用户名: 密码: 验证码:
糯玉米淀粉理化特性基因型差异及其调控效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以我国近年来育成的糯玉米品种(品系)为材料,研究了淀粉理化特性的基因型差异,以及施肥处理、播期和收获期等栽培措施对其调控作用,并分析了籽粒成分和加工条件对其影响。本文主要研究结果如下:
     1.糯玉米淀粉理化特性(膨胀势、溶解度、持水力、胶凝特性、回生特性和糊化特性)存在显著的基因型差异。膨胀势、溶解度、持水力、热焓值、糊化范围、回生值、峰值黏度、崩解值、峰值温度和糊化温度的变异范围分别为12.9~25.3 g/g、34.7~66.7%、97.4~194.5%、45.9~57.0 J/g、7.7~12.0℃、32.8~78.8%、87.7~169.9 RVU、37.5~83.8 RVU、71.8~75.8℃和69.8~73.9℃。其中除峰值温度和糊化温度变异范围较小外,其他参数变异系数较大(变异系数>5.9)。对淀粉结构分析发现,淀粉的最大吸收波长除欣试糯玉01、丹黄糯02和陕白糯12较高外(分别为580.5、557.9和551.1 nm),其余品种的吸收波长均在532.2~540.3 nm之间,为典型的支链淀粉吸收波长,蓝值、碘结合力的变异范围分别为0.1274~0.7789和0.56~1.05。且这三项特征值和回生值、峰值黏度以及崩解值显著负相关,和回复值极显著正相关。对淀粉中微量元素含量分析发现,Ca、K、Na、Cu、Fe元素含量和各理化特征值间无显著相关关系,其他微量元素含量与部分特征值存在着一定的相关关系。可见,虽然糯玉米淀粉仅由支链淀粉组成,但长短链分支比例和淀粉微量元素含量的不同致使淀粉理化特性存在显著的基因型差异。
     2.施肥处理对淀粉糊化特性、热力学特性和晶体特性存在显著调控作用。施肥处理没有改变糯玉米淀粉的结晶类型,各处理下淀粉均表现为“A”型衍射特征。峰值时间、糊化温度、转变温度、峰值指数和糊化范围受施肥处理影响较小。和基施氮相比,增施磷或(和)钾可显著降低峰值黏度和崩解值,增加淀粉的结晶度,降低淀粉的回生值和回生淀粉的热焓值。随着拔节期追氮量的增加,峰值黏度逐渐升高,而崩解值、回生值和回生淀粉的热焓值在追施氮150和300 kg hm-2时无显著差异,但均大于不追氮处理。热焓值在拔节期追氮0或150 kg hm-2时无显著差异,但高于追氮300 kg hm-2处理,结晶度受追氮处理影响较小。在本试验条件下,氮磷钾均衡基施并拔节期追氮150 kg hm-2时,淀粉具有较高的结晶度、热焓值、峰值黏度和崩解值,较低的回生值。
     3.生长季节对淀粉晶体结构和糊化特性存在显著影响。生长季节不影响淀粉的结晶类型,供试淀粉的X-射线衍射图谱均表现出典型的“A”型衍射特征。然而,淀粉的晶体结构和糊化特性在生长季节间存在显著差异。和春季糯玉米淀粉相比,秋季糯玉米淀粉具有较高的结晶度、尖峰强度、峰值黏度、谷值黏度、终值黏度和崩解值。糯玉米淀粉的回复值较低,但秋季糯玉米淀粉仍显著低于春季糯玉米淀粉。相关分析表明,结晶度和各尖峰强度呈两两显著正相关。结晶度和峰值黏度、崩解值极显著正相关(相关系数分别为0.72和0.85),和谷值黏度、糊化温度显著正相关(相关系数分别为0.52和0.55),和回复值显著负相关(相关系数?0.49)。糯玉米淀粉糊化特性在不同生长季节下的变化主要由淀粉晶体结构(结晶度和尖峰强度)发生变化所致。
     4.收获期对糯玉米产量和糊化特性存在显著影响。随着收获期延迟,籽粒产量逐渐增加,增加速率以花后35~40 d最快,日增重达5.2%,花后40 d增加缓慢。淀粉含量先升后降,在花后35~40 d达到峰值,后期略有下降。收获期对糊化温度没有影响,而峰值黏度、谷值黏度、崩解值、终值黏度和峰值时间均随着收获期的延迟呈先升后降趋势,这几项指标在花后40 d最高,回复值此时最低。糊化特征参数中,糊化温度和峰值时间受收获期的影响较小,而峰值黏度、谷值黏度、崩解值、终值黏度和回复值受收获期的影响较大。综合考虑产量、淀粉含量和糊化特征参数在不同收获期间的变化趋势,可认为花后40 d收获在保证产量的同时有利于改良糯玉米淀粉的品质。
     5.蛋白、脂肪对淀粉理化特性存在显著影响。糯玉米淀粉颗粒主要为不规则的多边形。脱蛋白和脱脂处理没有改变糯玉米的结晶类型,各样品均表现为典型的“A”型衍射图谱,但脱蛋白和脱脂处理均使结晶度降低,且脱脂处理对其影响大于脱蛋白处理。糯玉米粉经脱蛋白处理后,表现为膨胀势降低,溶解度和透光率上升;淀粉经脱脂处理后,膨胀势和溶解度降低,但透光率升高。DSC研究表明,糯玉米粉去除蛋白后,热焓值增加,但脱脂处理使其降低。胶凝淀粉冷藏后发生回生,表现为转变温度和热焓值降低。糯玉米粉脱蛋白后回生值降低,但经脱脂处理的淀粉回生值又有所增加。脱蛋白处理后,糯玉米粉的淀粉峰值黏度、谷值黏度、终值黏度和崩解值升高,回复值和糊化温度降低,峰值时间缩短。淀粉经脱脂处理后,则表现RVA谱曲线的降低,除崩解值表现为高于糯玉米淀粉外,其他糊化特征值均表现为低于淀粉。因此,可根据需要对糯玉米淀粉进行相应处理,以获得适用于不同用途的糯玉米原料。
     6.加工条件对玉米淀粉糊化特性存在显著影响。玉米淀粉的糊化特征值在不同反应程序下发生了改变,加热冷却速率快,95℃保持时间长,淀粉的峰值黏度、崩解值和糊化温度较高,峰值时间较短。在不同反应程序下,相对于普通玉米淀粉,糯玉米淀粉的峰值黏度和沉降值较高,而谷值黏度、终值黏度、回复值、峰值时间和糊化温度较低。糯玉米和普通玉米淀粉的糊化特征参数受到浓度影响,随着淀粉浓度的增加,峰值黏度、谷值黏度、沉降值、终值黏度和回复值随之增加,峰值时间略有降低,浓度太低时淀粉不能糊化,在能糊化条件下则随着浓度的增加而降低。且在低浓度条件下,糯玉米淀粉的峰值黏度高于普通玉米,而在较高浓度(11%)条件下,糯玉米淀粉的峰值黏度则低于普通玉米淀粉。
Using the waxy maize varieties or lines that released in recent years in China as materials, the genotypic differences for starch physicochemical properties were studied and the regulation effects of cultivation measures such as fertilizer treatments, sowing and harvesting date on it were clarified. Further, the effects of kernel components and process condition on it were analyzed. The mains results of the study were as follows.
     Physicochemical properties (Swelling power, solubility, water binding capacity, gelatinization, retrogradation and pasting characteristics) for waxy maize starch were significantly different among 54 waxy maize varieties or lines come from Chinese waxy maize regional test. The variation ranges for swelling power, solubility, water binding capacity, enthalpy of gelatinization, peak temperature, gelatinization range, percentage of retrogradation, peak viscosity, breakdown and pasting temperature were 2.9~25.3 g/g、34.7~66.7%、97.4~194.5%、45.9~57.0 J/g、7.7~12.0℃、32.8~78.8%、87.7~169.9 RVU、37.5~83.8 RVU、71.8~75.8℃and 69.8~73.9℃, respectively. The variation for peak temperature and pasting temperature was little, whereas the variation for the other characteristics was large (variation coefficient>5.9%). Theλmax for waxy maize starch were mainly between 532.2 nm and 540.3 nm, except for Xinshinuoyu01, Danhuangnuo02 and Shanbainuo12, which were 580.5 nm, 557.9 nm and 551.1 nm, respectively, indicating theλmax of starch was mainly presented by amylopectin. The variation range for blue value and iodine binding capacity were 01274~0.7789 and 0.56~1.05, respectively. The three characteristics were negatively correlated to the percentage of retrogradation, peak viscosity and breakdown, and positively correlated to setback. By analysis the microelements content in starch, no significantly correlations were observed between Ca, K, Na, Cu, Fe content and the physicochemical characteristics, whereas significantly correlations were observed between other microelements content (P, S, Mn, Zn and B) and some physicochemical characteristics. Though the waxy maize starch was composed by 100% amylopectin, the variations of long/short chain ratio and microelements content caused the starch physicochemical properties were different among genotypes, which could afford references for its utilization.
