用户名: 密码: 验证码:
VEGFR_2siRNA腺病毒载体的构建及其对肿瘤血管生成的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:构建血管内皮细胞生长因子受体2(VEGFR_2)siRNA的腺病毒载体,在VEGFR_2表达阳性的肿瘤细胞系LOVO和SGC7901中,观察该重组腺病毒对VEGFR_2蛋白表达水平的影响,并检测该重组腺病毒体内的抗肿瘤活性,进而为肿瘤的血管抑制治疗奠定实验基础。
     方法:(1) 构建含有VEGFR_2siRNA的鼠U6载体(mU6-VEGFR_2siRNA);(2) 利用HindⅢ与Xba Ⅰ双酶切将鼠U6载体启动子和VEGFR_2siRNA克隆入无启动子穿梭载体promoterless pShuttle vector,得到pShuttle-mU6pro-VEGFR_2siRNA;(3) 将pShuttlemU6pro-VEGFR_2siRNA与腺病毒骨架质粒(pAdeasy-1)在BJ5183细菌中进行同源重组,得到pAdeasy-mU6pro-VEGFR_2siRNA,并进一步在293细胞中包装、扩增得到高滴度的重组腺病毒;(4) 利用得到的重组腺病毒转染LOVO和SGC7901肿瘤细胞系,采用western blot检测感染前后VEGFR_2蛋白表达水平的变化;(5) 利用细胞生长曲线检测重组腺病毒对肿瘤细胞系LOVO、SGC7901生长的影响;(6) 建立SGC7901-裸鼠肿瘤模型,局部注射重组腺病毒后,观察其对肿瘤生长、肿瘤血管生成的抑制作用。
     结果:(1)成功构建血管内皮细胞生长因子受体2(VEGFR_2)siRNA的腺病毒载体,该重组腺病毒显著抑制LOVO和SGC7901细胞中VEGFR_2的蛋白表达水平(p<0.01);(2)细胞生长曲线显示重组腺病毒可明显抑制
Objectives To construct Adenovirus vector for efficient delivery of siRNA targeted VEGFR2 into two cells including LOVO and SGC7901 which express VEGFR2 , next to observe the influence of VEGFR2siRNA on the expression of KDR in LOVO and SGC7901 and on the growth of SGC7901 in vitro and in vivo.Methods Firstly, the murine U6 vector carrying the VEGFR2siRNA was constructed. Secondly, after the digestion with Hindlll and Xba I , the promoter of the U6 plasmid and VEGFR2siRNA were cloned into the promoterless shuttle vector pshuttle, pShuttle- mU6pro-VEGFR2siRNA was constructed; then the homologous recombination in BJ5183 between the cotransformed adenoviral backbone plasmid pAdeasy-1 and linearized shuttle vector can produce the pAdeasy-mU6pro-VEGFR2siRNA. The LOVO and SGC7901 cancer cell lines were infected with the recombinant adenovirus and observed the influence of it on the level of VEGFR2 expression. At the same time, MTT assay was performed. SGC7901 and LOVO cell lines in logarithmic growth phase were harvested and seeded into 96-well plates, the cell number was diluted to 5000 cells per
    well respectively and incubated in 10 % RPMI1640 medium followed by treating with recombinant virus or empty vector 0.1 ml/each well. The cell viability was determined in 4 wells for each drug using MTT assay and observed at 24h, 72h,120h and 168h. Optical density was measured at 490 nm using a microplate reader. The growth curve was made according to the optical density. Statistical analysis was performed by means of Student's t-test, the results demonstrate that Ad-mU6pro-siRNA KDR can significantly inhibit the growth of SGC7901 and LOVO cell.(p<0.05).Mice were challenged subcutaneously in the right rear of the lamb with a single-cell suspension in DMEM solution without serum containing 2×106 viable SGC7901 cells, determined by cell counting to establish the SGC7901 cell-induced tumor model. After the injection 10 days,the tumor size reached approximately from 240mm3 to 280mm3, then, 15 tumor-bearing nude mice were randomly divided into three groups and immediately inoculatedAd-mU6pro-siRNA.KDR(R-AD), Ad-mU6pro(Blank) or DMEM. In order to locally reach higher titer of recombinant adenovirus and avoid the side effect, the intratumoral injection was chosen. Ad-mU6pro-siRNA.KDR(R-AD), Ad-mU6pro(Blank) or DMEM was intratumorally injected into nude mice at the dose of 0.2ml respectively. Thereafter, measurement of the tumor volumes was performed on each day, tumor volumes were calculated according to the formula: ax(b)2x0.5 (a=largest diameter, b=perpendicular diameter). Animals showing severe distress or ulcer and with tumors exceeding 2cm in diameter were killed for ethical reasons and immunohistochemical examination was performed and paraffin-embedded sections were stained with anti-VIII factor
