用户名: 密码: 验证码:
SCP微生物—化学氧化絮凝工艺处理皂素生产废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄姜皂素废水中富含糖类和色素、果胶质和蛋白等难以生物降解的大分子有机物,是一种强酸性、高浓度有机废水。由于加工规模、资金、技术的限制,目前尚未有成熟、经济的皂素废水处理技术,废水污染已成为制约皂素产业健康发展的瓶颈。本研究针对目前皂素生产企业的现状,本着废水资源化利用和达标处理的原则,将SCP(Single-Cell-Protein)微生物发酵技术和废水处理技术相结合应用于皂素废水处理,以期寻求一种简单易行、高效低耗和易被企业接受的技术方法,达到皂素废水的资源化利用、以废养废和有效解决污染问题的目的。
     本研究以皂素生产过程排放的综合废水为研究对象,采用SCP微生物-化学氧化絮凝两级处理工艺,以废水COD、色度去除率、处理成本及效益为考察指标,分别研究各种SCP微生物一级处理和各种化学絮凝剂二级处理皂素废水的工艺条件、影响因素、处理成本及效益,通过对处理成本和效益的对比,确定出低成本或高效益的SCP微生物-化学氧化絮凝两级处理工艺,研究主要结果如下:
     1.产朊假丝酵母处理皂素废水时,通过单因素和正交试验确定的优化工艺条件为:在30℃、接种量为10%、处理3天、通风比(VVM)=1∶1.5、废水起始pH5.5、废水中N、P(尿素和KH2PO4)添加量的比例为m(CODCr)∶m(N)∶m(P)=50∶5∶1的条件下,产朊假丝酵母对废水COD去除率达89.56%,处理液中细胞干重达24.9g/L。
     2.白腐真菌对皂素废水进行处理时,通过单因素和正交试验所确定的优化工艺条件为:在30℃、通风比为1∶0.5、接种量150 mL/L、处理时间4 d、废水的起始pH 4.5、废水中N、P(尿素和KH2PO4)添加量的比例为m(CODCr)∶m(N)∶m(P)=100∶5∶1 mg.mg-1.mg-1、废水中纤维素添加量的比例为m(CODCr)∶m(纤维素)=1∶0.01 mg.mg-1、废水中MgSO4添加量为0.05 g/L的条件下,白腐真菌对皂素废水的COD去除率可达95.02%,色度去除率可达20%,处理液中细胞干重可达29.9g/L。
     3.通过对比2种SCP微生物处理皂素生产综合废水的一级工艺,对废水COD和色度去除率高、处理利润高、效益好的工艺为白腐真菌处理的工艺;处理成本低、投资风险小的工艺为产朊假丝酵母处理的工艺。
     4.对比2种化学氧化絮凝二级处理皂素废水的工艺,对各种SCP微生物处理后的皂素废水COD和色度去除率较高,以及处理成本最低的工艺为聚合铁化学氧化絮凝的工艺。用单因素试验方法确定其优化条件为:在常温30℃、处理30min、静置30min的条件下,通过对经产朊假丝酵母、白腐真菌处理后的皂素废水的出水比较,聚合铁的最佳投加量分别为:4.5g/L、1.75g/L,二级处理后各种处理液出水的COD、色度和pH三项指标均可达到GB18918-2002所规定的一级或二级排放标准。
     5.对比2种SCP微生物-聚合铁化学氧化絮凝两级处理皂素废水的工艺,处理成本低、投资风险小的工艺为产朊假丝酵母-聚合铁化学氧化絮凝两级处理工艺;处理利润高、效益好的工艺为白腐真菌-聚合铁化学氧化絮凝两级处理工艺。
     6.若不计废水处理的设备投资、人员工资和管理费用,对每吨皂素综合废水,当用产朊假丝酵母-聚合铁化学氧化絮凝两级处理工艺时,处理成本为39.50元,处理利润为-2.15元,废水总的COD和色度去除率分别为:99.25%、96.68%;当用白腐真菌-聚合铁化学氧化絮凝两级处理工艺时,处理成本为40.6元,处理的利润为4.25元,废水总的COD和色度去除率分别为:99.7%、96.9%。
     本研究首次将SCP微生物-化学氧化絮凝两级处理工艺应用于皂素生产废水的处理,该工艺不仅能够高效除去废水中的有机污染物,使出水的COD、色度和pH三项指标均可达到GB18918-2002所规定的一级排放标准,而且变废为宝,产生了一定的经济和社会效益,为我国皂素行业污水治理提供了一种新的思路和方法,具有一定的推广和应用价值。
Saponin wastewater has plenty of sugar and a few pigment, gum, albumen and so on, which include large molecules and difficult to be biodegradated, so saponin wastewater is a kind organic wastewater of high concentration and acidity. Because of confinement of producers scale, finance,technique, up to date, the mature and economical technology of treating saponin wastewater hasn’t occurred. And the problem of saponin wastewater pollution has become a bottleneck problem on developing saponin industry healthfully. This study was based on current situation of enterprises producing saponin wastewater and the principle of transforming wastewater into resource and achieving standard emission. It combined technology of fermentation and wastewater treatment to treat saponin wastewater in order to seek a simple,high efficient,low energy-cost technological way that could be easily accepted by saponin enterprises. At the same time it could gain the aim of producing resource and solving the environmental pollution. The subject of this thesis was comprehensive resolution of saponin wastewater released during the process of producing saponin and the research indication was saponin wastewater,s COD removal rate, saponin wastewate,s color removal rate,the cost and benefits of treatment. Through the use of SCP(Single-Cell-Protein) microbes-chemical oxidize flocculation dual level treatment, in this experiment, I respectively studied the primary treatment of diversified microbes and the conditions, factors, cost and profit caused by diversified chemical oxidize flocculation during the process of producing saponin wastewater. After contrasting the cost to the profit, I achieved the dual level treatment SCP microbes-chemical oxidize flocculation which has lower costs but higher profits. The following results were obtained:
