用户名: 密码: 验证码:
不同碳酸钙含量石灰性土壤对外源污染物的吸附解吸
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国北方地区分布着大面积的石灰性土壤(Calcareous Soil),而且大部分是重要的农田土壤。由于土壤剖面中含有不同数量的碳酸钙或碳酸氢钙等石灰性物质,一方面可以左右着土壤中植物营养物质的转化和存在形态,影响植物营养元素的有效性,另一方面也必将影响外源进入到土壤中的各种污染物质的化学行为和生物活性。本项研究以不同碳酸钙含量石灰性土壤为供试材料,在分析其基本性质的基础上,重点研究土壤中碳酸钙对外源重金属和一些有机污染物吸附容量和吸附特性的影响,以期为明确土壤中碳酸钙的环境效应,进一步评断含有不同数量碳酸钙的石灰性土壤的环境容量和承载外源污染物的能力提供数据参考和理论依据。研究结果表明:
     (1)供试石灰性自然土壤的pH值在7.78~8.18之间,碳酸钙含量在30.51g.kg~(-1)~100.23g.kg~(-1)之间,有机质、粘粒差异不显著。供试培养石灰性土壤pH值在7.02~8.42之间,碳酸钙含量在8.61~227.94之间,有机质及粘粒含量均随着碳酸钙含量的增加而减少。碳酸钙对不同酶活性影响不同,低碳酸钙含量(本试验为3%以内)对碱性磷酸酶活性有促进作用,高碳酸钙含量(本试验为3%以上)则对碱性磷酸酶活性起抑制作用;低碳酸钙含量(本试验为5%以内)对脲酶及过氧化氢酶活性起促进作用,高碳酸钙含量范围内(本试验为5%以上)起抑制作用;碳酸钙对转化酶活性有抑制作用。
     (2)土壤pH与碳酸钙含量呈极显著非线性相关关系。在碳酸钙含量较低时(<89.91g.kg~(-1)),pH随碳酸钙含量的增加而增加较快,但随着碳酸钙含量的继续增加,pH变化较慢,直至达到平衡。
     (3)石灰性土壤对外源重金属铅及铜具有很大的吸附容量,对重金属铅的最大吸附量可以达到11234mg.kg~(-1)~17513mg.kg~(-1),对铜的最大吸附量可以达到9856mg.kg~(-1)~13039mg.kg~(-1)之间。而且对重金属铅和铜的最大吸附量随着土壤碳酸钙含量的增加而增加。石灰性土壤对被吸附重金属的吸附结合能很强,被土壤吸附铅的解吸率只有不到2%,吸附铜的解吸率也只有不到10%,而且土壤中碳酸钙含量越高,被吸附重金属的解吸率越小,说明土壤中的碳酸钙含量对于固持外源重金属具有重要意义。
     (4)外源重金属铅、铜进入石灰性土壤后,石灰性土壤中各形态铅、铜含量及所占比例均发生变化。可交换态及残渣态所占比例均下降,而碳酸盐态、铁锰氧化态及有机态所占比例均不同程度的有所增加,并有随着碳酸钙含量的增加可交换态及有机态有向碳酸盐结合态及铁锰氧化态转化的趋势,这是随碳酸钙含量增加石灰性土壤对重金属吸附容量增加的重要原因。
     (5)不同碳酸钙含量石灰性土壤对苯酚的最大吸附量介于2571mg.kg~(-1)~4930mg.kg~(-1)之间,邻苯二酚的最大吸附量介于3198mg.kg~(-1)~6211mg.kg~(-1)之间,土壤对邻苯二酚的吸附容量明显高于对苯酚的吸附容量。最大吸附量随着土壤碳酸钙含量的增加而减小。被土壤吸附苯酚的解吸率变化在12%~18%,被土壤吸附邻苯二酚的解吸率变化在16%~20%,解吸率很低,解吸率随着土壤碳酸钙含量的增加而增加。
     (6)不同碳酸钙含量石灰性土壤对金霉素的吸附容量不同,最大吸附量可以达到7253mg.kg~(-1)~13517mg.kg~(-1)。吸附量随碳酸钙含量的增加而逐渐减少。石灰性土壤对被吸附金霉素有较高的吸附强度,被土壤吸附金霉素的解吸率在4.89%~7.52%之间,仍有绝大多数金霉素被吸附于土壤当中。土壤中碳酸钙含量越高,被吸附的金霉素解吸率越大。
     (7)石灰性土壤对水溶性有机物具有较大的吸附能力,吸附率可以达到12.19%-40.54%。吸附率随碳酸钙含量的增加而逐渐减少。被土壤吸附的水溶性有机物解吸率为22.40%~30.66%。碳酸钙含量越高,土壤吸附水溶性有机物的强度越小,解吸率越大。
     (8)不同碳酸钙含量石灰性土壤对重金属的吸附量与对有机物的吸附量不同,土壤对重金属的吸附容量随碳酸钙含量的增加而增加,对有机物的吸附容量随碳酸钙含量的增加而减小。石灰性土壤对不同重金属及不同有机物的吸附容量及吸附强度均不同,实际中应根据碳酸钙含量及污染物种类科学确定石灰性土壤的环境容量。
Large area of calcareous soils distribution in the the northern China, and most areagricultural soils. The different number calcareous materials of calcium carbonate orhydrogen carbonate calcium carbonate in soil profile,on the one hand, can control thetransformation and existence form of plant nutrients in soils, on the other hand caneffect the chemical behaviror and bioactivity of various exogenous pollutants into thesoils. This study used calcareous soils with different content calcium carbonate asmaterials, and key research the effect of calcium carbonate in soil on adsorptioncapacity and adsorption characteristic of exogenous heavy metals and some organicpollutants which on the basis of analyzing the basic properties of selected materials. Theaim is to clear the environmental effects of calcium carbonate in soils and to furtherjudge the environmental capacity and bearing ability on exogenous pollutants ofcalcareous soils with different calcium carbonate. The study results show that:
     (1)The pH was7.78~8.18, the content of calcium carbonate is30.51g.kg~(-1)~100.23g.kg~(-1), and the content of organic matter and clay is no significant difference ofnatural calcareous soils. The pH of cultivated soils is7.02~8.42, the content of calciumcarbonate is8.61g.kg~(-1)~227.94g.kg~(-1), the content of organic matter and clay reducewith the increase of calcium carbonate content. The effect of calcium carbonate ondifferent enzyme is different. Low calcium carbonate (the test for less than3%) canpromote the activity of alkaline phosphatase, while high calcium carbonate (the test formore than3%) inhibite the acitivty of alkaline phosphatase; low calcium carbonate(the test for less than5%) can promote the activity of urease, while high calciumcarbonate can inhibite the activity of intertase.