     Significant regulation of fertilizer treatment on starch pasting, thermal and crystalline properties were observed. The fertilizer treatments didn’t change the diffraction pattern and the starch exhibited typical A-type diffraction pattern. Peak time, pasting temperature, transition temperature (onset, peak and conclusion temperature), and peak height index and gelatinization range were little affected by fertilizer treatments. Compared with the treatment of only N applied in basic fertilizer, adding P or (and) K fertilizers decreased the peak viscosity, breakdown, the percentage of retrogradation and enthalpy of retrogradation, but increased crystallinity. With larger amount of N topdressing at jointing stage, peak viscosity increased gradually, breakdown, the percentage of retrogradation and enthalpy of retrogradation showed no significant differences in treatments of topdressing N 150 and 300 kg ha-1 and higher than 0 kg ha-1 treatments. The physicochemical characteristics of waxy maize starch were improved to be the better (higher crystallinity, enthalpy of gelatinization, peak viscosity, breakdown and lower percentage of retrogradation) when the top dressing was N 150 kg ha-1 at jointing stage on the basis of N 75 kg ha-1 +P2O5 65 kg ha-1+K2O 70 kg ha-1 as the basic fertilizer.
     Starch cryatalline structure and pasting properties were affected by growth seasons. All starch samples showed a typical A-type diffraction pattern, indicating the growing season has no effect on it. However, the growing season significantly influenced the starch crystalline and pasting properties. Starch obtained from autumn season, compared with that from spring season, showed higher degrees on crystallinity, peak intensities (2θ=15°, 17°, 18°, 20°, and 23°), peak viscosity, trough viscosity, final viscosity, and breakdown. The setback of starch of waxy corn in autumn season was significantly lower than that in spring season, although they both in low values. The crystallinity, peak intensities, and pasting characteristics were significantly different among the eight waxy corn cultivars. The crystallinity was positively correlated with the peak viscosity (r = 0.72, P < 0.01), breakdown (r = 0.85, P < 0.01), trough viscosity (r = 0.52, P < 0.05), pasting temperature (r = 0.55, P < 0.05), whereas, it was negatively correlated to setback (r = ?0.49, P < 0.05). The differences of pasting properties between growing seasons were mainly caused by the differences of crystallinity and peak intensities of starch in waxy corn. Harvesting dates were observed affect the yield and starch pasting properties of waxy maize.
     The grain yield increased gradually when the harvesting date was postponed and the increasing rate was highest at 35-40 days after pollination (DAP), which reached 5.2 % per day, and the increasing rate was slow after 40 DAP. The starch content rose first and fell later and it reached a peak at 35-40 DAP. Pasting temperature was stable among different harvesting dates. Peak viscosity, trough viscosity, breakdown, final viscosity and peak time rose first and fell later with the postponed harvesting date, these five pasting characteristics reached a peak at 40 DAP, and setback was the lowest at this time. The effects of harvesting date on peak time and pasting temperature were lower, while those were larger on peak viscosity, trough viscosity, breakdown, final viscosity and setback. Considering the changing trend of grain yield, starch content and RVA characteristics, 40 DAP might be the optimum harvesting time as the grain yield was relative high, the starch content was the highest and the RVA characteristics was ideal at this time in this experiment.
     The physicochemical properties of starch were affected by protein and lipid content. The starch granules presented polygonal and irregular shapes. Protein removal and lipid removal didn’t change the diffraction pattern of waxy maize and all samples presented typical A-type diffraction pattern. Protein removal and lipid removal decreased the crystallinity, and the effect of lipid removal on starch was higher than protein removal on flour. The starch showed lower swelling power, higher solubility and light transmittance than flour. Defatting decreased the swelling power and solubility, whereas the light transmittance was increased. The enthalpy of gelatinization was increased after protein removal and it was decreased after lipid removal. After stored at 4°C for 7 days, the gelatinized samples exhibited lower transition temperature and enthalpy of retrogradation. The percentage of retrogradation was highest for flour and lowest for starch. RVA studies found that protein removal increased the peak viscosity, trough viscosity, final viscosity and breakdown viscosity. Simultaneity, setback viscosity, peak time and pasting temperature were decreased. Lipid removal decreased the RVA characteristics except for breakdown viscosity. The information generated in this study on the physicochemical properties of the flour, starch and defatted starch of waxy maize could provide guidance on possible uses of it.
     The process conditions on RVA characteristics of waxy and normal corn starches were studied, and the RVA characteristic differences between waxy corn starch and normal corn starch in different reaction programs and starch concentrations were clarified using waxy corn variety (Yunuo No. 7) and normal corn variety (Nongda 108) as material. The RVA characteristics were changed under different reaction programs, the starch presented higher peak viscosity, breakdown viscosity and pasting temperature, lower peak time in the procedure with higher heating-cooling rate and longer 95℃keeping time. Compared with normal corn starch, waxy corn starch exhibited higher peak viscosity and breakdown, lower trough viscosity, final viscosity, setback, peak time and pasting temperature. The RVA characteristics were affected by starch concentration. With the increment of starch concentration, peak viscosity, trough viscosity, breakdown, final viscosity and setback gradually increased, peak time decreased slightly. Starch couldn’t paste when the concentration was very low and the pasting temperature was decreased when the concentration increased. The peak viscosity of waxy corn starch was higher than normal corn starch when the concentration was low, and it was reverse when the concentration was higher (11%).
引文
Aboubakar Njintang Y N, Scher J, Mbofung C M F. Physicochemical, thermal properties and microstructure of six varieties of taro (Colocasia esculenta L. Schott) flours and starches. Journal of Food Engineering, 2008, 86: 294-305.
    Adebooye O C, Singh V. Physico-chemical properties of the flours and starches of two cowpea varieties (Vigna unguiculata L. Walp). Innovative Food Science and Emerging Technologies, 2008, 9: 92-100.
    Agunbiade S O, Longe O G. The physico-functional characteristics of starches from cowpea (Vigna unguiculata), pigeon pea (Cajanus cajan) and yambean (Sphenostylis stenocarpa). Food Chemistry, 1999, 65: 469-474.
    Almeida-Dominguez H D, Suhendro E L, Rooney L W. Factors affecting rapid visco analyzer curves for the determination of maize kernel hardness. Journal of Cereal Science, 1997, 25: 93-102.
    Asaoka M Okuno K, Sugimoto Y, Fuwa H. Developmental changes in the structure of endosperm starch of rice (Oryza sativa L.). Agricultural and Biological Chemistry, 1985, 49, 1973-1978.
    Asaoka M, Blanshard JMV, Rickard JE. Seasonal effects on the physico-chemical properties of starch from four cultivars of cassava. Starch/Starke, 1991, 43: 455-459.
    Asaoka M, Blanshard JMV, Rickard JE. Effects of cultivar and growth season on the gelatinisation properties of cassava (Manihot esculenta) starch. Journal of the Science of Food and Agriculture, 1992, 59: 53-58.
    Atwell W A, Hood L, Lineback D, Varriano-Marston E, Zohel H. The terminology and methodology associated with basic starch phenomenon. Cereal Foods World, 1988, 33:306-311.
    Bahnassey Y A, Breene W M. Rapid viscoanalyzer (RVA) pasting profiles of wheat, corn, waxy, corn, tapiocca and amaranth starches (A. hypochondriacus and A. cruentus) in the presence of konjac flour, gellan, guar, xanthan and locust bean gums. Starke, 1994, 48:134-141.
    Baldwin P M. Starch granule-associated proteins and polypeptides: A review. Starch, 2001, 53: 475-503.
    Barichello V, Yada R Y, Coffin R H, Stanley D W. Low temperature sweetening in susceptible and resistant potatoes: starch structure and composition. Journal of Food Science, 1990, 54:1054-1059.
    Baxter G, Blanchard C, Zhao J. Effects of prolamin on the textural and pasting properties of rice flour and starch. Journal of Cereal Science, 2004, 40: 205-211.
    Biliaderis C G, Maurice T J, Vose J R. Starch gelatinization phenomena studied by differential scanning calorimetry. Journal of Food Science, 1980, 45: 1660-1680.
    Biliaderis C G, Tonogai J R. Influence of lipids on the thermal & mechanical properties of concentrated starch gels. Journal of Agricultural and Food Chemistry, 1991, 39: 833-840.
    Blakeney A B, Welsh L A. The influence of stirring speed on starch paste viscosity. Cereal Foods World, 1993, 38: 627.
    Blazek J, Copeland L. Pasting and swelling properties of wheat flour and starch in relation to amylose content. Carbohydrate Polymers, 2008, 71:380-387.
    Calzetta R A, Suarez C. Gelatinization kinetics of amaranth starch. International Journal of Food Science and Technology, 2001, 36: 441-448.
    Carcea M, Cubadda R, Acquistucci R. Physiochemical and rheological characterization of sorghum starch. Journal of Food Science, 1992, 57:1024-1028.
    Chang Y, Lin J, Chang S. Physicochemical properties of waxy and normal corn starches treated in different anhydrous alcohols with hydrochloric acid. Food Hydrocolloids, 2006, 20:332-339.
    Chang Y, Lin J. Effects of molecular size and structure of amylopectin on the retrogradation thermal properties of waxy rice and waxycorn starches. Food Hydrocolloids, 2007, 21:645-653.
    Chung H-J, J H-Y, Lim S-T. Effects of acid hydrolysis and defatting on crystallinity and pasting properties of freeze-thawed high amylose corn starch. Carbohydrate Polymers, 2003, 54: 449-455.
    Cooke D, Gidley M J. Loss of crystalline and molecular order during starch gelatinization and origin of the enthalpic transition. Carbohydrate Research, 1992, 227:103-112.
    Cottrell J E, Duffus C M, Paterson L, Mackay G R. Properties of potato starch: effects of genotype and growing conditions. Phytochemistry, 1995, 40(4):1057-1064.
    Craig S A S, Maningat C C, Seib P A, Hoseney R C. Starch paste clarity. Cereal Chemistry, 1989, 66:173-182.