    as primary antibody to mark the vessels present within the tumor tissue.Results (l)Successful construction of Ad-mU6pro orAd-mU6pro-siRNAKDR The DNA encoding the murine U6 promoter and siRNA targeting the VEGFR-2/KDR were cloned into the promoterless vector pshuttle,obtaining pshuttle-mU6pro-siRNAKDR. The pshuttle-mU6pro -siRNAKDR or pAd-mU6pro was successfully cotransformed with pAdEasy-1 backbone plasmid into BJ5183, the DNA of recombinant adenovirus pAd-mU6pro-siRNA KDR/pAd-mU6pro was digested using pad and confirmed by electrophoresis, the resulting plasmid pAd-mU6pro-siRNAKDR or pAd-mU6pro is assembled and amplified in 293 cells,obtaining Ad-mU6pro-siRNAKDR or Ad-mU6pro.(2)The down-regulation of VEGFR-2 expression in SGC7901 and LOVO and the suppression of LOVO and SGC7901 growth by transfection of recombinant adenovirus Recombinant adenovirus significantly down-regulated VEGFR-2/KDR expression in LOVO and SGC7901 cancer cell lines and inhibited the growth of LOVO and SGC7901(p<0.05).(3)The retardation of growth of SGC7901-induced-tumor and less microvessel density in the tumors treated with Ad-mU6pro-siRNAKDR The siRNA against VEGFR-2/KDR mediated by adenovirus can exert the antitumor effect on SGC7901 cell-induced tumor model, the tumors in experimental group grew significantly more slowly than control groups. A significant difference in tumor size between the experimental group and the control groups was observed on day 30 (0.654±0.06cm3 vs 1.91±0.12 cm3 ,1.98±0.14 cm3
引文
1 Blaesa.The ADA human gene therapy clinical protocol. Hum Gene Ther. 1990;1 (3):327-362.
    2 Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science.1992;256:1550-1552.
    3 Rogers RP, Ge JQ, Holley-Guthrie E, Hoganson DK, Comstock KE, Olsen JC, Kenney S. Killing Epstein-Barr virus-positive B lymphocytes by gene therapy: comparing the efficacy of cytosine deaminase and herpes simplex virus thymidine kinase. Hum Gene Ther. 1996;7(18):2235-2245.
    4 Lan KH, Kanai F, Shiratori Y, Okabe S, Yoshida Y, Wakimoto H, Hamada H, Tanaka T, Ohashi M, Omata M. Tumor-specific gene expression in carcinoembryonic antigen--producing gastric cancer cells using adenovirus vectors. Gastroenterology. 1996; 111 (5): 1241-1251.
    5 Trinh QT, Austin EA, Murray DM, Knick VC, Huber BE. Enzyme/prodrug gene therapy: comparison of cytosine deaminase/5-fluorocytosine versus thymidine kinase/ganciclovir enzyme/prodrug systems in a human colorectal carcinoma cell line. Cancer Res. 1995;55(21): 4808-4812.
    6 Rogulski KR, Kim JH, Kim SH, Freytag SO. Glioma cells transduced with an Escherichia coli CD/HSV-1 TK fusion gene exhibit enhanced metabolic suicide and radiosensitivity. Hum Gene Ther. 1997;8(1):73-85.
    7 Majumdar AS, Hughes DE, Lichtsteiner SP, Wang Z, Lebkowski JS, Vasserot AP. The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatotoxicity encountered with constitutive promoters. Gene Ther, 2001,8 (7) : 568-578.
    8 Fujiwara T, Cai DW, Georges RN, Mukhopadhyay T, Grimm EA, Roth JA. Therapeutic effect of a retroviral wild-type p53 expression vector in an orthotopic lung cancer model. J Natl Cancer Inst. 1994;86(19):1458-1462.