     Firstly, the technological conditions of treatement of saponin manufacturing wastewater by utilis were studied through orthogonal optimizing experiments and single factor experiments, the optimized technological condition was obtained: when temperature 30℃, inoculation 10%, treattime 3d, VVM=1∶1.5,the start pH of wastewater is 5.5, carbamide and KH2PO4 added into the wastewater according to m(CODCr)∶m(N)∶m(P)=50∶5∶1, the saponin wastewater’s CODCr remoral rate reached 89.56%, and dry cell weight is 24.9 g/L in the treatment wstewater.
     Secondly, the technological conditions of treatement of saponin manufacturing wastewater by white rot fungus were studied through orthogonal optimizing experiments and single factor experiments, the optimized technological condition was obtained: when temperature 30℃, VVM=1∶0.5,inoculation 150 mL/L, treattime 4d, the start pH of wastewater is 4.5, carbamide and KH2PO4 added into the wastewater according to m(CODCr)∶m(N)∶m(P)=100∶5∶1, cellulose added into the wastewater according to m(CODCr)∶m(cellulose)=1∶0.01 mg.mg-1, and MgSO4 added into the wastewater according to 0.05 g/L, the saponin wastewater’s CODCr remoral rate reached 95.02%, the color removal rate is 20%, and dry cell weight is 29.9 g/L in the treatment wstewater.
     Thirdly, through analyzing the two primary level technology of disposal on saponin wastewater by SCP microbes, the first optimized technology is white rot fungus treatment technology, because it has the highest profits, and wastewater’s COD removal and color removal rate are higher. The second optimized technology is utilis treatment technology, because of it,s lower costs and small investment.
     Forthly, by contrasting the two second level chemical oxidizer flocculation technological of disposal on saponin wastewater by flocculation, the optimized technology is polymerized iron chemical oxidizer flocculation technology, because it can effectively remove COD and color of different treatment saponin wastewater by SCP microbes, at the same time, its costs is lower. The technological conditions of treatement of saponin manufacturing wastewater by polymerized iron chemical oxidizer flocculation were studied through orthogonal simple factor experiments, the optimized technological condition was obtained: when temperature 30℃, treattime 30min, static place 30min,the polymerized iron added into the after treatment wastewater by utilis according to 4.5 g/L, the polymerized iron added into the after treatment wastewater by white rot fungus according to 1.75 g/L, the COD, color and pH of different emission of wastewater by polymerized iron reach the first or second standard of GB18918-2002.