    Crowe T C, Seligman S A, Copeland L. Inhibition of enzymic digestion of amylose by free fatty acids in vitro contributes to resistant starch formation. Journal of Nutrition, 2000, 130: 2006-2008.
    Dang J M-C, Copeland L. Genotypic and environmental influences on pasting properties of rice flour. Cereal Chemistry, 2004, 81: 486-489.
    Davies T, Miller D C, Proctor A A. Inclusion complexes of free fatty acids with amylose. Starch, 1980, 32:149-154.
    Deffenbaugh L B, Lincoln N E, Walker C E. Use of the rapid visco analyser to measure starch pasting properties Part II: Effects of emulsifiers and sugar-emulsifier interactions. Starch/Starke, 1990, 42: 89-95.
    Defloor I, Dehing I, Delcour J A. Physico-chemical properties of cassava starch. Starch/Starke, 1998b, 50:58-64.
    Defloor I, Swennen R, Bokanga M, Delcour J A. Moisture stress during growth affects the breadmaking and gelatinisation properties of cassava (Manihot esculenta Crantz) flour. Journal of the Science of Food and Agriculture, 1998a, 76: 233-238.
    Dengate H N, Meredith P. The pasting characteristics of various sized starch granules from wheat. Starke, 1984, 25:305-309.
    Detet M R, Gidley M J. Three classes of starch granule swelling: Influence of surface proteins and lipids. Carbohydrate Polymers, 2006, 64: 452-465.
    deWilligen A H A. The rheology of starch. In J. A. Radley (Ed.), Examination and analysis of starch and starch products. London: Applied Science Publishers Ltd. 1976a, pp: 61-90.
    deWilligen A H A. The manufacture of potato starch. In J. A. Radley (Ed.), Starch production technology. London: Applied Science Publishers Ltd. 1976b, pp: 135-154.
    Donovan J W. Phase transitions of starch-water systems. Biopolymers, 1979:18, 263-275.
    Doublier J L, Llamas G, Meur M L. A rheological investigation of the cereal starch pastes and gels. Effect of pasting procedures. Carbohydrate Polymers, 1987, 7:251-275.
    Duxbury D D. Modified starch functionalities-no chemicals or enzymes. Food Processing, 1989, 50:35-37.
    Eerlingen R C, Cillen G, Delcour J A. Enzyme-resistant starch. IV. Effect of endogenous lipids and added sodium dodecylsulfate on formation of resistant starch. Cereal Chemistry, 1994, 71: 170-177.
    Eliasson A C, Krog N. Physical properties of amylose-monoglyceride complexes. Journal of Cereal Science, 1985, 3: 239-248.
    Eliasson A C. Effect of water control on gelatinization of wheat starch. Starch/Starke, 1980, 32: 270-274.
    Eliasson A-C, Gudmundsson M, Svensson G. Thermal behaviour of wheat starch in flour relation to flour quality. LWT, 1995, 28:227-235.
    Evans I D, Haisman D R. Rheology of gelatinized starch suspensions. Journal of Texture Studies, 1979, 17:253-257.
    Fitzgerald M A, Martin M, Ward R. M. Viscosity of rice flour: A rheological and biological study. Journal of agricultural and food chemistry, 2003, 51:2295-2299.
    Fredriksson H, Silverio J, Andersson R, Eliasson A C, Aman P. The influence of amylose and amylopectin characteristics on gelatinisation and retrogradation properties of different starches. Carbohydrate Polymers, 1998, 35, 119-134.
    Genkina N K, Noda T, Koltisheva G I, Wasserman L A, Tester R, Yuryev V P. Effects of growth temperature on some structural properties of crystalline lamellae in starches extracted from sweet potatoes (Sunnyred and Ayamurasaki). Starch/Starke, 2003, 55(8): 350-357.
    Goering K J, Jackson L L, DeHaas B W. Effect of some non-starch components in corn and barley starch granules on the viscosity of heated starch-water suspensions. Cereal Chemistry, 1975, 52: 493-500.
    Gray V M, Schoch T J. Effects of surfactants and fatty adjuncts on the swelling and solubilization of granular starches. Starch/Staerke, 1962, 14, 239-246.
    Guraya H S, Kadan R S, Champagne E T. Effect of rice starch-lipid complexes on in vitro digestibility, complexing index, and viscosity. Cereal Chemistry, 1997, 74: 561-565.
    Haase N U, Plate J. Properties of potato starch in relation to varieties and environmental factors. Starch/Starke, 1996, 48(5): 167-171.
    Hatcher D W, Lagasse S, Dexter J E, Rossnagel B, Izydorczyk M. Quality characteristics of yellow alkaline noodles enriched with hull-less barley flour. Cereal Chemistry, 2005, 82: 60-69.
    Hizukuri S. Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules. Carbohydrate Research, 1985, 141:295-305.
    Holm J, Bjorck I, Ostrowska S, Eliasson A C, Asp N G, Larsson K, Undquist I. Digestibility of amylose-lipid complexes invitro and in-vivo. Starch/Starke, 1983, 35: 294-297.
    Hoover R, Hadjiyev D. The effect of monoglycerides on amylose complexing during a potato granule process. Starch/Starke, 1981: 33, 346-355.
    Hoover R, Vasanthan T. The effect of annealing on the physico-chemical properties of wheat, oat, potato and lentil starches. Journal of Food Biochemistry, 1994, 17: 303-325.
    Hoover R, Vasanthan T. The effect of heat-moisture treatment on the structure and physicochemical properties of cereal, legume and tuber starches. Carbohydrate Research, 1994, 252: 33-53.
    Hoover R. Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 2001, 45: 253-267.
    Hoseney R C. Cereal starch. In Principles of Cereal Science and Technology; Hoseney, R. C., Ed.; American Association of Cereal Chemists: St. Paul, MN, 1994; Vol.4, Chapter 2.
    Inouchi N, Glover D V, Sugimoto Y, Fuwa H. Developmental changes in starch properties of several endosperm mutants of maize. Starch, 1984, 38: 8-12.
    Iturriaga L, Lopez B, Anon M. Thermal and physicochemical characterization of seven Argentine rice flours and starches. Food Research International, 2004, 37:439-447.
    Jacobson M R, Obanni M, BeMiller N. Retrogradation of starches from different botanical sources. Cereal Chemistry, 1997, 74:511-518.
    Jane J, Chen Y Y, Lee L F, McPherson A E, Wong K S, Radosavljevic M, Kasemsuwan T. Effects of amylopectin branch chain length and amylose content on the gelatinisation and pasting properties of starch. Cereal Chemistry, 1999, 76, 629-637.
    Jenkins P. X-ray and neutron scattering studies on starch granule structure. PhD thesis, University of Cambridge. 1994.
    Jeong H Y, Lim S-T. Crystallinity and pasting properties of freeze-thawed high-amylose corn starches. Starch/Starke, 2003, 55: 511-517.
    Ji Y, Wong K, Hasjim J, Pollak L M, Duvick S, Jane J. Structure and function of starch from advanced generations of new corn lines. Carbohydrate Polymers, 2003, 5:305-319.
    Jin Z, Qian C, Yang J, Liu H, Jin X. Effect of Temperature at Grain filling stage on activities of key enzymes related to starch synthesis and grain quality of rice. Rice Science, 2005, 12(4): 261-266.
    Jobling S. Improving starch for food and industrial applications. Plant Biology, 2004, 7:210-218.
    Kar A, Jacquier J C, Morgan D J, Lyng J G, McKenna B M. Influence of lipid extraction process on the rheological characteristics, swelling power, and granule size of rice starches in excess water. Journal of Agricultural and Food Chemistry, 2005, 53: 8259-8264.
    Kaur L, Singh N, Sodhi N S. Some properties of potatoes and their starches II. Morphological, thermal and rheological properties of starches.. Food Chemistry, 2002, 79:183-192.
    Kaur M, Sandhu K S, Singh N. Comparative study of the functional, thermal and pasting properties of flours from different field pea (Pisum sativum L.) and pigeon pea (Cajanus cajan L.) cultivars. Food Chemistry, 2007, 104:259-267.
    Kim W, Johnson J W, Graybosch R A, Gaines C S. Physicochemical properties and end-use quality of wheat starch as a function of waxy protein alleles. Journal of Cereal Science, 2003, 37: 195-204.
    Kiseleva V I, Tester R F, Wasserman L A, Krivandin AV, Popov A A, Yuryev V P. Influence of growth temperature on the structure and thermodynamic parameters of barley starches. Carbohydrate Polymers, 2003, 51: 407-415.
    Krueger B R, Knutson C A, Inglett G E, Walker C E. A differential scanning calorimetry study on the effect of annealing on gelatinization behaviour of corn starch. Journal of Food Science, 1987, 52:715-718.
    Kuakpetoon D, Wang Y. Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohydrate Research, 2006, 341:1896-1915.
    Lagarrigue S, Alvarez G, Cuvelier G, Flick D. Swelling kinetics of waxy maize and maize starches at high temperatures and heating rates. Carbohydrate Polymers, 2008, 73: 148-155.
    Larsson K. Inhibition of starch gelatinization by amylose-lipid complex formation. Starch/Starke, 1980, 32: 125-126.
    Lelievre J, Mitchell J. A pulsed NMR study of some aspects of starch gelatinization. Starch, 1975, 27:113-115.
    Leloup V M, Colonna P, Buleon A. Influence of amylose-amylopectin ratio on gel properties. Journal of Cereal Science, 1991, 13:1-13.