    9 Frost SJ, Simpson DJ, Clayton RN, Farrell WE. Transfection of an inducible pl6/CDKN2A construct mediates reversible growth inhibition and Gl arrest in the AtT20 pituitary tumor cell line.Mol Endocrinol. 1999;13(ll):1801-1810.
    10 Mobley SR, Liu TJ, Hudson JM, Clayman GL. In vitro growth suppression by adenoviral transduction of p21 and p16 in squamous cell carcinoma of the head and neck: a research model for combination gene therapy. Arch Otolaryngol Head Neck Surg. 1998;124(l):88-92.
    11 Matsumura Y, Yamagishi N, Miyakoshi J, Imamura S, Takebe H. Increase in radiation sensitivity of human malignant melanoma cells by expression of wild-type p16 gene. Cancer Lett. 1997; 115(1):91-96.
    12 Prabhu NS, Somasundaram K, Tian H, Enders GH, Satyamoorthy K,Herlyn M, El-Deiry WS. The administration schedule of cyclin-dependent kinase inhibitor gene therapy and etoposide chemotherapy is a major determinant of cytotoxicity. Int J Oncol. 1999;15(2):209-216.
    13 Nikitin AY, Juarez-Perez MI, Li S, Huang L, Lee WH. RB-mediated suppression of spontaneous multiple neuroendocrine neoplasia and lung metastases in Rb+/- mice. Proc Natl Acad Sci. USA. 1999;96(7):3916-3921.
    14 Xu HJ, Zhou Y, Seigne J, Perng GS, Mixon M, Zhang C, Li J, Benedict WF, Hu SX. Enhanced tumor suppressor gene therapy via replication-deficient adenovirus vectors expressing an N-terminal truncated retinoblastoma protein. Cancer Res. 1996;56(10):2245-2249.
    15 Prabhu NS, Blagosklonny MV, Zeng YX, Wu GS, Waldman T, El-Deiry WS. Suppression of cancer cell growth by adenovirus expressing p21(WAFl/CIPl) deficient in PCNA interaction. Clin Cancer Res. 1996;2(7):1221-1229.
    16 Meng RD, Shih H, Prabhu NS, George DL, el-Deiry WS. Bypass of abnormal MDM2 inhibition of p53-dependent growth suppression. Clin Cancer Res. 1998;4(l):251-259.
    17 Gervais JL, Seth P, Zhang H. Cleavage of CDK inhibitor p21 (Cip 1 /Wafl) by caspases is an early event during DNA damage-induced apoptosis. J Biol Chem. 1998;273(30):19207-19212.
    18 Zhang Y, Fujita N, Tsuruo T. Caspase-mediated cleavage of p21Wafl/Cipl converts cancer cells from growth arrest to undergoing apoptosis. Oncogene. 1999;18(5):1131-1138.
    19 Li WW, Fan J, Hochhauser D, Bertino JR. Overexpression of p21wafl leads to increased inhibition of E2F-1 phosphorylation and sensitivity to anticancer drugs in retinoblastoma-negative human sarcoma cells. Cancer Res. 1997;57(11):2193-2199.
    20 Ruan S, Okcu MF, Pong RC, Andreeff M, Levin V, Hsieh JT, Zhang W. Attenuation of WAFl/Cipl expression by an antisense adenovirus expression vector sensitizes glioblastoma cells to apoptosis induced by chemotherapeutic agents l,3-bis(2-chloroethyl)-l-nitrosourea and cisplatin. Clin Cancer Res. 1999;5(l):197-202.
    21 Roth JA, Cristiano RJ. Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst. 1997;89(l):21-39.
    22 Gastl G, Finstad CL, Guarini A, Bosl G, Gilboa E, Bander NH, Gansbacher B. Retroviral vector-mediated lymphokine gene transfer into human renal cancer cells. Cancer Res. 1992;52(22):6229-6236.
    23 Chaplin DJ, Dougherty GJ. Tumour vasculature as a target for cancer therapy. Br J Cancer. 1999;80 Suppl 1:57-64.
    24 Curnis F, Sacchi A, Corti A. Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J Clin Invest. 2002;110(4):475-482.
    25 Barinaga M. Peptide-guided cancer drugs show promise in mice. Science. 1998;279(5349):323-324.
    26 Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 1998;279(5349):377-380.