     (2)Soil pH and calcium carbonate content are very significant nonlinear related.The pH increase with calcium carbonate on the low level (89.91g.kg~(-1)), but the pHincrease slowly by and by with the further increase of calcium carbonate, until it reachbalance.
     (3)Calcareous soils have high adsorption capacity on exxpgenous heavy metalPb and Cu. The biggest adsorption capacity on Pb is11234mg.kg~(-1)~17513mg.kg~(-1), andthe biggest adsorption capacity on Cu is9856mg.kg~(-1)~13039mk.kg~(-1). The biggestadsorption capacity of Pb and Cu increase with the increase of calcium carbonate. The adsorption strength of calcareous soil on Pb and Cu is very strong. The rate ofdesorption of Pb adsorpted on soils is only less than2%, the rate of desorption of Cu isless than10%, and the more of the calcium carbonate is soils, the smaller of desorptionrate of heavy metal. This show that calcium carbonate is great significance about fixedand retention exogenous heavy metals in soils.
     (4)The content and proportion of each Pb and Cu form is are change afterexogenous heavy metals entered calcareous soils. Exchangeable form and residue formsdecreased, while the carbonate-bound form,Fe-Mn oxides bound form and organicform all increase to different extend, and the exchangeable form and organic form havethe trend that turn to carbonate-bound form and Fe-Mn oxides bound form. This is theimportant reasons that the adsorption capacity of calcareous soil on heavy metalincrease with calcium carbonate content.
     (5)The biggest adsorption capacity of calcareous soil with different calciumcarbonate on phenol is2571mg.kg~(-1)-4930mg.kg~(-1), and the biggest adsorption capacityon catechol is3198mg.kg~(-1)~6211mg.kg~(-1), and higer than phenol biggest adsorptioncapacity. The biggest adsorption capacity decreases with the in crease of calciumcarbonate content. The desorption rate of phenol adsorpted on soils is12%~18%, thedesorption rate of catechol adsorpted on soils is16%~20%. The desorption rate is verylow and increases with the increase of calcium carbonate.
     (6)The adsorption of calcareous soil with different content calcium carbonate onchlortetracycline is different. The biggest adsorption capacity on chlortetracycline is7253mg.kg~(-1)~13517mg.kg~(-1), and decreases with the in crease of calcium carbonatecontent. Calcareous soil has higher adsorption capacity and adsorption strenghth onchlortetracycline. The desorption rate of chlortetracycline adsorpted on soils is4.89%~7.52%, and there are still most chlortetracycline adsorpted on soil. The higer ofthe calcium carbonate content is soils, the more of the desorption rate.
     (7)Calcareous soils has higer adsorption capacity on DOM.Adsorption rare is to12.19%~40.54%, and decreases with the in crease of calcium carbonate content. Thedesorption rate of DOM adsorpted on soil is to22.40%~30.66%. The more of calciumcarbonate content, the smaller of the adsorption stenghth on DOM, and the bigger ofdesorption rate.
     (8) The adsorption capacity of calcareous soil with different calcium carbonate on heavy metal and organic matters is different. The adsorption capacity of soil onheavy metal increases with the increase of calcium carbonate while the adsorptioncapacity on organic pollutant decreases with the increase of calcium carbonate. Theadsorption capacity and stenghth of calcareous soil on different heavy metal anddifferent organic matters is different. In practice, should based on calcium carbonatecontent and the varety of pollutants to sure the environmental capacity of calcareoussoils.
引文
1.艾海舰.2002.土壤持水性及孔性的影响因素浅析[J].干旱地区农业研究,20(3):75-79.
    2.安韶山,黄懿梅,刘梦云.2007.宁南山区土壤酶活性特征及其与肥力因子的关系[J].中国生态农业学报,15(5):55-58.
    3.鲍俊丹,石美,张妹婷,等.2011.中国典型土壤硝化作用与土壤性质的关系[J].中国农业科学,44(7):1390-1398.
    4.鲍士旦.2008.土壤农化分析[M].北京:中国农业出版社,204-205.
    5.鲍艳宇,周启星,万莹,等.2010.3种四环素类抗生素在褐土上的吸附和解吸[J].中国环境科学,10:1383-1388.
    6.蔡道基,单正军,朱忠林,等.2001.铜制剂农药对生态环境影响研究[J].农药学学报,3(1):61-68.
    7.陈宏,陈玉成,杨学春.2003.石灰对土壤中Hg、Pb的植物可利用性的调控研究[J].农业环境科学学报,22(5):549-552.
    8.陈育枝,张元元,袁希平,等.2006.动物四环素类抗生素现状及前景[J].兽药,11(3):16-17.
    9.戴全厚,刘国彬,翟胜,等.2007.侵蚀环境退耕撂荒地水稳性团聚体演变特征及土壤养分效应[J].水土保持学报,21(2):61-64,77.
    10.丁于辉,胡育筑,陈建秋.2011.金霉素在粉质黏壤土中的吸附与解吸行为研究[J].安徽农业科学,39(15):8979-8982.
    11.杜彩艳,祖艳群,李元.pH和有机质对土壤中Cd和Zn生物有效性影响研究[J].云南农业大学学报,2005,20(4):539-543.