    Lenihan E, Pollak L M, White P. Thermal properties of starch from exotic by adapted corn (Zea Mays L.) lines grown in four locations. Cereal Chemistry, 2005, 82: 683-689.
    Leonel M, Ferrari T B, Sarmento S B S, de Oliveira M A. Planting time, developmental stages and characteristics of roots and starch of Pachyrhizus ahipa. Scientia Agricola, 2005, 62(6), 528-533.
    Li J Y, Yeh A I, Fan K L. Gelation characteristics and morphology of corn starch/soy protein concentrate composites during heating. Journal of Food Engineering, 2007, 78: 1240-1247.
    Li J Y, Yeh A I. Functions of starch in formation of starch/meat composite during heating. Journal of Texture Studies, 2002, 33: 341-366.
    Liang X, King J M, Shih F F. Pasting property differences of commercial and isolated rice starch with added lipids and bcyclodextrin. Cereal Chemistry, 2002, 79: 812-818.
    Lim S-T, Lee J-H, Shin D-H, Lim H S. Comparison of protein extraction solutions for rice starch isolation and effects of residual protein content on starch pasting properties. Starch/Starke, 1999, 51:120-125.
    Lisle A J, Martin M, Fitzgerald M A. Chalky and translucentrice grains differ in starch composition and structure and cooking properties. Cereal Chemistry, 2000, 77:627-632.
    Liu H, Lelievre J. Effects of heating rate and sample size on differential scanning calorimetry traces of starch gelatinized at intermediate water levels. Starch/Starke, 1991, 43: 225-228
    Liu Q, Weber E, Currie V, Yada R. Physicochemical properties of starches during potato growth. Carbohydrate Polymers, 2003, 51, 213-221.
    Lorenz K. Physicochemical properties of lipid-free cereal starches. Journal of Food Science, 1976, 41: 1357-1359.
    Lu T J, Jane J, Keeling P L, Singletary G W. Maize starch fine structures affected by ear developmental temperature. Carbohydrate Research, 1996, 282, 157-170.
    Lu T, Duh C, Lin J, Chang L. Effect of granular characteristics on the viscoelastic properties of composites of amylose and waxy starches. Food Hydrocolloids, 2008, 22:164-173.
    Lund D. Influence of time, temperature, moisture, ingredients, and processing conditions on starch gelatinization. Critical Reviews in Food Science and Nutrition, 1984, 20(4), 249-273.
    Maaruf A G, Che Man Y B, Asbi B A, Junainuh A H, Kennedy J F. Effect of water content on the gelatinization temperature of sago starch. Carbohydrate Polymers, 2001, 46: 331-337.
    Madsen M H, Christensen D H. Changes in viscosity properties of potato starch during growth. Starch/Starke, 1996, 48, 245-249.
    Mariotti M, Zardi M, Lucisano M, Pagani M A. Influence of the Heating Rate on the Pasting Properties of Various Flours. Starch/Starke, 2005, 57: 564-572.
    Marshall W E. Effect of degree of milling of brown rice and particle size of milled rice on starch gelatinization. Cereal Chemistry, 1992, 69: 632-636.
    Martin M, Fitzgerald M A. Protein in rice grains influence cooking propertizes. Journal of Cereal Science, 2002, 36: 285-294.
    Matveev Y I, Grinberg V Y. Tolstoguzov B V. The plasticizing effect of water on proteins polysaccharides and their mixtures. Glassy state of biopolymers, food and seeds. Food Hydrocolloids, 2000, 14: 425-437.
    Melvin M A. The effect of extractable lipid on the viscosity characteristics of corn and wheat starches. Journal of the Science of Food and Agriculture, 1979, 30: 731-738.
    Mira I, Eliasson A C, Persson K. Effect of surfactant structure on the pasting properties of wheat flour and starch suspensions. Cereal Chemistry, 2005, 82: 44-52.
    Morrison I M, Cochrane M P, Cooper A M, Dale M F B, Duffus C M, Ellis R P, Lynn A, Mackay G R, Paterson L J, Prentice R D M, Swanston J S, Tiller S A. Potato starches: variation in composition and properties between three genotypes grown at two different sites and in two different years. Journal of the Science of Food and Agriculture, 2000, 81(3): 319-328.
    Morrison W R, Milligan T P, Azudin M N. A relationship between the amylose and lipids contents of starches from diploid cereals. Journal of Cereal Science, 1984, 2:257-260.
    Morrison W R, Tester R F. Chemical and physical factors that affect cereal starches. In Cereals International; Martin D J, Wrigley C W, Eds.; Royal Australian Chem. Inst:Melbourne, Australia, 1991, pp:135-138.
    Morrison W R. Starch lipids and how they relate to starch granule structure and functionality. Cereal Foods World, 1995, 40: 437-446.
    Mua J.P, Jackson D S. Fine structure of corn amylose and amylopectin fractions with various molecular weights. Journal of Agricultural and Food Chemistry, 1997, 45, 3840-3847.
    Nelles E M, Dewar J, Bason M L, Taylor J R N. Maize starch biphasic pasting curves. Journal of Cereal Science, 2000, 31: 287-294
    Nelson, O, Pan, D. Starch synthesis in maize endosperm. Annual Review of Plant Physiology and Plant Molecular Biology, 1995, 46:475-496.
    Noda T, Takahata Y, Sato T, Ikoma H, Mochida H. Combined effects of planting and harvesting dates on starch properties of sweet potato roots. Carbohydrate Polymers, 1997, 33: 169-176.
    Noda T. Tsuda S. Mori M. Takigawa S, Matsuura-Endo C, Saito K, Mangalika W H A, Hanaoka A, Suzuki Y, Yamauchi H. The effect of harvest dates on the starch properties of various potato cultivars. Food Chemistry, 2004, 86:119-125.
    Ong, M H, Jumel K, Tokarczuk P F, Blanshard J M V, Harding S E. Simultaneous determinations of molecular weight distributions of amylose and the fine structures of amylopectins of native starches. Carbohydrate Research, 1994, 260:99-117.
    Osman E M, Dix M R. Effects of fats and nonionic surface-active agents on starch pastes. Cereal Chemistry, 1960, 37: 464-475.
    Ott M, Hester E E. Gel formation as related to concentration of amylose and degree of starch swelling. Cereal Chemistry, 1965, 42:476-484.
    Panozzo J F, Eagles H A. Cultivar and environmental effects on quality characters in wheat. I. Starch. Australian Journal of Agricultural Research, 1998, 49 (5): 757-766.
    Patel B K, Seetharaman K. Effect of heating rate on starch granule morphology and size. Carbohydrate Polymers, 2006, 65: 381-385.
    Perera C, Hoover R, Martin A M. The effect of hydroxypropylation on the structure and physicochemical properties of native, defatted and heat-moisture treated potato starches. Food Research International, 1997, 30:235-247.
    Perera C, Lu J, Sell J. Jane J. Comparison of physicochemical properties and structures of sugary-2 corn starch with normal and waxy cultivars. Cereal Chemistry, 2001, 78: 249-256.
    Peterson S C, Eller F J, Fanta G F, Felker F C, Shogren R L. Effects of critical fluid lipid extraction on the gelatinization and retrogradation of normal dent cornstarch. Carbohydrate Polymers, 2007, 67: 390-397.
    Pielichowski K, Sikora M. Kinetics of gelatinization of potato starch studied by non-isothermal DSC. Carbohydrate Polymers, 1985, 35: 49-54.
    Pravisani C I, Califano A N, Calvelo A. Kinetics of starch gelatinization in potato. Journal of Food Science, 1985, 50: 657-660.
    Protserov V A, Wasserman L A, Tester R F, Debon S J J, Ezernitskaja M G. Thermodynamic and structural properties of starches extracted from potatoes grown at different environmental temperatures. Carbohydrate polymers, 2002, 49: 271-279.
    Raphaelides S N, Georgiadis N. Effect of fatty acids on the rheological behaviour of maize starch dispersions during heating. Carbohydate Polymers, 2006, 65: 81-92.
    Ravi R, Sai Manohar R, Haridas Rao P. Use of rapid visco analyser (RVA) for measuring the pasting characteristics of wheat flour as influenced by additives. Journal of the Science of Food and Agriculture, 1999, 79: 1571-1576.
    Richardson G, Langton M, Bark A, Hermansson A M. Wheat starch gelatinization: the effects of sucrose, emulsifier and the physical state of the emulsifier. Starch/Starke, 2003, 55: 150-161.
    Ring S G, Stainby G J. A simple method for determining the shear modulus of food dispersions and gels. Journal of the Science of Food and Agriculture, 1985, 36:607-613.
    Sandhu K S, Singh N, Kaur M. Characteristics of the different corn types and their grain fractions: physicochemical, thermal, morphological and rheological properties of starches. Journal of Food Engineering, 2004, 64:119-127.
    Sandhu K S, Singh N, Lim S. A comparison of native and acid thinned normal and waxy corn starches: Physicochemical, thermal, morphological and pasting properties. LWT, 2007, 40:1527-1536.
    Sandhu K S, Singh N, Malhi N S. Some properties of corn grains and their flours I: Physicochemical, functional and chapati-making properties of flours. Food Chemistry, 2007, 101: 938-946.
    Sandhu K S, Singh N. Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 2007, 101, 1499-1507.
    Santisopasri V, Kurotjanawong K, Chotineeranat, Piyachomkwan K, Sriroth K, Oates C G. Impact of water stress on yield and quality of cassava starch. Industrial Crops and Products, 2001, 13: 115-129.