    27 Colombo G, Curnis F, De Mori GM, Gasparri A, Longoni C, Sacchi A, Longhi R, Corti A. Structure-activity relationships of linear and cyclic peptides containing the NGR tumor-homing motif. J Biol Chem. 2002;277(49):47891-47897.
    28 Srinivasula SM, Ahmad M, MacFarlane M, Luo Z, Huang Z, Fernandes-Alnemri T, Alnemri ES. Generation of constitutively active recombinant caspases-3 and -6 by rearrangement of their subunits. J Biol Chem. 1998;273(17): 10107-10111.
    29 Jia LT, Zhang LH, Yu C J, Zhao J, Xu YM, Gui JH, Jin M, Ji ZL, Wen WH, Wang C J, Chen SY, Yang AG. Specific tumoricidal activity of a secreted proapoptotic protein consisting of HER2 antibody and constitutively active caspase-3. Cancer Res. 2003;63(12):3257-3262.
    30 Zhang LH, Jia LT, Yu C J, Qu P, Dong HL, Zhao J, Xu YM, Wang C J, Yang AG. Targeted tumor suppression by a secreted fusion protein consisting of anti- erbB2 antibody and reversed caspase-3 to SKBr3 cells Zhonghua Yi Xue Za Zhi. 2003;83(7):564-568.
    31 Zhi M, Wu KC, Dong L, Hao ZM, Deng TZ, Hong L, Liang SH, Zhao PT, Qiao TD, Wang Y, Xu X, Fan DM. Characterization of a Specific Phage-Displayed Peptide Binding to Vasculature of Human Gastric Cancer. Cancer Biol Ther. 2004;3(12) [Epub ahead of print].
    32 王瑜,吴开春,樊代明等.胃癌特异性血管结合多肽的体内筛选和初步鉴定.细胞与分子免疫学杂志 2003;05:469-472.
    33 Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, Krajewski S, Lombardo CR, Rao R, Ruoslahti E, Bredesen DE, Pasqualini R. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med. 1999;5(9):1032-1038.
    34 Rosenberg SA, Anderson WF, Blaese M, Hwu P, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Ettinghausen SE, et al. The development of gene therapy for the treatment of cancer. Ann Surg. 1993;218(4):455-463.
    35 Tan Y, Xu M, Wang W, Zhang F, Li D, Xu X, Gu J, Hoffman RM. IL-2 gene therapy of advanced lung cancer patients. Anticancer Res. 1996; 16(4A): 1993-1998.
    36 李殿俊,刘旭,曹雪涛.肿瘤生物治疗新方法的研究.医学研究讯,2001;30(3):8-12.
    37 Tahara H, Lotze MT. Antitumor effects of interleukin-12 (IL-12): applications for the immunotherapy and gene therapy of cancer. Gene Ther. 1995;2(2):96-106.
    38 Miller AR, McBride WH, Hunt K, Economou JS Cytokine-mediated gene therapy for cancer. Ann Surg Oncol. 1994;1(5):436-450.
    39 Park T, Hemando K, Kubler T. A phase 1 study of vaccination with tumor cells in patients with advanced gynecological cancers. Thirty seventh Annual Meeting:American Society of Clinical Ontology. 2001;1074: 269a.
    40 Worgall S, Wolff G, Falck-Pedersen E, Crystal RG. Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration.Hum Gene Ther 1997;8:37-44.
    41 Kucharczuk JC, Raper S, Elshami AA, Amin KM, Sterman DH, Wheeldon EB, Wilson JM, Litzky LA, Kaiser LR, Albelda SM. Safety of intrapleurally administered recombinant adenovirus carrying herpes simplex thymidine kinase DNA followed by ganciclovir therapy in nonhuman primates. Hum Gene Ther. 1996;7:2225-2233.
    42 Clayman GL, el-Naggar AK, Roth JA, Zhang WW, Goepfert H, Taylor DL, Liu TJ. Cancer Res. 1995;55:l-6.
    43 Goldman MJ, Litzky LA, Engelhardt JF, Wilson JM. Transfer of the CFTR gene to the lung of nonhuman primates with El-deleted, E2a-defective recombinant adenoviruses: a preclinical toxicology study. Hum Gene Ther. 1995;6:839-851.