     Fifthly, by contrasting the two technological of disposal on saponin wastewater by SCP microbes-polymerized iron chemical oxidizer flocculation dual level treatment technology, the first optimized technology is effective utilis-polymerized iron chemical oxidizer flocculation treatment technology because of its lower costs and small investment. The second optimized technology is white rot fungus-polymerized iron chemical oxidizer flocculation treatment technology because of it’s best benefits.
     Sixthly, except the cost of equipment, the salary of worker and the cost of management, when handling saponin wastewater per ton, it is treated by utilis-polymerized iron chemical oxidizer flocculation treatment technology, the treatment cost of per ton saponin waste water is 39.50 yuan, it’s profit is -2.15 yuan. The wastewater’s COD removal rate can reach 99.25 % and the color removal rate is 96.68 %. When saponin wastewater was treated by white rot fungus-polymerized iron chemical oxidizer flocculation treatment technology, its cost is 40.6 Yuan, its profit is 4.25 Yuan, the COD removal rate of wastewater can reach 99.7 %,the color removal rate is 96.9 %.
     In this study SCP microbes-polymerized iron chemical oxidizer flocculation second level treatment technology is applied to treating saponin wastewater at the first time. The technology can remove carbon and decolorize remarkably, at the same time it can make the COD, color and pH of different emission of wastewater reach the first or second standard of GB18918-2002. Moreover, the technology can translate the pollutant into the resource, and produce the economic and social benefits. This study proves a new method and idea to treat saponin wastewater and it will definitely have a certain value to extend and apply.
引文
[1] Huai Z P .Ding Z Z,He S A,etal.Research on correlations between climatic.Factors and diosgenin content in Dioscorea Zingiberensis[J].Acta Pharm Sin,1989,24(9):702-706.
    [2] 于超,王宇.薯蓣科药用植物的研究进展[J].医药报导,2002,21(增刊):13-15.
    [3] 叶文才.皂甙分离技术和鉴定技术新进展[J].国外医药:植物药分册,1993,8(3):99-103.
    [4] 彭军鹏.甾体皂甙化学研究方法的新进展[J].中草药,1992,23(8):437-444.
    [5] 秦松云,丁季春,舒柕,等.中国盾叶薯蓣资源现状及保护对策[J].资源开发与市场,2004,20(4):263-265.
    [6] 黄诗鰹,张希.中国黄姜生产的现状与对策[J].世界农业,2003,9(293):49-50.
    [7] 江苏医学院.中药大字典[M].上海:上海科学技术出版社,1986.
    [8] 秦天才,张有德、张君之.湖北黄姜资源的现状与开发利用[J].自然资源,1996,(3):58-62.
    [9] 刘亚平.汉江流域黄姜产业开发中的环境问题及对策[J].环境科学技术,2002,25(Suppl):38-39.
    [10] 刘大银,毕亚凡,李庆新等.皂素生产废水综合治理技术研究(Ⅰ )-实用治理技术框架[J].武汉化工学院学报,2003,25(4):33-36.
    [11] 孙欣,邓良伟,吴力斌.皂素生产废水污染特点及治理现状[J].中国沼气,2005,23(1):25-29.
    [12] 张燕,梅明,董梅.黄姜产业概况及污染防治对策[J].黄石高等专科学校学报,2004,20(4):58-61.
    [13] 秦天才、张有德.黄姜的利益现状与发展对策[J].中国林副特产,1995,34(3):40-47.
    [14] 葛发欢.超临界流体萃取法从薯蓣植物提取薯蓣皂素的新工艺[P].发明专利,98113367.7.
    [15] 刘锡葵,吕春潮.萃取技术在皂素生产中的应用[J].化学研究与应用,2004,11(5):582-583.
    [16] 佟玲.酶解法提取薯蓣皂素的工艺研究[J].陕西师范大学学报:自然科学版,2003,31(2):81-83.
    [17] 周振起、封玉贤.薯蓣属植物提取皂素的工艺研究[J].中草药,1985,16(7):303-305.
    [18] 秦华,贺芸芸.汉中黄姜产业问题分析与防治对策[J].陕西环境,2003,10(3):23-25.
    [19] 刘春.皂素生产废水污染特点及治理对策探讨[J].环境保护科学.2001,105(27):22-25.
    [20] 张志扬,李江华,贾丽云,等.UASB-生物接触氧化-絮凝沉淀法处理皂素废水[J].城市环境与城市生态.2003,16(Suppl):32-34.