    12.段建南,李保国,石元春,等.1999.干旱地区土壤碳酸钙淀积过程培养[J].土壤学报,36(3):318-326.
    13.方和平,章明奎,符娟林.2005.外源铅、铜、镉在长三角和珠三角农业土壤中的转化[J].生态环境,14(6):843-846.
    14.方卢秋,2010.铅在三峡库区消落带土壤中的吸附-解吸特性[J].重庆师范大学学报(自然科学版),27(3):27-31.
    15.封克.2005.第四章土壤矿物.中国土壤科学的现状与展望(论文集).中国土壤学会,110-117.
    16.付美云,周立祥.2006.垃圾渗滤液水溶性有机物在土壤中的吸附行为[J].农业环境科学学报,25(4):964-968
    17.高国瑞.1980.黄土显微结构分类与湿陷性[J].中国科学,12:1203-1208.
    18.高国瑞.1994.我国黄土湿陷性质的形成研究[J].南京建筑工程学院学报,2:1-8.
    19.高贤彪,高弼模,杨果,等.1991.山东省不同土类交换态铁含量分布及影响因子[J].土壤通报,22(4):163-164.
    20.高媛,孙红文.2008.菲在不同地质吸附剂上吸附/解吸的研究[J].环境化学,27(2):158-163.
    21.龚道新,汪传刚,邹雅竹,等.2007.咪鲜胺及其三种主要代谢物在六种水稻土中的吸附[J].土壤学报,44(1):90-96.
    22.国彬,姚丽贤,刘忠珍等.2011.广州市兽用抗生素的环境残留研究[J].农业环境科学学报,30(5):938-945.
    23.郭鹏,郭平,康春莉,等.2008.城市土壤吸附重金属动力学特征及其与土壤理化性质的关系[J].环境保护科学,34(6):23-26.
    24.郭玉文,王淑红,张玉龙,等.2008.黄土高原灌溉农田土壤团粒与碳酸钙关系研究[J].深圳大学学报理工版,25(3):314-319.
    25.郭玉文,加藤诚,宋菲,等.2004.黄土高原黄土团粒组成及其与碳酸钙关系的研究[J].土壤学报,41(3):362-368.
    26.韩凤祥,胡霭堂,秦怀英,等.1993.石灰性土壤环境中缺锌机理的探讨[J].环境化学,12(1):36-42.
    27.贺建群,等.1994.土壤中有效态Cd、 Cu、 Zn、 Pb提取剂的选择[J].农业环境保护,13(6):246-251.
    28.何振立.1998.污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社,276-303.
    29.侯放亮.2003.饲料添加剂应用大全[M].北京:中国农业出版社,41-45.
    30.胡德春,李贤胜,尚健,等.2006.不同改良剂对棕红壤酸性的改良效果[J].土壤,38(2):206-209.
    31.胡宁静,黄朋,骆永明,等.2010.X AF S研究不同pH下土壤对Pb的吸附[J].光谱学与光谱分析,30(12):3425-3429.
    32.胡小娜,南忠仁,王胜利,等.2009.干旱区绿洲灌漠土Cu、Zn和Pb的吸附解吸特征[J].生态环境学报,18(6):2183-2188.
    33.环境监测标准分析方法编写组.1983.环境监测分析方法[M].北京:中国环境出版社.369-371.
    34.黄昌勇.2000.土壤学[M].北京:中国农业出版社.21-31.
    35.黄嵘,尹君,李春华.2009.土壤对多环芳烃的吸附研究进展[J].上海农业科技,4:26-28.
    36.黄友宝,马义兵,夏荣基.1989.土壤微量元素研究Ⅳ.碳酸钙对土壤中加入锌的形态转化的影响[J].北京农业大学学报,15(3):304-308.
    37.江虹,刘绍璞,胡小莉,等.2003.稀土与四环素类抗生素络合物的光度法研究[J].分析化学,10:1207-1211.
    38.康莉,周文生,侯翠红,等.2009.脲酶抑制剂的研究综述[J].河南化工,26:8-10.
    39.来璐,郝明德,彭令发.2003.土壤磷素研究进展[J].水土保持研究,10(1):65-67.
    40.李福燕,张黎明,李许明.2006.土壤—植物系统锌污染与修复技术研究进展[J].安徽农业科学,34(22):5920-5921,5979.
    41.李仁英.2005.滇池主要重金属含量的时空分布及其污染特征[D].中国科学院南京土壤研究所博士学位毕业论文,5-7.
    42.李睿,屈明.2004.土壤溶解性有机质的生态环境效应[J].生态环境,13(2):271-275.
    43.李淑玲.1998.对碳酸钙与物理粘粒的固磷数量及固磷强度的探讨[J].宁夏农林科技,4:17-19.
    44.李香兰.1991.黄土高原林型与土壤pH碳酸钙阳离子代换总量关系研究[J].陕西农业科学,5:15-17.
    45.李小虎,张新虎,郑朋,等.2003.土壤矿物学研究综述[J].甘肃地质学报,12(1):37-42.
    46.李学柱,邓烈,何绍兰,等.1991.紫色土CaCO3含量对积砧伏令夏橙产量与品质的影响[J].西南农业大学学报,13(1):60-65.
    47.李兆君,姚志鹏,张杰,等.2008.兽用抗生素在土壤环境中的行为及其生态毒理效应研究进展[J].生态毒理学报,3(1):15-20.
    48.李振高,骆永明,滕应.2008.土壤与环境微生物研究法[M].北京:科学出版社,298-306.
    49.李祖荫,刘军,孔晓玲.1983.石灰性土壤中粘粒与碳酸钙的固磷作用[J].土壤肥料,2:13-16.
    50.李祖荫.1992.关于石灰性土壤固磷强度与固磷基质问题[J].土攘通报,23(4):90-192.
    51.李祖荫,吕家珑.1995.CaCO3与物理性粘粒固磷特性的研究[J].土壤,6:304-310.
