南京:河海大学硕士论文,2005.
    [71]Cognon J M, Juran I, Thevanayagam S. Vacuum consolidation technology-principles and firldexperience[J].Geotechnical Special Publication, Publ by ASCE, New,1994,2(40).
    [72]Bergado D T, Chai J C, Miura N, Balasubramaniam S. PVD Improvement of soft Bangkok Claywith combined vacuum and reduced sand Embankment preloading[J].Geotechnical Engineering,1998,29(2):95-122.
    [73]王祥,李小和,周顺华.真空联合堆载预压处理高速铁路软土地基效果检验[J].铁道工程学报,2008(12):45-49.
    [74]秦玉生,李智毅,曹大正,顾立军,孙永军.低位真空预压法加固软土地基技术研究[J].现代地质,1999,13(4):471-477.
    [75]高志义,张美燕,刘立钰.真空预压联合电渗法室内模型试验研究[J].中国港湾建设,2000,10(5):58-61.
    [76]李丽慧.王清.王年香.等.立体式真空降水法分层加固吹填土的可行性研究[J].岩土工程学报,2002,24(4)522-524.
    [77]夏玉斌,刘强,邓磊.直排式真空预压地基处理方法:中国,CN200710306072.9[P].2008,07-09.
    [78]张中琼,王清,秦炎,陈慧娥,李晓茹,宋晶.快速加固吹填土的室内模拟试验[J].吉林大学硕学报(地球科学版),2010,40(3):645-650.
    [79]应舒,高长胜,黄家青.新吹填以你地基浅层处理试验研究[J].岩土工程学报,2010,32(12):1956-1960.
    [80]彭劼,苏波,董江平,王柏欢.双层滤管无砂垫层真空预压法处理超软海底吹填淤泥[J].河海大学学报(自然科学版),2011,39(6):676-681.
    [81]朱平,孙立强,闫澎旺,纪玉诚.可控通气真空预压室内模型试验及其机制分析[J].岩石力学与工程学报,2011,30(1):3141-3148.
    [82]周秋娟,陈晓平.软土次固结特性试验研究[J].岩土力学,2006,27(3):404-408.
    [83]王盛源.饱和黏性土主固结与次固结变形分析[J].岩土工程学报,1992,14(5):70-75.
    [84]张诚厚.高速公路软基处理[M].北京:中国建筑工业出版社,1997.
    [85]倪一鸿.公路荷载作用下软土地基次固结[J].公路,1999,(10):56-61.
    [86]张迎春,刘吉福,魏金霞.砂土地基主、次固结度黏弹性分析[J].水运工程,2003,(8):20-24.
    [87]刘增贤.公路软基次固结及其工程意义探讨[J].公路,2006,(2):73-76.
    [88]Tayor D W,Merchant W.A theory of day consolidation accounting for secondary compressions[J].Journal of Mathematics and Physics,1940,19(23):167.
    [89]陈宗基.固结及次固结时间效应的单维问题[J].土木工程学报,1958,5(1):1-3.
    [90]De Jong G D J, Berruijt A.Primary and secondary consolidation of a spherical clay sample[A].Proc.5thicsmfe[C], Paris:1961,2:254.
    [91]Bierrum L.Engineering geology of normally consolidated marine clays as related to the settlementof buildings[J].Geotechnique,1967,17(2):83-118.
    [92]刘世明.软粘土的次固结变形特性研究[D].杭州:浙江大学博士学位论文,1988.
    [93]Schmertmann J H. The mechanical aging of soil[J]. Journal of the Geotechnical EngineeringDivision, American Society of Civil Engineers,1991,117(9):1288-1330.
    [94]李作勤.黏土固结变形的时间性[J].岩土工程学报,1994,14(6):60-68.
    [95]曾玲玲,刘松玉,洪振舜,杜延军,邵俐.天然沉积软黏土的次固结变形机理分析[J].岩土工程学报,2010,32(7):1042-1046.
    [96]马时冬.上海粘土的主、次固结性质[J].上海地质,1981.
    [97]Mosleh A.Application of the Ca/Ccconcept to secondary compression of sabkha soils[J]. CanGeotech J,1998,35:15-26.
    [98]冯志刚,朱俊高.软土次固结变形特性试验研究[J].水力学报,2009,40(5):583-588.
    [99]张丽娟,李彰明,杨学强.动力排水固结加固后南沙港区软土次固结性状试验研究[J].中国港湾建设,2011,176(5):40-42.
    [100]Bjerrum L.Embankments on soft ground[A].Proc Special Conference on Performance of Earthand Earth Supported Structures[C].ASCE,1972,1-54.