    [21] 张勇,祁恩成,张守诚,等.黄姜-皂素废水综合处理技术的探讨[J].环境科学与技术.2004,27(增刊):124-125.
    [22] 高延耀,顾国维.污水控制工程(第二版).北京:高等教育出版社,1999.
    [23] 沈耀良,王宝贞.废水生物处理新技术[M].北京:中国环境科学出版社,2001.
    [24] 王丽.两级水解酸化-好氧工艺处理染料生产废水的研究[D].哈尔滨:哈尔滨建筑大学,1998.
    [25] 李静,姚传忠,季民等.厌氧-好氧组合工艺处理制药废水的研究[J].工业水处理,2004,24(1):24-26.
    [26] 张志扬,李江华,贾丽云.UASB-生物接触氧化-絮凝沉淀法处理皂素废水.城市环境与城市生态,2003,16(Suppl):32-34.
    [27] 刘礼祥,解清杰,吴晓辉.水解-激波厌氧-好氧工艺处理皂素废水研究[J].化学与生物工程,2004,4(1):49-51.
    [28] 高锋,杨朝暉,曾光明.厌氧水解-SBR 工艺处理高浓度有机废水运行工序的优化[J]。环境科学,2004,25(5):84-88.
    [29] 宋凤敏,呼世斌,刘音.酵母菌处理皂素生产废水的研究[J].环境污染治理技术与设备,2004,5(4):66-69.
    [30] 凌云,冯贵颖,刘建党,等.酵母菌-光合细菌联用处理皂素废水的试验研究[J].西北农业学报,2006,15(1):109-112.
    [31] 冯仁涛,王宏勋,张晓昱.白腐真菌联合处理皂素废水与造纸黑液[J].工业水处理,2006,26(8):45-48.
    [32] 单丽伟,冯贵颖,呼世斌,等.新生 MnO2 处理皂素废水的研究[J].环境科学与技术,2006,9(29):76-77.
    [33] 徐朝辉,刘小玉,童蕾,等.曝气内电解-臭氧法预处理皂素废水的研究[J].工业水处理,2006,26(10):52-55.
    [34] 锦锋,祁璟,陆晓华.内电解法预处理皂素废水[J].中国给水排水,2003,19(12):43-44.
    [35] 葛红光,郭小华,李利华.皂素废水化学预处理研究[J].化学工程师,2006,127(4):17-18.
    [36] 胡玉洁.黄姜生产皂素废水处理技术研究[].宁波:江南大学硕士毕业论文,2004,6.
    [37] 王宝庆,陈亚雄,宁平.活性炭处理技术应用[J].云南环境科学,2000,19(3):46-49.
    [38] 陈志强,吕炳南,孙哲,等.低压蒸馏法处理高浓度中药废水的研究[J].哈尔滨建筑大学学报,1999,12(4):16-18.
    [39] 郑一新.制药行业高浓度有机废水的综合治理及资源利用研究[J].环境科学研究,1999,12(4):19-23.
    [40] 钱卫国,李世杰,李其昌,等.黄姜皂素废液酒精发酵和复合肥配制[J].化学与生物工程,2004,(6):46-48.
    [41] 黄进,张肇煜,李林,等.黄姜提取薯蓣皂甙元及葡萄糖的工艺研究[J].农业工程学报,2001,17(6):119-122.
    [42] 江天生,蒋成,李献军.盾叶薯蓣组织培养及废液利用初探[J].吉首大学学报(自然科学版),1999,20(1):85-87.
    [43] 杨志华,谢雄,王晖,等.膜分离技术处理皂素酸性废水的试验研究[J].地质科技情报,2007,26(1):91-95.
    [44] 李泽唐,蔡鹤生,马腾,等.水葫芦气囊预处理黄姜皂素废水的实验研究[J].环境科学,2006,27(7):1369-1372.
    [45] 王瑾,章北平,刘礼祥.人工湿地处理皂素废水生产性试验研究[J].安全与环境工程,200512(1):35-37.
    [46] 蔡俊.黄姜提取皂素废液柠檬酸发酵条件研究[J].中国酿造,2006, 6(159):14-17.
    [47] 李国富,冯振声.黄姜提取皂素新工艺探讨[J].益阳师专学报,1999,16(5):67-69.