    SasakiT, Yasui T, Matsuki J. Effect of amylose content on gelatinization, retrogradation and pasting properties of starches from waxy and non-waxy wheat and their F1 seeds. Cereal Chemistry, 2000, 77:58-63.
    Sayar S, Koksel H, Turhan M. The effects of protein-rich fraction and defatting on pasting behavior of chickpea starch. Starch, 2005, 57: 599-604.
    Schoch T J. Fractionation of starch by selective precipitation with butanol. Journal of American Chemical Society, 1942b, 64:2957-2961.
    Schoch T J. Non-carbohydrate substance in the cereal starches. Journal of American Chemical Society, 1942a, 64:2954-2956.
    Seetharaman K, Tziotis A, Borras F, White P J, Ferrer, M, Robutti J. Thermal and functional characterization of starch from Argentinean corn. Cereal Chemistry, 2001, 78:379-386.
    Shi Y C, Seib P A, Bernardin J E. Effects of temperature during grain-filling on starches from six wheat cultivars. Cereal Chemistry, 1994, 71: 369-383.
    Shu Q, Zhu X, Yang L, Wu W, Peter B. Varietal and seasonal effect of rice on the physicochemical properties of rice flakes. Agricultural Sciences in China, 2007, 6: 422-429.
    Singh N, Buriak P, Du L, Singh V, Eckhoff S R. Wet milling characteristics of waxy corn hybrids obtained from different planting locations. Starch, 1996, 49(9): 335-337
    Singh J, Singh N, Saxena S K. Effect of fatty acids on the rheological properties of corn and potato starch. Journal of Food Engineering, 2002, 52:9-16.
    Singh J, Singh N. Studies on the morphological, thermal and rheological properties of starch separated from some Indian potato cultivars. Food Chemistry, 2001, 75:67-77.
    Singh M, Sandhu K S, Kaur M. Physicochemical properties including granular morphology, amylose content, swelling and solubility, thermal and pasting properties of starches from normal, waxy, high amylose and sugary corn. Progress in Food Biopolymer Research, 2005, 1:43-54.
    Singh N, Inouchi N, Nishinari. Structure, thermal and viscoelastic characteristics of starches separated from normal, sugary and waxy maize. Food Hydrocolloids, 2006, 20:923-935.
    Singh N, Singh J, Kaur L, Sodhi N S, Gill B S. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 2003, 81: 219-231.
    Singh S, Singh G, Singh P, Singh N. Effect of water stress at different stages of grain development on the characteristics of starch and protein of different wheat varieties. Food Chemistry, 2008, 108, 130-139.
    Singh V, Okadome H, Toyoshima H, Isobe S, Ohtsubo K. Thermal and physicochemical properties of rice grain, flour and starch. Journal of Agricultural and Food Chemistry, 2000, 48, 2639-2647.
    Spigno G., Faveri D M. Gelatinization kinetics of rice starch studied by non-isothermal calorimetric technique: Influence of extraction method, water concentration and heating rate. Journal of Food Engineering, 2004, 62: 337-344.
    Sriroth K, Piyachomkwan K, Santisopasri V, Oates C G. Environmental conditions during root development: Drought constraint on cassava starch quality. Euphytica, 2001, 120(1):95-102.
    Sriroth K, Santisopasri V, Petchalanuwat C, Kurotjanawong K, Piyachomkwan K, Oates C G. Cassava starch granule structure-function properties: Influence of time and conditions at harvest on four cultivars of cassava starch. Carbohydrate Polymers, 1999, 38: 161-170.
    Stevens D J, Elton G A H. Thermal properties of starch/ water system. I. Measurement of heat of gelatinization by differential scanning calorimetry. Starch, 1971, 23:8-11.
    Suh D S, Jane J. Comparison of Starch Pasting Properties at Various Cooking Conditions Using the Micro Visco-Amylo-Graph and the Rapid Visco Analyser. Cereal Chemistry, 2003, 80: 745-749.
    Svegmark K, Helmersson K, Nilsson G, Nilsson P O, Andersson R, Svensson. Comparison of potato amylopectin starches and potato starches-influence of year and variety. Carbohydrate Polymers, 2002, 47: 331-340.
    Svegmark K, Hermansson A M. Microstructure and rheological properties of composites of potato starch granules and amylose: a comparison of observed and predicted structure. Food Structure, 1993, 12:181-193.
    Svihus B, Uhlen A K, Harstad O M. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Animal Feed Science and Technology, 2005, 122: 303-320.
    Takahashi S, Seib P A. Paste and gel properties of prime corn and wheat starches with and without native lipids. Cereal Chemistry, 1988, 65: 474-483.
    Takeda Y, Maruta N, Hizukuri S. Structures of amylose subfractions with different molecular sizes. Carbohydrate Research, 1992, 226:279-285.
    Tan Y, Corke H, Factor analysis of physiochemical properties of 63 rice varieties. Journal of the Science of Food and Agriculture, 2002, 82:745-752.
    Tang M C, Copeland L. Analysis of complexes between lipids and wheat starch. Carbohydrate Polymers, 2007, 67: 80-85.
    Tester R F, Karkalas J, Qi X. Starch-composition, fine structure and architecture. Journal of Cereal Science, 2004, 39:151-165.
    Tester R F, Morrison W R, Ellis R H, Piggott J R, Batts G B, Wheeler T R, Morrison J I L, Hadley P, Ledward D A. Effects of elevated growth temperature and carbon dioxide levels on some physicochemical properties of wheat starch. Journal of Cereal Science, 1995, 22: 63-71.
    Tester R F, Morrison W R. Swelling and gelatinization of cereal starches. Cereal Chemistry, 1990, 67:558-563.
    Tester R F, South J B, Morrison W R, Ellis R P. The effect of ambient temperature during the grain-filling period on the composition and properties of starch from four barley genotypes. Journal of Cereal Science, 1991, 13: 113-127.
    Tester R F, Yusuph M, Millam S, Davies H V. Effects of temperature on the physicochemical properties of starches extracted from microtubers grown from different potato cultivars. Journal of the Science of Food and Agriculture. 2004, 84: 1397-1404.
    Tester R F. Influence of growth conditions on barley starch properties. International Journal of Biological Macromolecules, 1997, 21: 37-45.
    Thomas D J, Atwell W A. Starches, practical guides for the food industry. Minnesota: Heagan Press handbook Series. 1999.
    Toyama J, Ishiguro K, Noda T, Kumagai T, Yamakawa O. Influence of delayed harvest time on physicochemical properties of sweetpotato starch. Starch, 2003, 55(2):558-563.
    Tsai M L, Li C F, Lii C Y. Effects of granular structure on the pasting behavior of starches. Cereal Chemistry, 1997, 74:750-757.
    Tziotis A, Seetharaman K, Klucinec J D, Keeling P, White P J. Functional properties of starch from normal and mutant corn genotypes. Carbohydrate Polymers, 2005, 61:238-247.
    Vasanthan T, Hoover R. Effect of defatting on starch structure and physicochemical properties. Food Chemistry, 1992, 45: 337-347.
    Walker C E, Ross A S, Wrigley C W, McMaster G J. Accelerated starch paste characterization with the rapid visco-analyzer. Cereal Foods World, 1988, 33:491-494.
    Wang L Z, White P J. Functional properties of oat starches and relationships among functional and structural properties. Cereal Chemistry, 1994, 71:451-458.
    Wang L. SeibP A. Australian salt-noodle flours and their starches compared to us wheat flours and their starches. Cereal Chemistry, 1996, 73:167-175.
    Wang S S, Kim Y. The effect of protein and fiber on the kinetics of starch gelatinization and melting of waxy corn flour. Starch/Starke, 1998, 50, 419-423.
    Watson S A. Determination of starch gelatinization temperature (pp: 240-242.). In R. L. Whistler (Ed.), Methods in carbohydrate chemistry, New York: Academic Press. 1964.
    Watson S A. Corn marketing, processing, and utilisation (pp. 881-940). Corn and corn improvement. New York, G. F. Sprague, J. W. Dudley, Academic Press Inc. 1988.
    Whistler R L, BeMiller J N. Starch. In: R. L. Whistler J. N. BeMiller (Eds), Carbohydrate chemistry for food scientists. St. Paul, MN: Eagan Press. 1996, pp: 117-151.
    White P J. Properties of corn starch (pp. 29-54). Specialty corns, Boca Raton, CRC Press. 1994.
    Wooton M, Bamunuarachchi H. Application of differential scanning Calorimetry to starch gelatinization. Starch/Starke, 1979, 31: 264-269.
    Xie L, Chen N, Duan B, Zhu Z, Liao X. Impact of proteins on pasting and cooking properties of waxy and non-waxy rice. Journal of Cereal Science, 2008, 47:372-379.
    Yalcin E, Celik S. Solubility properties of barley flour, protein isolates and hydrolysates. Food Chemistry, 2007, 104: 1641-1647.
    Yamin F F, Lee M, Pollak L M, White P J. Thermal properties of starch in corn variants isolated after chemical mutagenesis of inbred line B73. Cereal Chemistry, 1999, 76:175-181.
    Yamul D K, Lupano C E. Whey protein concentrate gels with honey and wheat flour. Food Research International, 2005, 38: 511-522.
    Yuan R C, Thompson D B, Boyer C D. Fine structure of amylopectin in relation to gelatinization and retrogradation behaviour of maize starches from three wax-containing genotypes in two inbred lines. Cereal Chemistry, 1993, 70:81-89.