    [101]Newland P L, Allely B H.A Study of the Consolidation Characteristics of a Clay [J].Geotechnique,1960,10:62-69.
    [102]Mesri, Godlewski. Time and Stress-compressibility Inter-relationship[J]. Journal of theGeotechnical Engineering Division,1977,103(5):417-430.
    [103]Johnson.Pre-compression for improving foundation soil[J].ASME.J Soil Found Div,1970,96(1).
    [104]Leroueil S,Kabbaj M,Tavenas F,et al.Stress-strain-strain rate relation for the compressibility ofsensitive natural clays[J].Geotechnique,1985,35(2):159-180.
    [105]Nash D F T,Sills G C,Davison L R.One-dimensional consolidation testing for soft clay fromBothkennar[J].Geotechnique,1992,42(2):241-256.
    [106]廖红建,苏立君,白子博明,赤石胜.次固结沉降对压缩时间曲线的影响研究[J].岩土力学,2002,23(5):536-540.
    [107]殷宗泽,张海波,朱俊高等.软土的次固结[J].岩土工程学报,2003,25(5):521-526.
    [108]周秋娟,陈晓平.软土蠕变特性试验研究[J].岩土工程学报,2006,28(5):626-630.
    [109]余湘娟,殷宗泽,董卫军.荷载对软土次固结影响的试验研究[J].岩土工程学报,2007,29(6):913-916.
    [110]曹玉苹.论饱和黏性土次固结系数与含水量的关系[J].中国港湾建设,2007,(3):21-23.
    [111]邵光辉,刘松玉.海相结构软土的次固结研究[J].岩土力学,2008,29(8):2057-2062.
    [112]李军霞,王常明,张先伟,王彬.两种滨海相软土固结特性的试验研究[J].水文地质工程地质,2009,(5):35-39.
    [113]刘用海,李水明,俞伯华.宁波软土次固结特性试验研究[J].土工基础,2009,23(3):77-79.
    [114]李国维,盛维高,蒋华忠,殷宗泽.超载卸荷后在压缩软土的次压缩特征及变形计算[J].岩土工程学报,2009,31(1):118-123.
    [115]孙德安,申海娥.上海软土的流变特性试验研究[J].水文地质工程地质,2010,37(3):74-78.
    [116]秦现军,李瑞玲,张明.吹填淤泥次固结特性试验研究[J].施工技术,2011,40:54-56.
    [117]邹宇,王清,苑晓青,等.考虑预压荷载对吹填土次固结系数影响的试验研究[J].工程地质学报,2011,19:343-347.
    [118]张先伟,王常明.软土结构性对次固结系数的影响[J].岩土力学,2012,33(2):476-482.
    [119]刘浩,李亮,赵炼恒,王曙光.京沪高速铁路阳澄湖段软土的蠕变特性和次固结特性试验研究[J].铁道学报,2012,34(2):86-93.
    [120]成礼智,王红霞,罗永.小波的理论与应用[M].北京:科学出版社,2004.
    [121]Mallat S.Multiresolution representations and wavelets.(Ph. D. Thesis).Philadelphia:University ofPennsylvania,1988.
    [122]秦前清等.实用小波分析[M].西安:西安电子科技大学出版社,1994.
    [123]田其煌,洪宝宁.高速公路软基监控网上申报系统的开发及应用[J].路基工程,2006,(5):37-39.
    [124]Grossman A, Morlet J. Decomposition of hardy functions into square integrable wavelets ofconsant shape [J]. Math. Anal,1984,15(4):723-736.
    [125]Daubechies I. Orthonormal bases of compactly supported wavelets[C].Pure Appl. Math,1988,41:909-996.
    [126]Meyer Y. Wavelets and operators[D]. Cambridge, UK: Cambridge University Press,1992.
    [127]Mallat S.Multiresolution approximations and wavelet orthonormal bases of L2(R)[J].Amer, Math,1989,315:69-87.
    [128]Mallat S, Hwang W L.Singularity Detection and Processing with Wallats[C].IEEE Transaction onInformation Theory.1992,38(2):617-643.
    [129]Mallat S.Theory for multi-resolution signal decomposition: The wavelet representation[C]. IEEETrnasactionson Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
    [130]Coifman R, Wickerhauser M. Entropy based algorithms for best basis selection[C]. IEEETrnasactionson on IT,1992,38(2):713-718.
    [131]Chen S, Donoho D L. Atomic Decomposition by Basis Pursuit[J].SIAM Journal on ScientificComputing,1999,20(1):78-85.