    [48] 李冬,李稳宏,韩枫,等.黄姜资源化利用的途径和新工艺[J].西北大学学报(自然科学版)2006,36(5):765-767.
    [49] 曹玉芳,林如,胡正海.盾叶薯蓣根状茎的发育解剖学和组织化研究[J].武汉植物学研究,2003,21(4):299-294.
    [50] 郭湘芬,张荣太,晃念英,等.直接分离法黄姜提取皂素的工艺[J].中国:CN 1488640A,2004-4-14.
    [51] 栾玉静.单细胞蛋白的开发利用[J].饲料博览,2004,2:46-47.
    [52] 陈坚.环境生物技术[M].北京:中国轻工业出版社,1999.
    [53] 董衍明,马雁玲.单细胞蛋白饲料的开发与利用[J].饲料研究,2005,9:12-13.
    [54] 黄昌武.有机废水饲料资源开发研究[J].环境科学与技术,1992,(4):15-17.
    [55] 秦麟源.废水生物处理[M].上海:同济大学出版社,1989.
    [56] 陶德录,韩宁,蒋安文.微生物饲料菌株和成套设备的研究[J].饲料工业,2000,21(12):31-33.
    [57] 颜方贵.发酵微生物学[M].北京:中国农业大学出版社,1993
    [58] 胡梦红,王有基.菌体蛋白发展现况及其在水产饲料中的应用前景[J].北京水产,2006,(3):42-45.
    [59] 赵德英,荏亚青,张景宏,等.固态发酵及其在饲料工业中的应用[J].中国饲料,2000,(10):28-29.
    [60] 郭维烈,郭庆华,谢小保,等.4320 菌体蛋白饲料中双菌作用机制的研究[J].农业工程学报,2002,18(1):122-125.
    [61] 金其荣,赵建国.利用发酵工业废水生产饲料酵母[J].无锡轻工业学院学报,1987,6(2):85-89.
    [62] 焦士蓉.利用高浓度有机废水选育单细胞菌株的研究[J].四川工业学院学报,1999,18(1):41-44.
    [63] Shojaosadati S A,Jalizadeh A,Sanaei H R ,et al.Bioconversion of molasses stillage to protein as an economic treatment of this effluent[J].Resource,Conservation and Recycling,1997,27(1-2):125-138.
    [64] Getha K,Vikineswary S,Chong V C.Isolation and growth of the phototrophic bacterium Rhodopseudomonas palustris strain B1 in sago-starch-processing wastewater[J]. World Journal of Microbiology&Biotechnology,1998,14(4):505-511.
    [65] 冯树,张忠泽.混合菌——一类值得重视的微生物资源[J].世界科技研究与发展,2000,22(3):44-47.
    [66] 徐珊楠,邱宏端.微生物发酵生产蛋白饲料的研究进展[J].福州大学学报(自然科学版),2002,30(Suppl):709-713.
    [67] 薛全宏.微生物学[M].西安:世界图书出版社,2000.
    [68] 芩沛霖.工业微生物学[M].北京:化学工业出版社,2000.
    [69] 冯运玲,吴珊.酵母菌处理黄泔水试验研究[J].环境工程,2002,(2):11-14.
    [70] 李艳.发酵工业概论[M].北京:中国轻工业出版社,1999.
    [71] H.J.法夫,M.W 米勒,E.W 马克著,王民君译.酵母菌的生活[M].贵阳:酿酒科技编辑部,1985.
    [72] 黄启成.酵母菌处理赖氨酸生产废水的研究与运用[J].中国给水排水,1999,15(1):47-49.
    [73] 郑少奎,汪严明.酵母菌处理高浓度色拉油加工废水研究[J].运用环境生物学报,2000,(5):109-112.
    [74] Chingusa K,Hasegawa T,Yamamato N,etal.Treatment of wastewater from Oil Manufacturing Plant by Yeaasts[J].Watsci.Tech,2001,(7):51-58.
    [75] 黄晓东,李辉,李友明.酵母菌处理有机废水的应用[J].净水技术,2004,23(4):32-34.
    [76] 严煦世.水和废水技术研究.北京:中国建筑工业出版社,1995.
    [77] 黄翔峰,章非娟.味精生产废水治理技术进展[J].中国沼气,2001,18(3):3-8.