    Zhang G, Hamaker B R. A three component interaction among starch, protein, and free fatty acids revealed by pasting profiles. Journal of Agricultural and Food Chemistry, 2003, 51: 2797-2800.
    Zhang G, Hamaker B R. Starch-free fatty acid complexation in the presence of whey protein. Carbohydrate Polymers, 2004, 55: 419-424.
    Zhou M, Robards K, Glennie-Holmes M, Helliwell S. Structure and pasting properties of oat starch. Cereal Chemistry, 1998, 75:273-281.
    Zhou Z, Robards K, Helliwell S, Blanchard C. Effect of rice storage on pasting properties of rice flour. Food Research International, 2003, 36, 625-634
    Zobel H F, Young S N, Rocca L A. Starch gelatinization. An X-ray diffraction study. Cereal Chemistry, 1988, 66:443-446.
    Zobel H F. Starch crystal transformations and their industrialimportance. Starch, 1988a, 40:1-7
    Zobel H F. Molecules to granules—a comprehensive starchreview. Starch, 1988b, 40:44-50.
    包劲松,夏英武.稻米淀粉RVA谱的基因型X环境互作效应分析.中国农业科学, 2001, 34(2): 123-127
    蔡一霞,朱庆森,徐伟,王维,杨建昌,张祖建,郎有忠.结实期水分胁迫对水稻强、弱势粒主要米质性状及淀粉粘滞谱特征的影响.作物学报, 2004, 30(3):241-247.
    程方民,钟连进,孙宗修.灌浆结实期温度对早籼稻米淀粉DSC曲线和晶体特性的影响.自然科学进展, 2003, 13(5): 490-494
    戴双,李豪圣,刘爱峰,宋健民,刘建军,赵振东.氮钾配施对济南17淀粉理化特性的影响.麦类作物学报2006,26(4):107-110
    戴忠民,尹燕枰,张敏,李文阳,闫素辉,蔡瑞国,王振林.旱作和灌溉条件下小麦籽粒淀粉粒粒度的分布特征.作物学报, 2008, 34(5): 795?802
    方保停,何盛莲,郭天财,王晨阳.水分调控对两种筋力型小麦品种籽粒淀粉糊化特性的影响.水土保持学报, 2005, 19(6): 162-165
    冯伟,李晓,郭天财,朱云集,王晨阳.水氮运筹对两种穗型冬小麦品种淀粉糊化特性的影响.水土保持学报, 2005, 19(5):186-190
    郭天财,宋晓,马冬云,岳艳军,查菲娜.氮素营养水平对2种穗型冬小麦品种籽粒灌浆及淀粉特性的影响.华北农学报, 2007, 22(1):132-136
    郭天财,岳艳军,马冬云,查菲娜,宋晓,朱云集,王晨阳,王永华,韩巧霞.追氮时期对冬小麦籽粒灌浆及淀粉特性的影响.麦类作物学报, 2007, 27(5): 836-840
    黄华宏,陆国权,郑遗凡.不同生育期甘薯块根淀粉糊化特性的差异.中国农业科学, 2005, 38(3): 462-467
    黄正来,杜世州,王中利,罗晓东.基因型和播期对不同筋力小麦淀粉糊化特性的影响*安徽农业大学学报, 2006, 33(1):17-20
    金正勋,杨静,钱春荣,刘海英,金学泳,秋太权.灌浆成熟期温度对水稻籽粒淀粉合成关键酶活性及品质的影响.中国水稻科学,2005, 19(4):377-380
    林琪,侯立白,韩伟.不同肥力土壤下施氮量对小麦子粒产量和品质的影响.植物营养与肥料学报2004,10(6): 561-567
    刘建,魏亚凤,夏礼如,吴魁,徐少安.不同氮肥水平对稻米品质和淀粉RVA谱特征的影响.金陵科技学院学报, 2004, 20(1):34-38
    刘建,魏亚凤,徐少安.蘖穗肥氮素配比对水稻产量、品质及氮肥利用率的影响.华中农业大学学报, 2006, 25(3):223-227
    刘凯,张耗,张慎凤,王志琴,杨建昌.结实期土壤水分和灌溉方式对水稻产量与品质的影响及其生理原因. 作物学报,2008, 34(2): 268?276
    刘艳阳,张洪程,戴其根,霍中洋,许柯.不同地力水平下施氮量对水稻淀粉RVA谱特征的影响.中国水稻科学, 2006, 20(5):529-534
    刘奕,徐海明,程方民,等.稻米脱脂与未脱脂米粉的DSC热力曲线和RVA特征值比较.浙江大学学报(农业与生命科学版), 2005, 31(5):518-523
    刘奕,张其芳,程方民.蛋白质对稻米米粉热力学和黏滞特性的影响效应.中国粮油学报, 2005, 21(6): 9-13
    陆国权,唐忠厚,黄华宏.不同施钾水平甘薯直链淀粉含量和糊化特性的基因型差异.浙江农业学报, 2005,17(5):280-283
    钱春荣,杨静,刘海英,金正勋,金学泳.灌浆成熟期稻米味度值和RVA谱特性变化动态分析.东北农业大学学报, 2006, 37(4):433-436
    沈新平,顾丽,沈小燕,龚丽萍,张洪程.两优培九稻米淀粉黏滞性(RVA谱)的纬度地域和播期变化特征.中国水稻科学,2007,21(1):59-64
    万靓军,霍中洋,龚振恺,张洪程,林忠成,戴其根,许轲.氮肥运筹对杂交稻主要品质性状及淀粉RVA谱特征的影响.作物学报, 2006, 32(10):1491-1497
    王晨阳,马冬云,郭天财,朱云集,王化岑,冯伟.不同水、氮处理对小麦淀粉组成及特性的影响.作物学报, 2004, 30(8): 843-846
    王丰,程方民,钟连进,孙宗修.早籼稻米RVA谱特性的品种间差异及其温度效应特征.中国水稻科学,2003,17(4):328-332
    王晓英,贺明荣,李飞,刘永环,张洪华,刘春刚.水氮耦合对强筋冬小麦子粒蛋白质和淀粉品质的影响. 植物营养与肥料学报, 2007, 13(3): 361一36
    王月福,于振文,李尚霞,余松烈.小麦籽粒灌浆过程中有关淀粉合成酶的活性及其效应.作物学报, 2003, 29(1):75-81
    吴伟,程旺大,徐建良.灌浆成熟期光照强度对早籼稻直链淀粉含量及淀粉RVA谱特性的影响.浙江农业学报, 2006, 18(3):141-145
    徐大勇,金军,胡曙鋆,高云,杨建昌,朱庆森.氮磷钾肥运筹对稻米直链淀粉含量和淀粉黏滞谱特征参数的影响.作物学报, 2005, 31(7):921-925
    许轲,戴其根,葛鑫,陆纪元,霍中洋,张强,龚振恺,刘强,赵新华.氮肥运筹对面条小麦品种陕农229淀粉品质的影响.上海农业学报2004,20(1):49-53
    阎俊,何中虎.基因型、环境及其互作对黄淮麦区小麦淀粉品质性状的影响.麦类作物学报, 2001, 21(2): 14-19
    杨静,罗秋香,钱春荣,刘海英,金正勋.氮素对稻米蛋白质组分含量及蒸煮食味品质的影响.东北农业大学学报, 2006, 37(2):145-150
    杨文祥,王强盛,王绍华,李刚华,丁艳锋.镁肥对水稻镁吸收与分配及稻米食味品质的影响.西北植物学报,2006,26(12):2473-2478
    姚月明,沈新平,沈明星,佘旭东,李余生,吴彤东.播种期对“苏香粳2号”稻米淀粉粘滞性的影响.江苏农业学报,2003,19(3):163-165
    叶全宝,张洪程,李华,霍中洋,魏海燕,夏科,戴其根,许轲.施氮水平和栽插密度对粳稻淀粉RVA谱特性的影响.作物学报, 2005, 31(1):124-130
    袁继超,丁志勇,蔡光泽,杨世民,朱庆森,杨建昌.攀西地区稻米淀粉RVA谱的影响因子及其垂直变化特点.作物学报, 2005, 31(12):1611-1619.
    张强,戴其根,张洪程,许柯,霍中洋,葛鑫,周兰胜.氮肥用量对中筋专用小麦扬麦11号淀粉性状及籽粒品质的影响.莱阳农学院学报, 2004, 21(3) : 206 -210
    张学林,郭天财,朱云集,李志强,王晨阳,马冬云,彭羽.河南省不同纬度生态环境对三种筋型小麦淀粉糊化特性的影响.生态学报, 2004, 24(9):2050-2055
    张亚洁,杨连新,李俊贤,翟超群,苏祖芳,杨建昌.土壤水分对旱稻米质性状及RVA谱特征参数影响.扬州大学学报(农业与生命科学版),2004, 25(4):7-11
    张岳芳,龚克成,陈留根,董桂春,杨连新,黄建哗,王余龙.氮肥对两系杂交稻稻米品质及淀粉RVA谱特征的影响.江苏农业科学,2007,5:18-22
    钟连进,程方民,张国平,孙宗修.灌浆结实期不同温度下早籼稻米淀粉链长分布与结构特征差异分析. 中国农业科学2005, 38(2): 272-276
    [1] Singh N, Singh J, Kaur L, Sodhi N S, Gill B S. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 2003, 81: 219–231
    [2] Singh N, Sandhu K S, Kaur M. Physicochemical properties including granular morphology, amylose content, swelling and solubility, thermal and pasting properties of starches from normal, waxy, high amylose and sugary corn. Progress in Food Biopolymer Research, 2005, 1: 44–54
    [3] Liu H, Ramsden L, Corke H. Physical properties and enzymatic digestibility of acetylated ae, wx and normal maize starch. Carbohydrate Polymers, 1997, 34: 283–289
    [4] Yamin F F, Lee M, Pollak L M, White P J. Thermal properties of starch in corn variants isolated after chemical mutagenesis of inbred line B73. Cereal Chemistry, 1999, 76: 175–181
    [5] Perera C, Lu Z, Sell J, Jane J. Comparison of physicochemical properties and structures of sugary-2 corn starch with normal and waxy cultivars. Cereal Chemistry, 2001, 78: 249–256
    [6] Fiedorowicz M, Rebilas K. Physicochemical properties of waxy corn starch and corn amylopectin illuminated with linearly polarized visible light. Carbohydrate Polymers, 2002, 50: 315–319
    [7] Sandhu K S, Singh N. Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 2007, 101: 1499–1507.