    [132]Lotric U.Wavelet based denoising integrated into multilayered perception[J]. Neurocomputing,2004,62(2):179-196.
    [133]Renaud O,Starck J L,Murtagh F.Wavelet based combined signal filtering and prediction [J]. IEEETrnasactions Systems Man and Cybernetics Part B-Cybernetics.2005,35(6):1241-1251.
    [134]邓东皋,彭立中.小波分析[J].数学进展,1991,(03).
    [135]王建忠.多尺度B样条小波边缘检测算子[J].中国科学(A辑),1995,25(4):426-437.
    [136]Chen B H,Wang X Z, Yang S H, et al.Application of wavelets and netural networks to diagnosticsystem development,1,feature extraction[J]. computers&Chemical Engineering,1999,23(7):899-906.
    [137]文鸿雁.小波多分辨分析在变形分析中的应用[J].地壳形变与地震,2000,20(3):27-32.
    [138]李刚,谢云,陈正汉,李建平.小波分析在试验信号消噪方面的应用[J].岩土力学,2003,24(1):103-105.
    [139]Zhang J R. Study of signal of Roll Eccentricity Based on Wavelet Thresholding De-nosing [C].20082ndInternational Conference on Anti-Counterfeiting, Security and Identification,2008,48-50.
    [140]李长冬,唐辉明,胡斌,李东明,倪俊.小波分析和RBF神经网络在地基沉降预测中的应用研究[J].岩土力学.2008,29(7):1917-1922.
    [141]张鹏.基于小波理论的白鹤隧道围岩稳定性非线性研究[D].长春:吉林大学博士学位论文,2009.
    [142]孙昊月.堆载预压法处理软土地基沉降量预测研究[D].长春:吉林大学博士学位论文,2010.
    [143]王军阵,王建斌,张轩硕.超声导波管道缺陷检测的小波阈值去噪法[J].国外电子测量技术,2010,29(8):33-35.
    [144]蔡敏.小波阈值法降噪分析与改进[J].信息与电子工程,2011,9(2):211-214.
    [145]秦毅,王家序,毛永芳.基于软阈值和小波模极大值重构的信号降噪[J].振动、测试与诊断,2011,31(5):543-547.
    [146]廖重贵.小波分析在变形监测中的应用研究[D].南昌:江西理工大学硕士论文,2010.
    [147]朱华.小波分析及其在信号降噪中的应用[D].武汉:武汉理工大学硕士论文,2007.
    [148]张郝.基于小波变换的图像去噪方法研究[D].北京:北京交通大学硕士论文,2008.
    [149]Terzaghi K, Erdaumechanik and Bodenphysikalischer Grundlage[J], Lpz. Deuticke,1925:5-70.
    [150]T.W.Lambe. Method of Estimating Settlement[J], Soil Mech. and Found. Div, ASCE,1964,90(5):43-67.
    [151]曹杰.排水固结法在不同应力路径条件下引起软土地基沉降的初步研究[D].南京:河海大学硕士论文,2006.
    [152]赵维柄,钱家欢.设置砂井的软粘土地基动力固结[J].港口工程,1985,(3):47-54.
    [153]Sandhu R S, Wilson E L. Finite element analysis of seepage in elastic media[J]. Eng Mech DivASCE,1969,95(3):641-652.
    [154]沈珠江.软土地基真空排水应用的固结变形分析[J].岩土工程学报,1998,(3):7-15.
    [155]曾国熙,龚晓南.软土地基固结有限元分析[J].浙江大学学报,1983,(1):1-14.
    [156]沈珠江.软土工程特性和软土地基设计[J].岩土工程学报,1998,20(1):100-111.
    [157]梅国雄.固结有限层理论及其应用[J].岩石力学与工程学报,2002,21(12):1908-1912.
    [158]殷建华,Jack I. Clark.土体与时间相关的一维应力-应变性状、弹塑性模型和固结分析[J].岩土力学,1994,15(3):65-80.
    [159]沈珠江.结构性粘土的弹塑性损伤模型[J].岩土工程学报,1993,15(3):30-38.
    [160]丁洲祥,朱合华等.地基沉降大变形有限元分析的几何刚度效应[J].岩土力学,2005,30(5):1275-1280.
    [161]殷宗泽,朱汉,吴任.沪宁高速公路地基沉降有限元计算分析[J].水利水电科技进展,1998,18(2):22-26.
    [162]Asaoka A.Observational procedure of settlement prediction[J],Soils and Foundation,1978,18(4):87-10.