    [78] 黑亮,杨清香.利用酵母菌处理高浓度味精废水的连续小试[J].环境科学,2001,(7):62-66.
    [79] 张明友.味精废水发酵处理工艺研究[J].上海环境科学,2001(8):8-10.
    [80] Low E W,Chase H A,Reducing production of Excess Biomass During Wastewater Treatment Wat,Res[J].1999,33(5):1119-1132.
    [81] 尹萍,白逢颜.降解三硝基甲苯的酵母菌和类酵母菌的研究[J].微生物学报,1981,(6):258-264.
    [82] TNT 污水生化处理研究组. TNT 污水生化处理研究[J].环境科学学报,1981,(4):258-264.
    [83] 杨彦希,尹萍.酵母菌处理含酚废水的研究[J].微生物学报,1979,(19):408-415.
    [84] 汪严明,杨敏.用酵母菌处理油田废水的研究[J].环境科学,2002,(9):72-75.
    [85] 刘传华,王学银.生物方法降解废水有机物在曲酒厂生产中运用[J].酿酒科技,1999,(3):74-75.
    [86] Gerin P A,Asther M,etal.Peroxidase production by the filamentous fungus phaero-chaete chrysosporium in relation to immobilized in “filtering” carri- ers[J].Enzyme and Microbial Technology.1997,20(3):294-300.
    [87] Archibald F,etal.Decolorization of Kraft Bleachery Effluent Chormophores by Coriolus(Trametes)versicolor[J].Enzyme and Microbial technology,1990, 12(11): 846-853 .
    [88] Michiel J,Kotterman J,etal.Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungusBjerkanderasp.atrain BOS55 and indigenous microflora[J].Appl.Envir.Microbiol, 1998,64(8):2853-2858.
    [89] Michael A.P,Rosa R,etal.Polycyclic aromatic hydrocarbon metabolism by white fungi and oxidation by Coriolopsis gallica UAMH 8260la ccase[J].Appl.Envir.Microbiol, 1999,65(9): 3805-3809.
    [90] Wolter M,Zadrazil F,etal.Degradation of eight highly condensed polycyclic aromatic hydrocarbons by Pleurotus sp.Florida in solid wheat straw substrate[J].Appl.Mic -robiol and Biotechnoly, 1997,48(3): 398-404.
    [91] 应慧芳,黄民生,林巍.5 种白腐真菌对染料的脱色与降解[J].上海环境科学,2001,21(3):34-36.
    [92] 李慧蓉.黄孢原毛革菌对两种双偶氮染料的脱色降解[J].染料工业,1999,36(2):42-47.
    [93] ZHANG FU-MING,JEREMY S KNAPP,KELVIN NTAPLEY.D ecolorrization of cotton bleaching effluent with wood rotting fungus[J].Water Res,1999,33(4):919-928.
    [94] 阚振荣,杨东虎,梁利华.白腐真菌对染料废水脱色及降解的研究进展[J].河北大学学报(自然科学版),2003,23(2):209-214.
    [95] 程永前,黄民生,张国莹.白腐真菌对染料脱色及降解过程的机理和影响因素[J].环境污染治理技术与设备,2000,1(6):25-34.
    [96] 陈叶福,郭血娜,王正祥.木质素生物降解与纸浆工业废水脱色[J].工业微生物,2001,31(4):49-53.
    [97] Barr.D.P.etal.Mechanisms White Rot Fungi Used to Degrade pollutants[J]. Environ.Sci Technol,1994, 28(2):78-87.
    [98] Ian Singleton.Microbial.M,Etabolism of Xenobiotics Fundmental and Applied Research[J]. Chem. Tech.Biotechnol,1994,59(6):9-23.
    [99] 唐婉莹,黄俊,周申范.白腐真菌用于有机废水处理的研究[J].化工环保,1999,19(5):269-272.
    [100] 赵春芳,胡倒伟.偶氮金属络合染料的微生物脱色研究[J].武汉化工学院学报,2001,23(3):18-25.
    [101] 郑金来,李君文,晁福寰.生物降解常见染料的研究进展[J].环境污染治理技术与设备,2000,1(3):39-43.
    [102] 张晶,黄民生,徐亚同.白腐真菌木质素降解酶的研究与应用进展[J].净水技术,2004,23(1):19-21.