    52.林滨,陶澎,曹军,等.1996.伊春河流域土壤与沉积物中水溶性有机物的含量与吸着系数[J].中国环境科学,16(4):307-310.
    53.林滨,陶澍,刘晓航.1997.土壤与沉积物中水溶性有机物释放动力学研究.环境科学学报,17(1):8-13.
    54.林玉锁,薛家骅.1989.锌在石灰性土壤中的吸附动力学初步研究[J].环境科学学报,9(2):144-148.
    55.林玉锁,薛家骅.1991.由Freundlich方程探讨锌在石灰性土壤中的吸附机制和迁移规律[J].土壤学报,28(4):390-395.
    56.凌婉婷,徐建民,高彦征,等.2004.溶解性有机质对土壤中有机污染物环境行为的影响.应用生态学报,15(2):326-330.
    57.刘东生.1985.黄土与环境[M].北京:科学出版社,301-302.
    58.刘季昂,王怡中,汤鸿霄.1996.有机污染物在白洋淀地区水陆交错带土壤颗粒物上的吸附[J].环境科学,17(3):l9-22.
    59.刘世全,张世熔,伍钧,等.2002.土壤pH与碳酸钙含量的关系[J].土壤,5:279-282.
    60.刘伟,尚庆昌.2001.长春地区不同类型土壤的缓冲性及其影响因素[J].吉林农业大学学报,23(3):78-82
    61.刘新程,董元华.2009.金霉素在不同耕作土壤中的吸附-解吸行为[J].土壤学报46(5):861-867.
    62.刘铮.1991.微量元素的农业化学[M].北京:农业出版社,185.
    63.卢金伟,李占斌.2002.土壤团聚体研究进展[J].水土保持研究,9(1):81-85.
    64.马同生.1997.我国水稻土中硅素丰缺原因[J].土壤通报,28(4):169-171.
    65.马义兵,阎龙翔,黄友宝.1991.碳酸钙在土壤中对Cu、Pb、Cd形态转化的影响[J].北京农业大学学报,17(4):102.
    66.齐会勉,吕亮,乔显亮.2009.抗生素在土壤中的吸附行为研究进展[J].土壤,41(5):703-708.
    67.钱金红,谢振翅.1994.碳酸盐对土壤锌解吸影响的研究[J].土壤学报,31(1):105-108.
    68.全国土壤普查办公室.1998.中国土壤[M].北京:中国农业出版社,864-869.
    69.单正军,朱忠林,华小梅,等.1994.除草剂索拉对地下水影响砰究[J].环境科学学报14:72-78.
    70.邵孝侯,胡霭堂,秦怀英.1991.镉在土壤上的吸附和解吸特性研究[J].环境化学,10(1):76-80.
    71.石荣,贾永锋,王承智.2007.土壤矿物质吸附砷的研究进展[J].土壤通报,38(3):584-589.
    72.苏永中,王芳,张智慧,等.2007.河西走廊中段边缘绿洲农田土壤性状与团聚体特征[J].中国农业科学,40(4):741-748.
    73.孙权.1995.碳酸钙在宁夏灌淤土磷吸附作用中的地位[J].宁夏农学院学报,16(2):26-29.
    74.孙卫玲,赵蓉,张岚,等,2001. pH对铜在黄土中吸持及其形态的影晌[J].环境科学,2(3):78-83.
    75.陶运平,王申贵.1992.太谷地区耕作土壤转化酶活性的研究初报[J].山西农业大学学报(自然科学版),29(2):69-72
    76.王艮梅,周立祥,黄焕忠.2006.水溶性有机物在土壤中的吸附及对Cu沉淀的抑制作用[J].环境科学,27(4):754-769.
    77.汪洪,周卫,林葆.2001.碳酸钙对土壤镉吸附及解吸的影响[J].生态学报,21(6):932-937.
    78.王黎明,徐冬梅,陈波,等.2004.外来污染物对土壤磷酸酶影响的研究进展。环境污染治理技术与设备,5(5):11-16.
    79.王丽平,章明奎.2009.土壤性质对抗生素吸附的影响[J].土壤通报,40(2):420-423.
    80.王冉,刘铁铮,王恬.2006.抗生素在环境中的转归及其生态毒性.生态学报,26(1):265-269.
    81.王孝堂.1991.土壤酸度对重金属形态分配的影响[J].土壤学报,28(1):103-107.
    82.王新,周启星.2003.外源镉铅铜锌在土壤中形态分布特性及改性剂的影响[J].农业环境科学学报,22(5),541-545.
    83.王亚平,鲍征宇,侯书恩.2000.尾矿库周围土壤中重金属存在形态特征研究[J].岩矿测试,19(1):7-13.
    84.王永焱,林在贯.1990.中国黄土的结构特征及物理力学性质[M].北京:科学出版社,127-129.
    85.吴光红,苏睿先,李万庆,等.2008.大沽排污河污灌区土壤重金属富集特征和来源分析[J].环境科学,29(6):1693-1698.
    86.吴建民,高贤彪,高弼模,等.1991.山东省土壤供锌状况及对锌的吸附[J].土壤学报,28(4):452-456.
    87.吴留松,顾宗濂,谢思琴,等.1992.添加物对土壤提取液中铜、镉生物毒性的影响[J].土壤学报,29(4):377-3821
    88.武玫玲.1985.土壤矿质胶体的可变电荷表面对重金属离子的专性吸附[J].土壤通报,16(2):89-94.
    89.武云天,Jeff J. Schoenau,李凤民,等.2004.土壤有机质的概念和分组技术研究进展[J].应用生态学报,15(4):717-722.
    90.奚旦立,孙裕生,刘秀英.2004.环境监测[M].北京:高等教育出版社,118-120.
    91.肖军,赵景波.2006.黄土岩溶泉岩溶发育特征综合研究[J],中国沙漠,26(2):180-183.
    92.谢正苗.1996.土壤环境中铅的化学[J].广东微量元素科学3(11):24-28.