    44 Prince GA, Porter DD, Jenson AB, Horswood RL, Chanock RM, Ginsberg HS. Pathogenesis of adenovirus type 5 pneumonia in cotton rats (Sigmodon hispidus).J Virol. 1993;67:101-111.
    45 Simon RH, Engelhardt JF, Yang Y, Zepeda M, Weber-Pendleton S, Grossman M, Wilson JM. Adenovirus-mediated transfer of the CFTR gene to lung of nonhuman primates: toxicity study. Hum Gene Ther. 1993;4:771-780.
    46 Wilmott RW, Amin RS, Perez CR, Wert SE, Keller G, Boivin GP, Hirsch R, De Inocencio J, Lu P, Reising SF, Yei S, Whitsett JA, Trapnell BC. Safety of adenovirus-mediated transfer of the human cystic fibrosis transmembrane conductance regulator cDNA to the lungs of nonhuman primates. Hum Gene Ther. 1996;7:301-318.
    47 Brody SL, Crystal RG. Adenovirus-mediated in vivo gene transfer. Ann NYAcad Sci. 1994;716:90-101.
    48 Guo S , Kempheus KJ . Par - 1 , a gene required for establishing polarity in C. elegans embryos , encodes a putative Ser/Thr kinase that is asymmetrically distributed . Cell. 1995;81:611 - 620.
    49 Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC.Potent and specific genetic interference by double-stranded RNA in
    ??Caenorhabditis elegans. Nature. 1998;391(6669):806-811.
    50 Hamilton AJ, Baulcombe DC. A species of small antisense RNA in post-transcriptional gene silencing in plants. Science. 1999;286(5441):950-952.
    51 Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000;404(6775):293-296.
    52 Zamore PD, Tuschl T, Sharp PA, Bartel DP. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101:25-33.
    53 Hammond SM , Caudy AA , Hannon GJ . Post - transcriptional gene silencing by double - stranded RNA. Nature Rev Gen. 2001;2:110~119.
    54 Sharp PA. RNA interference . Genes Dev. 2001; 15:485—490.
    55 Hutvagner G, Zamore PD. RNAi : nature abhors a double - strand. Curr Opin Genetics & Development 2002; 12:225—232.
    56 Nykanen A , Haley B , Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway . Cell. 2001;107:309~321.
    57 Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RH, Fire A. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell. 2001;107:465-476.
    58 Kerbel RS. Tumor angiogenesis: past, present and the near future. Carcinogenesis. 2000;21(3):505-515.
    59 Brower V. Tumor angiogenesis—new drugs on the block. Nat Biotechnol. 1999;17(10):963-968.
    60 Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/ vascular endothelial growth factor , microvascular hyperpermeability , and angiogenesis. Am J Pathol. 1995;146:1029~1039.
    61 Hanahan D ,Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell.1996;86(3):353-364.
    62 Molema G, de Leij LF, Meijer DK. Tumor vascular endothelium: barrier or target in tumor directed drug delivery and immunotherapy. Pharm Res. 1997;14(l):2-10.
    63 Jain RK. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev.1990;9:253-266.
    64 Dvorak HF. Tumors: wounds that do not heal. New Engl J Med. 1986;315: 1650-1659.
    65 Szabo S, Sandor Z. The diagnostic and prognostic value of tumor angiogenesis. Eur J Surg Suppl. 1998;(582):99-103.
    66 Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999;13(l):9-22.
    67 Cohen T , Gitay-Goren H , Sharon R . VEGF121 a vascular endothelial growth factor (VEGF) isoform lacking heparin binding ability , requires cell surface heparan sulfates for eefficient binding to the VEGF receptors of human melanoma cells. J Biol Chem.,1995 ;270 :11322—11326.
    68. Ferrara N, Davis ST, The biology of vascular endothelial growth factor. EndocRev.l997;18:4-25.
    69 Brekken RA, Overholser JP, Stastny VA, Waltenberger J, Minna JD, Thorpe PE. Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer Res.2000;60:5117-5124.