    [103] 周申范,唐婉莹,黄俊.白腐真菌及其在有机废水处理中的研究与应用[J].重庆环境科学,1998,20(6):22-25.
    [104] 安世杰,黄民生,徐亚同.真菌与废水处理[J].净水技术,2003,22(1):5-8.
    [105] SPADARO J T,GOLD M H,RENGANA THAN V.Degradation of azo dyes by the Lignini-degra- ding fungus Phanerochaete chrysosporium[J].Appl Environ Microbiol,1992, 58(8):2397-2401.
    [106] WONG Y,YU J.Laccase-catalyzed decolorization of synthetic dyes[J].Water-Re s ,1999,33(16): 3512-3520.
    [107] GRACE M B,SOARES M T,ESSOA AMOLIM,etal.Studuy on the biotransformation of novel disazo dyes by Laccase[J].Process Biochemistry,2002,37:581-587.
    [108] KNAPP J S,NEWBY P S.Decolorization of dyes by wood-rotting basidiomycete f- ungi[J].Enzyme and Microbial Technol,1995,17:664-668.
    [109] 程永前,黄民生,张国莹.白腐真菌煤渣生物膜反应器对染料的脱色实验研究{J}.水处理技术,2001,27(6):322-325.
    [110] 刘小涛,郭卫兵,阎韶鹃,等.纺织印染废水治理工程涉及[J].环境污染治理技术与设备,2002,3(1):77-78.
    [111] 吴涓,肖亚中,王怡平.白腐真菌处理灰法造纸黑液废水的研究{J}.生物杂志,2002,19(5):17-19.
    [112] 秦文娟,余惠生,艾育明.固定化白腐真菌处理苇浆氯漂碱抽提段废水的研究[J].纤维素科学与技术,1999,7(4):23-28.
    [113] 张朝晖,夏黎明,林建平.黄孢原毛平革菌对染料和印染废水的降解[J].应用与环境生物学报,2001,7(4):382-387.
    [114] 荚荣,赵凤,武胜.白腐真菌生物接触氧化法处理染料废水[J].中国环境科学,2004,24(2):205-208.
    [115] 何德文,黄俊,周申范.白腐真菌生化降解 TNT 废水的效果研究[J].环境卫生工程,1999,7(1):35-37.
    [116] 王庆生,李捍东,席北斗.利用白腐真菌处理含硝基苯类废水的研究[J].环境学研究,2002,15(2):19-21.
    [117] 邹世春,张展霞.白腐真菌降解氯代农药的机理[J].中山大学学报(自然科学版),1998,39(1):86-90.
    [118] 吴涓,李清彪,邓旭.白腐真菌吸附铅的研究[J].微生物学学报,1999,39(1):86-90.
    [119] 胡明操.污水处理技术发展年谱[J].给水排水,1982,(6):38-39.
    [120] 王东升,韦朝海.无机混凝剂的研究及发展趋势[J].中国给水排水,1997,13(5):20-21.
    [121] 马青山,贾瑟,孙丽珉.絮凝化学和絮凝剂[M].北京:中国环境科学出版社,1988.
    [122] 秦祖群.几种铁盐混凝剂的净水效果与经济效益[J].给水排水,1991,(2):15-19.
    [123] 甘光奉,张依华,甘莉.高分子铁盐混凝剂的开发与应用进展[J].工业水处理,1997,17(5):1-2.
    [124] 阮复昌,莫炳禄,公国庆.聚合硫酸铁的生成机理[J].高等化学工程学报,1996,10(2):210-213.
    [125] 由昭今.聚合硫酸铁-安全、优良的饮用水混凝剂[J].给水排水,1996,22(10):51-53.
    [126] 陈冬辰.聚合硫酸铁的制备及其在污水中的应用[J].山东化工,1997,(3):39-41.
    [127] 陈海星.一种改进的无机混凝剂[J].给水排水,1985,(6):46.
    [128] 刘昌学.我们对混凝剂选择的看法与实践[J].给水排水,1983,(4):21-23.
    [129] 杨宝田,屈雪茹,金苹.用聚铁处理印染、洗毛废水研究[J].环境科学,1986,7(3):38-42.
    [130] 许保玖.工业废水的治理[M].长沙:中国工业大学出版社,1991.