    93.熊礼明.1994.石灰对土壤吸附镉行为及有效性的影响[J].环境科学研究.7(1):35-38.
    94.熊严军.2010.我国土壤污染现状及治理措施[J].资源与环境科学,8:294-295,297.
    95.徐明岗,张建新,张航,等.1991.黑垆土-黄褐土等土壤阳离子交换量影响因素的研究[J].土壤通报,22(3):108-110.
    96.徐晓燕,杨肖娥,杨玉爱.1996.锌从土壤向食物链的迁移[J].广东微量元素科学,3(7):21-29.
    97.许中坚,刘广深,刘维屏.2003.土壤中溶解性有机质的环境特性与行为[J].环境化学,22(5):427-433
    98.郇恒福,刘国道,李运祥.2009.施用不同改良剂对砖红壤酸度的影响[J].热带作物学报,30(8):1100-1105.
    99.郇恒福,刘国道,李运祥.2009.施用不同改良剂对砖红壤交换性能影响的初步研究[J].30(11):1595-1601.
    100.杨海琳.2009.土壤重金属污染修复的研究[J].环境科学与管理,34(6):130-135.
    101.杨佳波,曾希柏.2007.水溶性有机物在土壤中的化学行为及其对环境的影响[J].中国生态农业学报,15(5):206-211.
    102.杨佳波,曾希柏,李莲芳,等.2008.3种土壤对水溶性有机物的吸附和解吸研究[J].中国农业科学,41(11):3656-3663
    103.杨克武,安凤春,莫汉宏.1995.单甲眯在土壤中的吸附[J].环境化学14(5):431-435.
    104.杨黎芳,李贵桐,林启美,等.2010.栗钙土不同土地利用方式下土壤活性碳酸钙[J].生态环境学报,19(2):428-432.
    105.杨丽娟,李天来,付时丰,等.2005.施用有机肥和化肥对菜园土壤酶动态特性的影响[J].土壤通报,36(2):224-226.
    106.杨彭年.石1984.灰性土壤有机矿质复合体及其团聚性研究[J].土壤学报,21(2):145-152.
    107.杨炜春,刘维屏,马云,等.2002.扑草净和扑灭通在土壤中吸附及其与色谱热力学函数的相关性[J].土壤学报,39(5):693-698.
    108.杨亚卓,张福锁.1993.土壤-植物体系中的铅[J].土壤学进展,(5):1-10.
    109.姚爱军,青长乐,牟树森.2004.土壤矿物对汞的吸持特性研究[J].中国生态农业学报,12(4):129-131.
    110.姚槐应,黄昌勇.2006.土壤微生物生态学及其实验技术[M].北京:科学出版社,63-66.
    111.姚敏,梁成华,杜立宇,等.2008.沈阳某冶炼厂污染土壤中砷的稳定化研究[J].环境科学与技术,31(6):8-11.
    112.尤启冬.2004.药物化学.北京:化学工业出版社,185.
    113.于天仁,季国亮,丁昌璞,等.1996.可变电荷土壤的电化学[M].北京:科学出版社,65-85.
    114.余向阳,应光国,刘贤进,等.2007.土壤中黑碳对农药敌草隆的吸附-解吸迟滞行为研究[J].土壤学报,44(4):650-655.
    115.袁可能.1983.植物营养元素的土壤化学[M].北京:科学出版社,234.
    116.袁可能.1990.土壤化学[M].北京:农业出版社,88-90.
    117.袁立和,苏清岚,易由华,等.番1997.茄青枯病抑病土壤作用机制研究[J].植物保护学报,24(2):121-125.
    118.曾黎明,李伏生,王熊军,等.2008.生物有机肥与碳酸钙对土壤肥力和生物活性的影响[J].广西热带农业,6:5-9.
    119.张冬秋,石培礼,张宪洲.2005.土壤呼吸主要影响因素的研究进展[J].地球科学进展,20(7):778-783.
    120.张会民,吕家珑,徐明岗,等.2006.土壤镉吸附的研究进展[J].中国土壤与肥料,(6):8-12.
    121.张磊,宋凤斌.2005.土壤吸附重金属的影响因素研究现状及展望[J].土壤通报36(4):629-634.
    122.张连仲.1987.批量平衡法研究甲氧双丙嗪在沙壤土中的吸附[J].环境化学,6(4):11-15.
    123.张淼,李亚青,王敏新.1996.黄土体对重金属(Cd、Pb、Zn、Cu)吸附试验研究[J].西北水资源与水工程,7(2):35-40.
    124.张同娟,王益权,刘军等.2007.黄土地区影响土壤膨胀性的因子分析[J].西北农林科技大学学报(自然科学版),35(6):185-189.
    125.张伟.2007.五种磺酰脲类除草剂在土壤中的环境行为[D].博士毕业论文,96-98
    126.张炎,史军辉,李磐,等.2004.农田土壤氮素损失与环境污染[J].新疆农业科学,41(1):57-60.
    127.张中明,张伟,蒋凡,等.2009.甲磺隆在土壤中的吸附-解吸特性[J].西南大学学报,31(3):154-163.
    128.张宗祜,张之一,张平.1985.黄土湿陷变形过程中微结构变化特征及湿陷性评价[C].国际交流地质学术论文集(6).北京:地质出版社,67-78.
    129.赵传燕,李林.2003.兰州市郊区土壤水稳定性微团聚体的组成分析[J].兰州大学学报(自然科学版)39(6):90-94.
    130.赵蓉,倪晋仁,张岚,等.2002.碳酸盐对铜离子在黄土中吸持及形态影响的实验研究[J].环境化学,21(4):349-355.
    131.郑喜坤,鲁安怀,高翔,等.2002.土壤中重金属污染现状与防治方法.土壤与环境,11(1):79-84.
    132.郑有飞,石春红,吴芳芳,等.2009.土壤微生物活性影响因子的研究进展[J].土壤通报,40(5):1209-1214.