    [163]王志亮.软基路堤沉降预测和计算[M].南京:河海大学博士学位论文,2004.
    [164]陈尚勇,侍倩.利用R.Usher模型估算软土地基最终沉降量[J].公路交通科技,2003,(10):24-26.
    [165]林烜.船用舵机电伺服单元单神经元PID控制[D].哈尔滨:哈尔滨工业大学硕士论文,2008.
    [166]赵国求.脑科学研究的三个层面[M].北京:科学技术与辩证法,2000.
    [167]赵国求.百年脑科学[J].武钢大学学报,1999.
    [168]阴辉.神经网络原理及其在有源电力滤波器中的应用[D].烟台:烟台大学硕士论文,2008.
    [169]赵国求.脑科学研究的三个层面[M].北京:科学技术与辩证法,2000.
    [170]刘金.人工神经网络在材料加工中的应用[D].长春:吉林大学硕士学位论文,2000.
    [171]刘勇健.用人工神经网络预测高速公路软土地基的最终沉降[J].中国公路学报,2003,4.
    [172]朱红霞.神经网络模型在高速公路软基沉降预测中的应用[D].天津:天津大学,2004.
    [173]汤梅芳,王炳龙.BP神经网络在悬浮桩复合地基沉降预测中的应用[J].华东交通大学学报,2006(23),15-18.
    [174]金智涛.基于神经网络的软土路基最终沉降量的分析研究[J].[D].武汉:武汉理工大学,2006.
    [175]谢华.高速公路软土地基沉降预测模型研究与ES实现技术[D].南京:东南大学,2006.
    [176]李长冬,唐辉明.小波分析和RBF神经网络在地基沉降预测中的应用研究[J].岩土力学,2008,7(7):1917-1922.
    [177]李红霞,赵新华,迟海燕,张建军.基于改进BP神经网络模型的地面沉降预测及分析[J].天津大学学报,2009,42(1):60-64.
    [178]冯瑞玲.路堤下水泥搅拌桩复合地基沉降预测研究[J].北京:北京交通大学硕士学位论文,2010.
    [179]赵正信.BP神经网络在地基沉降量预测中的应用[J].中国水运,2011,11(2):167-169.
    [180]唐大雄,张文姝,王清,等.工程岩土学[M].北京:地质出版社,1998.
    [181]沈孝宇.饱水粘性土主固结理论[J].地球科学-中国地质大学学报,2005,04,111-115.
    [182]夏玉斌,刘强.真空预压垂直铺塑侧向密封技术在软基处理工程中的试验与应用[J].水运工程,2006,10(10):212-224.
    [183]夏玉斌,刘强,邓磊.直排式真空预压地基处理方法:国,CN200710306072.9[P].2008,07-09.
    [184]夏玉斌,陈允进.直排式真空预压法加固软土地基的试验与研究[J].工程地质学报,2010,18(3):376-384.
    [185]陈允进,宋晶,夏玉斌,等.真空预压法加固吹填土的孔隙水压力试验研究[J].工程地质学报,2010,18(5):703-708.
    [186]王艳.真空预压法处理地基的加固特性及数值模拟[D].同济大学硕士论文,2007.
    [187]杨静.高粘粒含量吹填土加固过程中结构强度的模拟试验研究[D].长春:吉林大学博士学位论文,2009.
    [188]宋晶.分级真空预压法加固高粘性吹填土的模拟试验与三维颗粒流数值分析[D].长春:吉林大学博士学位论文,2011.
    [189]刘莹.吹填土固化后结构强度的形成及影响因素[D].长春:吉林大学硕士学位论文,2001.
    [190]代培基.真空预压法在永定新河防潮闸软土基础处理中的应用及效果分析[D].天津大学硕士学位论文,2010.
    [191]成玉祥.滨海吹填土结构强度形成机理与真空预压法关键技术研究[D].长安大学博士学位论文,2008.
    [192]Xiao-qing YUAN, Qing WANG, Jing SONG. A study on the shear strength mechanism of dredgerfill affected by soluble salt[C]. Auckland: International Association for Engineering Geology Congress2010,9:3919-3925.
    [193]周晖,房营光,曾铖.广州饱和软土固结过程微孔隙变化的试验分析[J].岩土力学,2010,30(1):138-144.
    [194]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出社,1996.
    [195]TOVEY N K.Quantitative analysis of electron micrographs of soil structure[C]//Proceedings ofthe International Symposium on Soil Structure(Goteborg). Stockholm:Swedish GeotechnicalInstitute,1973,1:50-57.