    70 Cheng H, Mao B, Zhang S, Cheng N. HuaXi YiKe DaXue XueBao. 2001;32:369-371.
    71 Zhang H, Wu J, Meng L, Shou CC. World J Gastroenterol. 2002;8:994-998.
    72 McDonnell CO, Hill AD, McNamara DA, Walsh TN, Bouchier-Hayes DJ. Tumor micrometastases:the influence of angiogenesis. Eur J Surg Oncol. 2000;26:105-115.
    73 Melnyk O, Zimmerman M, Kim KJ, Shuman M. Neutralizing antivascular endothelial growth factor antibody inhibits further growth of established prostate cancer and metastases in a pre-clinical model. J Urol. 1999;161:960-963.
    74 Yoshiji H , Harris SR , Thorgeirsson UP. Vascular endothelial growth factor is essential for initial but not continued in vivo growth of human breast carcinoma cells. Cancer Res , 1997; 57:3924~3928.
    75 Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W. Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol.1998 ;140 :947~959.
    76 Friesel R , Maciag T. Molecular mechanisms of angiogenesis : fibroblast growth factor signal transduction. FAS EB J.1995;9:919~925.
    77 Desbaillets I , Diserens AC , de Tribolet N. Regulation of interleukin-8 expression by reduced oxygen pressure in human glioblastoma. Oncogene.l999;18(7):1447~1456.
    78 Ruegg C, Yilmaz A, Bieler G, Bamat J, Chaubert P, Lejeune FJ. Evidence for the involvement of endothelial cell integrin α v β3 in the disruption of the tumor vasculature induced by TNF and IFN- Y .Nature Medicine.l998;4:408~414.
    79 O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin:a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994;79(2):315-328.
    80 O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell.l997;88(2):277-285.
    81 Srivastava A, Laidler P, Hughes LE, Woodcock J, Shedden EJ. Neovascularization in human cutaneous melanoma: a quantitative morphological and Doppler ultrasound study. Eur J Cancer Clin Oncol. 1986;22(10):1205-1209.
    82 Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med. 1991;324(l):l-8.
    83 Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, Meli S, Gasparini G. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst. 1992;84(24): 1875-1887.
    84 Gasparini G, Boracchi P, Bevilacqua P, Mezzetti M, Pozza F, Weidner N. A multiparametric study on the prognostic value of epidermal growth factor receptor in operable breast carcinoma. Breast Cancer Res Treat. 1994;29(1):59-71.
    85 Macchiarini P, Fontanini G, Hardin MJ, Squartini F, Angeletti CA. Relation of neovascularisation to metastasis of non-small-cell lung cancer. Lancet. 1992;340(8812):145-146.
    86 Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol. 1993;143(2):401-409.
    87 . Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002;29(6 Suppl 16): 15-18.
    88 Kuiper RA, Schellens JH, Blijham GH, Beijnen JH, Voest EE. Clinical research on antiangiogenic therapy. Pharmacol Res. 1998;37(1):1-16.
    89 Bancher T, Descair A , Bilgi S, et al. Angiogenesis in vulvar intra-epithelial neoplasia. Gynecol Oncol. 1991;64(3):496 -500.
    90 Larcher F, Robles A I,Buran H. up-regulation of vascular endothelial growth factor/vascular permeability factor in mouse skin carcihogenesis correlates with malignant progression state and activated H-ras exp ression levels. Cancer Res.l996;56(23):5391-5396.
    91 Kumar H, Heer K, Lee PW, Duthie GS, MacDonald AW, Greenman J, Kerin MJ, Monson JR. Preoperative serum vascular endothelial growth factor can predict stage in colorectal cancer. Clin Cancer Res. 1998;4(5):1279-1285.
    92 Barton DP, Cai A, Wendt K, Young M, Gamero A, De Cesare S. Angiogenic protein expression in advanced epithelial ovarian cancer. Clin Cancer Res. 1997;3(9):1579-1586.
    93 Baccala A , Zhong H, Clitt SM. Serum vascular endothelial growth factor is a candidate biomarker of metastatic tumor response of renal cell cancer . Urology, 1998;51:327-332.
    94 Zolota V ,Gerokosta A ,Melachrinou M. Microvessel density,proliferating activity , p53 and bcl-2 expression in situ ductal carcinoma of the breast. Anticancer Res.l999;19(4B):3269-3274.
    95 Basari S, Delellis RA , Healtley GJ. Microvessel quantitation and prognosis in invasive breast carcinoma. Hum Pathol. 1992;23:755-761.