    133.中国环境监测总站.1992.土壤元素的近代分析方法[M].北京:中国环境科学出版社:81-85.
    134.钟晓兰,周生路,黄明丽,等.2009.土壤重金属的形态分布特征及其影响因素[J].生态环境学报,18(4):1266-1273.
    135.周秉正,袁泽利,安定,等.2003.土壤腐殖质对苯酚的吸附作用研究[J].贵州大学学报(自然科学版),20(2):187-189.
    136.周航,曾敏,刘俊,等.2010.施用碳酸钙对土壤铅、镉、锌交换态含量及在大豆中累积分布的影响[J].水土保持学报,24(4):123-126.
    137.周启星,罗义,王美娥.2007.抗生素的环境残留、生态毒性及抗性基因污染[J].生态毒理学报,2(3):243-251.
    138.周卫,汪洪,李春花,等.2001.添加碳酸钙对土壤中镉形态转化与玉米叶片镉组分的影响[J].土壤学报,38(2):219-225.
    139.朱波,等.2002.紫色土外源锌、镉形态的生物有效性[J].应用生态学报,13(5):555-558.
    140.诸葛玉平,张旭东,刘启.2005.长期施肥对黑土呼吸过程的影响[J].土壤通报,36(3):391-394.
    141.朱宏,赵成义,李君,等.2006.干旱区荒漠灌木林地土壤呼吸及其影响因素分析[J].干旱区地理,29(6):856-859.
    142.朱宏,赵成义,李君,等.2007.柽柳和梭梭林地土壤呼吸研究[J].水土保持学报,21(1):148-151.
    143.朱礼学.2001.土壤pH值及CaCO3在多目标地球化学调查中的研究意义[J].四川地质学报,21(4):226-228.
    144.朱利中,陈宝梁,葛渊数,等.2000.对硝基苯酚在阴-阳离子有机膨润土/水间的界面行为研究[J].环境化学,19(5):419-425.
    145.朱利中,杨坤.2001.对硝基苯酚在沉积物上的吸附特性[J].环境化学,20(5):449-454.
    146.朱世文,程经华,史本章.2003.污水厂剩余污泥对染料吸附的试验[J].中华纸业,24(8):35-37.
    147.宗良纲,徐晓炎.2003.土壤中镉的吸附解吸研究进展[J].生态环境,12(3):331-335.
    148. Abollino O, Aceto M, Malandrino M,et al.2002. Distribution and mobility of metals incontaminated sites:Chemometric investigation of pollutant profiles[J].Environmental Pollution,119:177-193.
    149. Allaire S,Juneau J.2006. Sorption kinetics of chloretetracyline and tylosin on sandy loam andheavy clay soils [J].Journal of Environmental Quality,35(4):969-972.
    150. A.N. Al-Ani,and M. J. Dudas.1988. Influence of calcium carbonate on mean weightdiameter of soil. Soil and Tillage Research,11(1):19-26.
    151. Bijay Singha,G. S. Sekhona.1978. Leaching of nitrate in calcareous soils as influenced by itsadsorption on calcium carbonate. Geoderma,20(3-4):271-279.
    152. Boxall A B A,Blackwell P,Cavallo R,et a l.2002.The sorption and transport of a sulphona-mide antibiotic in soils ystems[J]. Toxicology,13:19-28.
    153. Bronick C J, Lal R.2005. Soil structure and management: a review. Geoderma,124:3-22.
    154. Bruce J R, Paul K S L, Michael M. Emerging chemicals of concern: Pharmaceuticals andpersonal care products (PPCPs) in Asia, with particular reference to Southern China [J].Marine Pollution Bulletin,2005,50:913-920.
    155. Bruemmer,G W,Gerth J, Tiller K G.1988.Reaction kinetics of the adsorption and desorption ofnickel, zinc, and cadmium by goethite. I. Adsorption and diffusion of metals[J]. J Soil Sci,39:37-52.
    156. C. Borreroa,F. Pe aa,J. Torrenta.1988. Phosphate sorption by calcium carbonate in some soilsof the Mediterranean part of Spain[J].Geoderma,42(3-4):261-269.
    157. Celis R,Koskinen W C.1990. An isotopic exchange method for the characterization of theirreversibility of pesticide sorption-desorption in soil[J].Journal of Agricultural FoodChemistry,47:782-790.
    158. Cheng G,Karthikeyan K G,Samuel D S,et al.2007.Complexation of the antibiotic tetracyclinewith humic acid [J].Chemosphere,66(8):1494-1501.
    159. Covelo,E. F.,Vega,A.,Andrade,M. L.2007. Competitive sorption and desorption of heavymetal by individual soi1components. Journal of Hazardous Materials,140:308-315.
    160. Daughton C G, TernesTA. Pharmaceuticals and personal care products in theenvironment:Agents of subtle change? Environmental Health Perspectives,1999,107,907-938.
    161. Davidson J. Genetic exchange between bacteria in the environment. Plasmid,1999,(42):73-91.
    162. Donald R G, Anderson D W, Stewart J W B.1993. Potential role of dissolved organic carbonin phosphorus transport in forested soils[J]. Soil Sci. Am. J.,57:1611-1618.
    163. Frankenbergei J R, Johanson J B, Nelson C. Urease activity in sewage sludge amended soils[J].Soil Biochemical,1983,15:543-549.
    164. Frick E A, Henderson AK, Moll DM,et al. Presence of pharmaceuticals inwastewater effluentand drinkingwater, Metropolitan Atlanta, Georgia, July-September1999. Proceedings of the2001Georgia Water Resources Conference, Athens, GA;Carl Vinson Institute of Goverment,The University of Georgia,2001:282-286.
    165. Gao J,Pedersen JA.Adsorption of sulfonamide antimicrobial agents to clayminerals.Environ.Sci.Technol.,2005,39(24):9509-9516
    166. Griffin R. A.,Jurinak J. J. The interaction of phosphate with calcite. Soil Science, Society ofAmerica,1973,37:847-850.