    [8] Sandhu K S, Singh N, Malhi N S. Some properties of corn grains and their flours I: Physicochemical, functional and chapati-making properties of flours. Food Chemistry, 2007, 101: 938–946
    [9] Kim S Y, Wiesenborn D P, Orr P H, Grant L A. Screening potato starch for novel properties using differential scanning calorimetry. Journal of Food Science, 1995, 60: 1060–1065
    [10] Stevens D J, Elton G A H. Thermal properties of starch/water system. I. Measurement of heat of gelatinization by differential scanning calorimetry. Starch, 1971, 23: 8–11
    [11] Fearn T, Russell P C. A kinetic study of bread staling by differential scanning calorimetry. The effect of loaf specific volume. Journal of the Science of Food and Agriculture, 1982, 44: 353–361
    [12] Jang J K, Pyun Y R. Effect of moisture level on the crystallinity of wheat starch aged at different temperatures. Starch, 1997, 49: 272–277
    [13] Obanni M, BeMiller J N. Properties of some starch blends. Cereal Chemistry, 1997, 74: 431–436
    [14] Atwell W A, Hood L F, Lineback D R, Varriano Marston E, Zobel H F. The terminology and methodology associated with basic starch phenomenon. Cereal Foods World, 1988, 33: 306–311
    [15] Jane J L, Robyt J F. Structure studies of amylose-V complexes and retrogradaded amylose by action of alpha amylase, a new method for preparing amylodextrins. Carbohydrate Research, 1984, 132: 105–110.
    [16] Ring S G, Collona P, Panson K J, Kalicheversky M T, Miles M J, Morris V J, Orford P D. The gelation and crystallization of amylopectin. Carbohydrate Research, 1987, 162: 277–293
    [17] Miles M J, Morris V J, Orford P D, Ring S G. The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydrate Research, 1985, 135: 271–281
    [18] Nurul I M, Azemi B M N M, Manan D M A. Rheological behaviour of sago (Metroxylon sagu) starch paste. Food Chemistry, 1999, 64: 501–505
    [19] Wiesenborn D P, Orr P H, Casper H H, Tacke B K. Potato starch paste behaviour as related to some physical/chemical properties. Journal of Food Science, 1994, 59: 644–648
    [20] Doublier J L, Llamas G, Meur M Le. A rheological investigation of the cereal starch pastes and gels. Effect of pasting procedures. Carbohydrate Polymers, 1987, 7: 251–275
    [21] Eliasson A C. Viscoelastic behavior during the gelatinization of starch I. Comparision of wheat, maize, potato and waxy-barley starches. Journal of Texture Studies, 1986, 17: 253–265
    [22] Seetharaman K, Tziotis A, Borras F, White P J, Ferrer M, Robutti J. Thermal and functional characterization of starch from Argentinean corn. Cereal Chemistry, 2001, 78: 379–386
    [23] Ji Y, Wong K, Hasjim J, Pollak L M, Duvick S, Jane J, White P J. Structure and function of starch from advanced generations of new corn lines. Carbohydrate Polymers, 2003, 54: 305–319
    [24] Sandhu K S, Singh N, Lim S. A comparison of native and acid thinned normal and waxy corn starches: physicochemical, thermal, morphological and pasting properties. LWT, 2007, 40: 1527–1536
    [25] Sandhu K S, Kaur M, Singh N, Lim S. A comparison of native and oxidized normal and waxy corn starches: physicochemical, thermal, morphological and pasting properties. LWT, 2008, 41: 1000–1010
    [26] Duxbury D D. Modified starch functionalities—no chemicals or enzymes. Food Processing, 1989, 50: 35–37
    [27] Sandhu K S, Singh N, Malhi N S. Physicochemical and thermal properties of starches separated from corn produced from crosses of two germ pools. Food Chemistry, 2005, 89: 541–548
    [28] Baxter G, Blanchard C, Zhao J. Effects of prolamin on the textural and pasting properties of rice flour and starch. Journal of Cereal Science, 2004, 40: 205–211
    [29] Peterson S C, Eller F J, Fanta G F, Felker F C, Shogren R L. Effects of critical fluid lipid extraction on the gelatinization and retrogradation of normal dent cornstarch. Carbohydrate Polymers, 2007, 67: 390–397
    [30] Li J Y, Yeh A I. Relationships between thermal, rheological characteristics and swelling power for various starches. Journal of Food Engineering, 2001, 50: 141–148.
    [31] Chang Y, Lin J, Chang S. Physicochemical properties of waxy and normal corn starches treated in different anhydrous alcohols with hydrochloric acid. Food Hydrocolloids, 2006, 20: 332–339
    [32] Chang Y, Lin J, Lii C. Effect of ethanol concentration on the physicochemical properties of waxy corn starch treated by hydrochloric acid. Carbohydrate polymers, 2004, 57: 89–96
    [33] Bailey J M, Wehen W J. Physical properites of starch: I. Relationship between iodine staining and chain lenghts. Journal of Biological Chemistry, 1961, 236:969–973
    [34] Pfannemuller B, Mayerhofer B H, Schulz R G. Conformation of amylose in aqueous solution: Optical rotatory disperison of amylose-iodine complexes and dependence on chain length of retrogradation of amylose. Biopolymers, 1971, 10, 243–247
    [35]Ratnayake W S, Hoover R, Warkentin T. Pea starch: composition, structure and properties: a review. Starch/Starke, 2002, 54: 217–234
    [36] Singh N, Sandhu K S, Kaur M. Characterization of starches separated from Indian chickpea (Cicer arietinum) cultivars. Journal of Food Engineering, 2004, 63, 441–449.
    [37] Thitipraphunkul K, Uttapap D, Piyachomkwan K, Yasuhito Takeda. A comparative study of edible canna (Canna edulis) starch from different cultivars. Part I. Chemical composition and physicochemical properties. Carbohydrate Polymers, 2003, 53:317-324
    [38] Inatsu O, Maeda I, Jimi N, Takahashi K, Taniguchi H, Kawabata M, Nakamura M. Edible canna starch. I. Some properties of edible canna starch produced in Taiwan. Journal of Japanese Society Starch Science, 1983, 30: 38–47
    [39] Lin P Y, Czuchajowska Z. Role of phosphorus in viscosity, gelatinization, and retrogradation of starch. Cereal Chemistry, 1998, 75: 705–709
    [40] McPherson A E, Jane J. Comparison of waxy potato with other root and tuber starches. Carbohydrate Polymers, 1999, 40: 57–70
    [41] Hoover R, Li Y X, Hynes G, Senanayake N. Physicochemical characterization of mung bean starch. Food Hydrocolloids, 1997, 11: 401–408
    [42] Sasaki T, Yasui T, Matsuki J. Effect of amylose content on gelatinization, retrogradation and pasting properties of starches from waxy and non-waxy wheat and their F1 seeds. Cereal Chemistry, 2000, 77: 58–63
    [43] Yamin F F, Svendsen L, White P J. Thermal properties of corn starch extraction intermediates by differential scanning calorimetry. Cereal Chemistry, 1997, 74: 407–411.