    96 Yamazaki K,Abe S, Takekawa H. Tumor angiogenesis in human lung adenocarcinoma. Cancer. 1994;74(4):2245-2250.
    97 Miliaras D, kamas A , kalekow H. Angiogenesis in invasive breast carcinoma: is it associated with parameters of prognostic significance?. Histopathology. 1995;26:165-169.
    98 Gasparini G,Weidner N ,Beiilacqua P. Tumor microvessel denity,p53 expression, tumor size and peritumoral lymphatic vessel invasion are relavant prognosite markers in node-negative breast carcinoma. J Clin Oncol. 1994; 12(2):454-466.
    99 Costello P, McCann A, Carney DN, Dervan PA. Prognostic significance of microvessel density in lymph node negative breast carcinoma. Hum Pathol. 1995;26(11):1181-1184.
    100 Gasparini G, HarrisAL. Clinical importance of the determ inaction of tumor angiogenesis in breast carcinoma: much more than a new prognostic tool. J Clin Oncol, 1995;13(3):765-782.
    101 Twardowski P ,Gradishar WJ . Clinical trials of antiangiogenic agents. Curr Opin Oncol. 1997;9(6):584-589.
    102 Boehm T, Folkman J, Browder T, O'Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature. 1997;390(6658):404-407.
    103 Kou BJ, Li YL, Zhang LH, Zhu GB, Wang XR, Li YL, Wang YZ, Shi YA. Cloning, expression of soluble VEGFR2 fragment and its effect on tumor angiogenesis Zhonghua Zhong Liu Za Zhi. 2004;26(6):337-341.
    104 Ye C, Feng C, Wang S, Wang KZ, Huang N, Liu X, Lin Y, Li M. sFlt-1 gene therapy of follicular thyroid carcinoma. Endocrinology. 2004;145(2):817-822.
    105 Streck CJ, Zhou J, Ng CY, Zhang Y, Nathwani AC, Davidoff AM. Longterm recombinant adeno-associated, virus-mediated, liver-generated expression of an angiogenesis inhibitor improves survival in mice with disseminated neuroblastoma. J Am Coll Surg. 2004;199(l):78-86.
    106 Heidenreich R, Machein M, Nicolaus A, Hilbig A, Wild C, Clauss M, Plate KH, Breier G. Inhibition of solid tumor growth by gene transfer of VEGF receptor-1 mutants. Int J Cancer. 2004;111(3):348-357.
    107 Rakhmilevich AL, Hooper AT, Hicklin DJ, Sondel PM. Treatment of experimental breast cancer using interleukin-12 gene therapy combined with anti-vascular endothelial growth factor receptor-2 antibody. Mol Cancer Ther. 2004;3(8):969-976.
    108 KusakaM , Sudo K, Fujita T. Potent antiangiogenesis action of AGM-1470: comparison to the fumagallin parent. Biochem Biophys Res Commum. 1991;174:1070-1076.
    109 Yanase T, TamuraM. Inhibitory effect of angiogenesis inhibitor TNP-470 on tumor growth and metastasis of human cell lines in vitro and in vivo. Cancer Res.1993; 53: 2566-2570.
    110 Tanaka T, Konno H, Matsuda I. Prevention of hepaticmetastasis of human colon cancer by angiogenesis inhibitor TNP-470.Cancer Res.l995;55:836-839.
    111 Teicher BA , Holden SA. Potentiation of cytotoxic cancer therapies by TNP-470 alone and with other anti-angiogetic agents. Int J Cancer. 1994;57:920-925.
    112 YoshimitsuK, Wright K. Hepatic arterial infusion of recombinant platelet factor-4 suppresses metastases to the lungs from tumors implanted into the livers of rabbits. Cancer.l995;75(10):2435-2441.
    113 Theodore E, Gary S, Petro J. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science. 1990;247:77-79.
    114 Watson S, Morris T, Robinson G. Inhibition of organ invasion by thematrix metallop roteinase inhibitor Batimastat (BB294) in two human colon carcinoma metastasis models. Cancer Res. 1998,55:3629-3633.
    115 Rak JW, St Croix BD, Kerbel RS. Consequences of angiogenesis for tumor progression, metastasis and cancer therapy. Anticancer Drugs. 1995;6(1):3-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700