    167. Gu C,Karthikeyan K.Sorption of the antimicrobial ciprofloxacin to aluminum and ironhydrous oxides [J].Environmental Science Technology,2005,39(23):9166-9173.
    168. Harter R D.1983. Effect of soil pH on adsorption of Pb, Cu, Zn, and Ni[J]. Soil Sci Soc Am J,47(1):47-51.
    169. Hartmann A, Alder A C, Koller T,et al. Identification of fluoroquinolone antibiotics as themain source of human genotoxicity in native hospital wastewater. Environmental Toxicologyand Chemistry,1998,17:377-382.
    170. He Y, Liao H, Yan X L.2003.Locallized supply of phosphorus induces root morphological andarchitectural changes of rice in split and stractified soil cultures. Plant and Soil,248:247-256.
    171. Hirsch R, TernesT, Haberer K, Kratz KL. Occurrence of antibiotics in the aquatic environment.The Science of the Total Environment,1999,225:109~118.
    172. Huang W,Weber W J.1997. A distributed reactivity model for sorption by soils andsediments.10.Relationship between desorption, hysteresis,and the chemical characteristics oforganic domains[J].Environ.Sci.Technol.,31:2562-2569.
    173. Huang W, Weber W J.1998. A distributed reactivity model for sorption by soils andsediments.11.Slow concentration-dependentsorption rates[J]. Environ. Sci. Technol.,32:3549-3555.
    174. Hundal L,Thompson M,Laird D,Carmo M.2001. Sorption of phenanthrene by referencesmectites[J]. Environ. Sci. Technol.35:3456-3461.
    175. Iyengar S S, Martens D C, Miller W P.1981. Distribution and plant availability of soil zincfractions[J]. Soil Science Society of American Journal,45:735-739.
    176. Jardine P M, Weber N L, McCarthy J F.1989.Mechanisms of dissolved carbon adsorption onsoil[J].Soil Sci,53:1378-1385.
    177. Jiang W,Zhang SZ,Shan XQ,Feng MH,Zhu YG,McLaren RG.2005.Adsorption of arsenate onsoils. Part2:Modeling the relationship between adsorption capacity and soil physiochemicalproperties using16Chinese soils. Environmental Pollution,138:285-289.
    178. Jones A D,Bruland G L,Agrawal S G,et al.Factors influencing the sorption of oxytetracyclineto soils [J].Environmental Toxicology and Chemistry,2005,24(4):761-770.
    179. Jury W A, Spencer W F, Farmer W J,1984. Behavior assessment model for trace organics insoils,Ⅰmodel description. Environ. Qual.,12:558-564.
    180. Kaiser K, Zech W.1998. Rates of dissolved organic matter release and sorption in forestsoils[J]. Soil Sci.,163:714-725.
    181. Kalbita K., Solinger S., Park J. H., e t al.2000. Controls on the dynamics of dissolvedorganic matter in soils[J]: A review. Soil S ci.,165(4):277-304
    182. Koplin D W. Pharmaceuticals,hormones,and other organic wastewater contaminates in U. S.streams,1999-2000:A National Reconnaissance.Environmental Science and Technology,2002,36(6):1202-1211.
    183. Krebs R,Gupta S K,Furrer G,et al. Solubility and plant up take of metals with and withoutliming of sludge amended soils. J. Environ. Qual,1998,27:18-231.
    184. Kulshrestha P,Giese RF Jr,Aga DS.Investigating the molecularinteractions of oxytetracyclinein clay and organic matter: insights on factors affecting its mobility in soil.Environ.Sci.Technol.,2004,38(15):4097-4105.
    185. Lang E.,Beese F. Reaction of the microbial soil population of beech forest to mimingtreatments. Allgemeine Forest Zeitschrift,1985,43:1166-1169.
    186. Liang B C, Gregorich E G, Schnitzer M, et al.1996. Characterization of water extracts of twomanures and their adsorption on soils. Soil Science Society of America Journal,60(6):1758-1763.
    187. Loeppert R H, Suarez R L. Carbonate and Gypsum[C]//SPARKS D L. Methods of soilanalysis. Part3. Chemical methods. SSSA Book Ser.5. Madison, WI: SSSA and ASA,1996:465-468.
    188. Lombardi L,Sebastiani L.Copper toxicity in Prunus cerasifera: growth and antioxidantenzymes responses of in vitro grown plants[J].Plant Science,2005,168(3):797-802.
    189. Ma Y B,Uren N C.1998.Transformations of heavymetals added to soil-application of a newsequential extraction procedure. Geoderma,84:157-1681.
    190. Manios T, Stentiford E I, Millner P.2003. Removal of Heavy Metals from aMetaliferousWater Solution by Typha Latifolia Plants and Sewage Sludge Copost[J].Chemosphere,53:487-494.
    191. Marschner H.1986.Mineral Nutrition of Higher Plants.London:Academic Press Inc.Ltd,510-523.
    192. Mcbride,M.B.,Fraser,A.R.,Mchardy,W.J.1984.Cu2+interactions with microcrystalline gibbsite:Evidence for oriented chemsorbed copper ions. Clays and Clay Minerals,32:12-18.
    193. Meyer MT, Bumgarner J E, Varns J L,et al. Use of radioimmunoassay as a screen forantibiotics in confined animal feeding operations and confirmation by liquidchromatography/massspectrometry. Science of The Total Environment,2000,248:181-187.
    194. Moore T R,Souza W,Koprivnjak J F.1992.Controls on the sorption of dissolved organic carbonby soils[J].Soil Sci,154:120-129.
    195. Morrica P,Barbato F,Giodano A,et al.2000. Adsorption and desorption of imazosulhiron bysoil [J].J.Agric. Food. Chem.,48:6132-6137.
    196. Naidu R, Kookana R S, SumnerM E, et al.1997. Cadmium sorption and transport in variablecharge soils:A review. J.Environ. Q ual.,26:602-6171.