    [196]Washburn E W. Note on a method of determining the distribution of pore sizes in a porousmaterial [C]. Proceedings of the National Academy of Sciences,1921.
    [197]Micromeritics Instrument Corp.(2001). An Introduction to the Physical Characterization ofMaterials by Mercury Intrusion Porosinetry with Emphasis On Reduction and Presentation ofexperimental Data,2001:1-23.
    [198]王清,王剑平.土孔隙的分形几何研究[J].岩土工程学报,2000,22(4):496-498.
    [199]雷祥义.中国黄土的孔隙类型与湿陷性.中国科学,1987,12(B辑):309~318.
    [200]胡瑞林等.黄土湿陷性的微结构效应.工程地质学报,1999,7(2):161~16.
    [201]刘松玉,张继文.土中孔隙分布的分形特征研究[J].东南大学学报,1997,27(3):127-130.
    [202]姜岩,雷华阳,郑刚,等.动荷载作用下结构性软土微结构变化的分形研究[J].岩土力学,2010,31(10):3075-3080.
    [203]谢宁,姚海明.土流变研究综述[J].云南工业大学学报,1999,15(1):52-56.
    [204]Crawford C B.Interpretation of consolidation tests[J].Soil Mech Found Div, ASCE, SM5,1964,90(5):87-102.
    [205]朱鸿鹄,陈晓平,张芳枝.软黏土次固结系数变化规律研究[A].中国力学学会学术大会,2005.
    [206]Walker L. Undrained creep in a sensitive clay[J].Geotechnique,1969,19(4):515-529.
    [207]Mesri G, Godlewdki P M. Time and Stress Compressibility Interrelationship[J].GeotechnicalEngineering Division, ASCE,1977,103(5):417-429.
    [208]Brendan C, O’Kelly. Compression and consolidation anisotropy of some soft soils[J].Geotechnical and Geological Engineering,2006,24:1715-1728.
    [209]靳建明,王奎华.软土密实度瞬态锤击测试信号的小波多分辨分析[J].岩石力学与工程学报,2004,23(13):2271-2275.
    [210]章瑶,刘春波,潘丰.最小二乘Littlewood-Paley小波支持向量机在发酵过程建模中的应用[J].东南大学学报(自然科学版),2008,38(s):107-110.
    [211]彭玉华.小波变换与工程应用[M].北京:科学出版社,1999.
    [212]张鹏.基于小波理论的白鹤隧道围岩稳定性非线性研究[D].长春:吉林大学博士学位论文,2009.
    [213]文鸿雁.基于小波理论的变形分析模型研究[D].武汉:武汉大学博士学位论文,2004.
    [214]Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika,1994,81(3):425-455.
    [215]张静.吉林省西部地区分散性季冻土的分散机理研究[J].长春:吉林大学博士论文,2010.
    [216]Rnmelhart D E, Mc Celland J. Parallel Distributed Processing Explorations in the Micristructureof Cognition. Cambridge, Bradford Books, MIT Press. Pp. Vo1-Vo2,1986.
    [217]Rnmelhart D E, Hinton G E, Williams R J. Learning representions by back-propagation errors.Nature,1986(323):533-536.
    [218]王永骥,涂键.神经元网络控制[M].北京:机械工业出版社,1998.
    [219]Hecth-Nielsen R. Application of Back Propagation Neural Nets[J]. Neural Networks,1988,(1):131-139.
    [220]Hecth-Nielsen R. Theory of Back Propagation Neural Networks[J].Proc of IJCNN,1989,1:593-603.
    [221]Cyberko, G. Approximations by Super Positions of a Sigmoid Function[J]. Math Control SingualSystem,1989,1:45-89.
    [222]Martain T, Mark H. Neural Network Design[M].北京:机械工业出版社,2000.
    [223]薛新华,姚晓东.边坡稳定性预测的模糊神经网络模型[J].工程地质学报,2007,15(1):78-82.
    [224]R.P.Lippmann.An Introduction to Computing with Neural Nets[M].IEEE ASSP Magazine,1989.
    [225]阙金声.三峡工程涪陵区水库塌岸非线性预测研究[D].长春:吉林大学博士论文,2007
    [226]Kuarychi. On Hidden Nodes for Neural Nets[J].IEEE Transactions on Cricuits and Systems,1989,36(5):661-664.
    [227]王国栋,刘相华等.金属轧制过程人工智能优化[M].北京:冶金工业出版社,2000.
    [228]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2001.
    [229]张青贵.人工神经网络导论[M].北京:中国水利水电出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700