    [131] 王志忠,夏季春.净水厂聚铁的合成应用及与硫酸铝的使用比较{J],净水技术,1997,62(4):32-33.
    [132] 阮复昌,莫炳禄,徐国想.聚铝溶液 pH 值及盐浓度的相关性研究[J].化学反应工程与工艺,1999,15(1):25-30.
    [133] 刘罄远.铁盐水处理剂[J].给水排水,1979,(5):28-32.
    [134] 徐国想,阮复昌.铁系和铝系无机絮凝剂的性能分析[J].重庆环境科学,2001,23(3):52-55,72.
    [135] 蒋展鹏.环境工程学[M].北京:高等教育出版社,1992.
    [136] 李峰,李济吾.水处理絮凝剂的研究进展[J].中国环保产业, 2004(10):12-16.
    [137] 邹龙生,王国庆.聚铝和聚铁絮凝剂的生产和应用[J].江西化工,2002,(3):28-31.
    [138] 何叶丽译.废水处理用絮凝剂新进展[J].印染,2007,(1):48-51.
    [139] 吴慧英,黄晨.几种混凝剂处理煤气洗涤废水的悲剧[J].环境污染与防治,1999,21(6):15-16,27.
    [140] 熊风.聚硅酸硫酸铝絮凝剂的研制和性能研究[J].四川环境,2003,22(6):30-31,34.
    [141] 朱红.聚合磷硫酸铁在低温型分散染料废水处理中的应用[J].水处理技术,2001,27(4):233-235.
    [142] 张向京.用聚合硅酸铁处理砷化镓生产废水的研究[J].化工环保,2003,23(5):257-260.
    [143] 郑怀礼.含磷复合絮凝剂的应用研究[J].水处理技术,2001,27(5):274-276.
    [144] 刘明华.用新型絮凝剂处理制浆漂白废水[J].化工环保,2003,23(4):23-238.
    [145] 刘和清.聚硅酸锌絮凝剂处理制革工业废水的研究[J].水处理技术,1998,24(4):244-248.
    [146] Yoshizawa k.Development of the new treating methol of wastauater from fodd industry using yeast[J].Nippon Noge;kagaku kaishi,1981,(55):705-711.
    [147] Suzuki O,satosetal,Utilization of thermotolerant and flocculent yeast for wastewater treatment[J]. Hak- kokogaku kaishi,1991,(69):83-87.
    [148] Suzaki O,kobari o et al.Breeding of yeast for wastewater trentment by protoplast fusion[J].J Brea Soc Jpn,1996,(91):521-526.
    [149] Chigusa K,Hasegawa.Tetal.Tveatment of wastewater from oil manufacturing plant by yeasts[J]. Wat, sci .Tech,1996,34(11):51-58.
    [150] 徐达伍,王定昌,石瑞祥.利用味精废液生产单细胞蛋白实现无污染排放[J].轻工环保,1993,15(2):1-4.
    [151] 赵 斌,何绍江.微生物学实验[M].北京:科学出版社,2002.
    [152] 国家环保局水和废水检测分析方法编委会.水和废水检测分析方法[M].北京:中国环境科学出版社,1989.
    [153] 王业耀.白腐真菌降解焦化废水的试验研究[J].工业水处理,2004,24(2):26-29.
    [154] 何德文.白腐真菌在生物难降解有机废水处理中的应用[J].工业水处理,2000,20(3):16-17.
    [155] 俞俊棠,唐孝宜.生物工艺学[M].上海:华东理工大学出版社,1992.
    [156] 王惠丰,呼世斌.吸收—消化工艺处理薯蓣皂素废水的研究[J].西北农林科技大学学报:自然科学版,2003,32(5):109-112.
    [157] 单丽伟,冯贵颖,朱 丹等.上流式厌氧污泥床(UASB)处理皂素废水的研究[J].西北农林科技大学学报:自然科学版,2003,31(增刊):109-112.
    [158] 高大文.白腐真菌在非灭菌条件下对活性艳红染料的脱色研究[J].科学通报,2004,24(8):1009-1010.
    [159] 张元月,康静文,马志毅.FeC13混凝特性的研究[J].太原理工大学学报,2003,34(4):339-441.
    [160] 张乐英,徐得潜,陈慧.混凝过程最佳控制指标研究[J].合肥工业大学学报(自然科学版),2003,26(6):1179-1182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700