    197. Nodvin S C, Driscoll C T, Likens G E. Simple partitioning of anions an dissolved organiccarbon in a forest soil. Soil Science,1986,142(1):27-34.
    198. Northcott G L,Jones K C.2000.Experimental approaches and analytical techniques fordetermining organic compound bound residues in soil and sediment[J]. Environ Pollut,108:19-43.
    199. N.W. Halla. Micromorphology and Complementary Assessments of Soil Structure Descriptionand their Relationships to the Length of Time Under Tillage and Calcium Carbonate Contents.Developments in Soil Science,1990,19:53-60.
    200. Odson J K, Letey J, Weeks L V,1970. Predicted distribution of organic chemicals in solutionand adsorbed as a function of position and time for various chemicals and soil properties. SoilSci., Amer. Proc.,34:412-417.
    201. Oliver I W,Merrington G,Mclaughlin M J. Australian biosolids:characterization anddetermination of available copper[J].Environmental Chemistry,2004,1(2):116-124.
    202. Ostergren J. D.,Trainor T. P.,Bargar J.R,et al.,Inorganic ligand effects on Pb(Ⅱ) sorption togoethite (α一FeOOH)Ⅰ. Carbonate,J Coll. Interf. Sci.2000,225:466-482.
    203. Payne G G, Martens D C, Winarko C, et al.1988. Availability and form of copper in three soilsfollowing eight annual applications of copper-enriched swine manure[J]. Journal ofEnvironmental Quality,17:740-746.
    204. Pei Z G,Shan X Q,Zhang S Z,et al.2011. Insight to ternary complexes of co-adsorption ofnorfloxacin and Cu(Ⅱ) onto montmorillonite at different pH using EXAFS[J].Journal ofHazardous Materials,186(1):842-848.
    205. P. N. S. Mnkeni,A. F. Mackenzie. Effects of added organic residues and calcium carbonate onpolyphosphate hydrolysis in four Quebec soils. Plant and Soil1987,104:163-167.
    206. Premasis S,Marc L,Sebastian Z,et al.2008. Sorption and desorption of sulfadiazine in soil andsoil-manure systems[J]. Chemosphere,73:1344-1350.
    207. Sahquillo A,Lopez-sanchez J F,Rubil R,et al.1999. Use of a certified reference material forextractable trace metals to assess sources of uncertainty in the BCR three-stage sequentialextraction procedure[J]. Analytica Chimica Acta,382:317-327.
    208. Sanchez-CamazanoM, Sanchez-Martin M J, Rodriguez-Cruz M S. Sodium dodecyl sulphate-enhanced desorption of atrazine: Effect of surfactant concentration and of organic mattercontent of soils. Chemosphere,2000,41(8):1301-1305.
    209. Sassman S A,Sarmah A K,Lee L S.2007. Sorptipn of tylosin A,D,and A-aldol anddegradationof tylosin A in soils [J].Environmental Toxicology and Chemistry,26(8):1629-
    1635.
    210. Sauve S,Mcbride M B,Hendershot W H.1998. Lead phosphate solubility in water and soilsuspensions[J]. Environ Sci Technol,32:388-393.
    211. Sauve S,Mcbride M B,Hendershot,W H.1998. Soil solution speciation of lead: Effects oforganic matter and pH[J]. Soil Sci Soc Am J,62:618-621.
    212. Sibley SD,Pedersen JA.2008. Interaction of the macrolide antimicrobial clarithromycin withdissolved humic acid.Environ.Sci.Technol.,42(2):422-428.
    213. Sims J T, Kline J S.1991. Chemical fractionation and plant uptake of heavy metals in soilsamended with co-composed sewage sludge[J]. Journal of Environmental Quality,20:387-395.
    214. S. R. Poonia,D. R. Bhumbla. Effect of gypsum and calcium carbonate on plant yield andchemical composition and calcium availability in a non-saline sodic soil. Plant andSoil,1973,38:71-80.
    215. Temminghoff E J M, Van Der Zee S E AT M, De Haan F A M.1997. Copper mobility in acopper-contaminated sandy soil as affected by pH and solid and dissolved organic matter.Environmental Science&Technology,31(4):1109-1115.
    216. Tessier A.1979.Sequential Extraction Procedure for the Speciation of Particulate TraceMetals[J].Analysis Chemistry.,51:844-8451.
    217. Thiele-B ruhn S,Seibick T,Schulten H R,etal.2004. Sorption of sulfonamide pharmaceuticalantibiotics on whole soils and particle size fractions[J].Journal of EnvironmentalQuality,33:1331-1342.
    218. Tse-Ming Lee, Hung-Yu Lai, Zueng-Sang Chen. Effect of chemical amendments on theconcentration of cadmium and lead in long-term contaminated soils.Chemosphere,2004,57:1459-1471.
    219. Veeresh,H.,TriPathy,S.,Chaudhuri,D.,Hart,B.R.,Powell,M.A.2003. Sorption and distributionof adsorbed metals in three soils of India. Applied Geochemistry,18:1723-1731.
    220. Zhao Xiu-lan, Saigusa Masaihiko. Fractionation and solubility of cadmium in paddy soilsamended with porous hydrated calcium silicate [J]. Journal of Environmental Sciences2007,19:343-347.
    221. Zhou D M,Hao X Z,Wang Y J,et al.Copper and Zn uptake by radish and pakchoi as affectedby application of livestock and poultry manures[J.Chemosphere,2005,59(2):167-175.
    222. Zhou D M,Deng C F,Alshawabkeh A N,et al.Effects of catholyte conditioning onelectrokinetic extraction of copper from mine tailings[J].Environment International,2005,31(12):885-890.
    223. Zhou L X, Wong J W C. Chapter10Behavior of heavy metals in soil: Effect of dissolvedorganic matter. In: Selim M, Kingery W L. Geochemical and Hydrological Reactivity ofHeavy Metals in Soils. Boca Raton, Florida: CRC Press LLC,2003:245-270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700