    [44] Xu L J, Xie J K, Kong X L, Bao J S. Analysis of genotypic and environmental effects on rice starch. 2. Thermal and retrogradation properties. J Agri Food Chem, 2004, 52: 6017–6022
    [45] Singh N, Kaur L, Sandhu K S, Kaur J, Nishinari K. Relationships between physicochemical, morphological, thermal, rheological properties of rice starches. Food Hydrocolloid, 2006, 20: 532–542
    [1] Jobling S. Improving starch for food and industrial applications. Current Opinion in Plant Biology, 2004, 7: 210–218
    [2] Azizi M H, Rao G V. Effect of surfactant in pasting characteristics of various starches. Food Hydrocolloids, 2005, 19: 739–743
    [3] Kaur L, Singh N, Singh J. Factors influencing the properties of hydroxypropylated potato starches. Carbohydrate Polymers, 2004, 55: 211–223
    [4] Wilkins M R, Wang P, Xu L, Niu Y, Tumbleson M E, Rausch K D. Variability in starch acetylation efficiency from commercial waxy corn hybrids. Cereal Chemistry, 2003, 80: 72–75
    [5] Yamin F F, Lee M, Pollak L M, White P J. Thermal properties of starch in corn variants isolated after chemical mutagenesis of inbred line B73. Cereal Chemistry, 1999, 76: 175–181
    [6] Sandhu S K, Singh N. Some properties of corn starches: II. physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 2007, 101: 1499–1507
    [7] Seetharaman K, Tziotis A, Borras F, White P J, Ferrer M, Robutti J. Thermal and functional characterization of starch from Argentinean corn. Cereal Chemistry, 2001, 78: 379–386
    [8] Singh N, Inouchi N, Nishinari K. Structural, thermal and viscoelastic characteristics of starches separated from normal, sugary and waxy maize. Food Hydrocolloids, 2006, 20: 923–935
    [9]池晓菲,吴殿星,楼向阳,夏英武,舒庆尧.五种禾谷类作物淀粉糊化特性的比较研究.作物学报, 2003, 29(2): 300–304
    [10]张传辉,姜东,戴廷波,荆奇,曹卫星.谷物籽粒淀粉合成与品质改良研究进展.中国粮油学报, 2006, 21(6): 87–92
    [11]金军,徐大勇,蔡一霞,胡署云,葛敏,朱庆森.施氮量对水稻主要米质性状及RVA谱特征参数的影响.作物学报, 2004, 30(2): 154–158
    [12]叶全宝,张洪程,李华,霍中洋,魏海燕,夏科,戴其根,许轲.施氮水平和栽插密度对粳稻淀粉RVA谱特性的影响.作物学报, 2005, 31(1): 124–130
    [13]戴双,李豪圣,刘爱峰,宋健民,刘建军,赵振东.氮钾配施对济南17淀粉理化特性的影响.麦类作物学报, 2006, 26(4): 107–110
    [14] Martin C, Smith A M. Starch biosynthesis. Plant Cell, 1995, 7: 971–985
    [15]洪雁,顾正彪,李兆丰.蜡质玉米淀粉的性质及其在食品加工中的应用.中国粮油学报, 2005, 20(3): 30–34
    [16]陆芳芳,陆卫平,刘萍,沈新平,王继丰,刘小兵.糯玉米淀粉RVA黏度的杂种优势分析.作物学报, 2006, 32(4): 503–508
    [17]陆虎华,陈国清,薛林,黄小兰,石明亮,印志同.兼用型糯玉米新品种苏玉糯4号选育研究.金陵科技学院院报, 2005, 21(3): 58–61
    [18] Wang Y, Truong V-D, Wang L. Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydrate Polymers, 2003, 52: 327–333
    [19] Hayakawa K, Tanaka K, Nakamura T, Endo S, Hoshino T. Quality characteristics of waxy hexaploid wheat (Triticum aestivum L.): Properties of starch gelatinization and retrogradation. Cereal Chemistry, 1997, 74: 576–580
    [20] Chang Y, Lin J, Lii C. Effect of ethanol concentration on the physicochemical properties of waxy corn starch treated by hydrochloric acid. Carbohydrate Polymers, 2004, 57: 89–96
    [21]熊瑛,李友军.氮、磷、钾对不同筋型小麦产量和品质的影响.河南科技大学学报·自然科学版, 2005, 26: 58–61
    [22]张勇,何中虎.我国春播小麦淀粉糊化特性研究.中国农业科学, 2002, 35(5): 471–475
    [23]黄华宏,陆国权,舒庆尧.高色素甘薯淀粉糊化特性的基因型差异.作物学报, 2005, 31(1): 92–96
    [24]宁堂原,李增嘉,焦念元,赵春,申加祥,张光辉,王浩.不同熟期玉米品种春、夏套作对籽粒淀粉含量及糊化特性的影响.作物学报, 2005, 31(1): 77–82
    [25]沈明星,沈新平,吴彤东,姚月明,刘凤军.长期氮磷钾配施对稻米品质的影响.上海农业学报, 2004, 20(2): 60–62
    [26]刘奕,张其芳,程方民.蛋白质对稻米米粉热力学和黏滞特性的影响效应.中国粮油学报, 2006, 21(6): 9–13
    [27]刘奕,徐海明,程方民,赵宁春.稻米脱脂与未脱脂米粉的DSC热力曲线和RVA特征值比较.浙江大学学报·农业与生命科学版, 2005, 31(5): 518–523
    [28] Noda T, Takahata Y, Sato T, Ikoma H, Mochida H. Physicochemical properties of starches from purple and orange fleshed sweet potato roots at two levels of fertilizer. Starch/starke, 2006, 48: 395–399
    [29] Sandhu K S, Singh N, Malhi N S. Physicochemical and thermal properties of starches separated from corn produced from crosses of two germ pools. Food Chemistry, 2005, 89: 541–548
    [30] Singh N, Kaur L, Sandhu K S, Kaur J, Nishinari K. Relationships between physicochemical, morphological, thermal, rheological properties of rice starches. Food Hydrocolloids, 2006, 20: 532–542
    [31] Singh N, Singh J, Kaur L, Sodhi N S, Gill B S. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 2003, 81: 219–231.
    [32] Singh N, Inouchi N, Nishinari K. Structural, thermal and viscoelastic characteristics of starches separated from normal, sugary and waxy maize. Food Hydrocolloids, 2006, 20: 923–935
    [33] Karim A A, Norziah M H, Seow C C. Methods for the study of starch retrogradation. Food Chemistry, 2000, 71: 9–36
    [34] Jane J-L, Wong K S, McPherson A E. Branch-structure difference in starches of A- and B-type X-ray patterns revealed by their Naegeli dextrins. Carbohydrate Research, 1997, 300: 219–227
    [35] Fujita S, Yamamoto H, Sugimoto Y, Morita N, Yamamori M. Thermal and crystalline properties of waxy wheat (Trlticum aestivum L) starch. Journal of Cereal Science, 1998, 27: l–5
    [1] Zobel H F. Starch crystal transformations and their industrial importance. Starch, 1988, 40: 1–7
    [2] Singh N, Singh J, Kaur L, Sodhi N S, Gill B S. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 2003, 81: 219–231
    [3]Tester R F, Karkalas J, Qi X. Starch-composition, fine structure and architecture. Journal of Cereal Science, 2004, 39: 151–165
    [4] Hoover R. Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 2001, 45: 253–267
    [5] Cheetham N W H, Tao L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydrate Polymers, 1998, 36: 277–284
    [6] Perera C, Lu Z, Sell J, Jane J. Comparison of physicochemical properties and structures of sugary-2 cornstarch with normal and waxy cultivars. Cereal Chemistry, 2001, 78: 249–256
    [7] Tziotis A, Seetharaman K, Klucinec J D, Keeling P, White P J. Functional properties of starch from normal and mutant corn genotypes. Carbohydrate Polymers, 2005, 61: 238–247
    [8] Singh N, Inouchi N, Nishinari K. Structure, thermal and viscoelastic characteristics of starches separated from normal, sugary and waxy maize. Food Hydrocolloids, 2006, 20: 923–935
    [9] Singh N, Sandhu K S, Kaur M. Physicochemical properties including granular morphology, amylose content, swelling and solubility, thermal and pasting properties of starches from normal, waxy, high amylose and sugary corn. Progress in Food Biopolymer Research, 2005, 1: 43–54
    [10] Duxbury D D. Modified starch functionalities-no chemicals or enzymes. Food Processing, 1989, 50: 35–37
    [11] Zaidul I S M, Yamauchi H, Takigawa S, Matsuura-Endo C, Suzuki T, Noda T. Correlation between the compositional and pasting properties of various potato starches. Food Chemisty, 2007, 105: 164–172
    [12] Wilkins M R, Wang P, Xu L, Niu Y, Tumbleson M E, Rausch K D. Variability in starch acetylation efficiency from commercial waxy corn hybrids. Cereal Chemisty, 2003, 80: 72–75
    [13]陆芳芳,陆卫平,刘萍,沈新平,王继丰,刘小兵.糯玉米淀粉黏度的杂种优势.作物学报. 2006, 32(4):503-508
    [14]陆大雷,陆卫平,赵久然,王德成.基肥配比和拔节期追氮对糯玉米淀粉糊化(RVA)特性的影响,作物学报, 2008, 34(7):1253-1258
    [15] Hayakawa K, Tanaka K, Nakamura T, Endo S, Hoshino T. Quality characteristics of waxy hexaploid wheat (Triticum aestivum L.): Properties of starch gelatinization and retrogradation. Cereal Chemistry, 1997, 74: 576–580
    [16] Chang Y, Lin J, Lii C. Effect of ethanol concentration on the physicochemical properties of waxy corn starch treated by hydrochloric acid. Carbohydrate Polymers, 2004, 57: 89–96
    [17] Myers A M, Morrel M K, James M G, Ball S G. Recent progress toward understanding biosynthesis of amylopectin crystal. Plant Physiology, 2000, 122: 989–997
    [18]程方民,钟连进,孙宗修.灌浆结实期温度对早籼稻米淀粉DSC曲线和晶体特性的影响.自然科学进展, 2003, 13(5): 490-494
    [19]王珏,封超年,郭文善,朱新开,李春燕,彭永欣.花后高温胁迫对小麦籽粒淀粉积累及晶体特性的影响.麦类作物学报, 2008, 28(2): 260–265
    [20] Massaux C, Sindic M, Lenartz J, Sinnaeve G, Bodson B, Falisse A, Dardenne P, Deroanne C. Variations in physicochemical and functional properties of starches extracted from European soft wheat (Triticum aestivum L.): The importance to preserve the varietal identity. Carbohydrate Polymers, 2008, 71: 32–41
    [21] Liu Q, Tarn R, Lynch D, Skjodt N M. Physicochemical properties of dry matter and starch from potatoes grown in Canada. Food Chemistry, 2007, 105: 897–907
    [22] Miles M J, Morris V J, Orford R D, Ring S G. The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydrate Polymers, 1985, 135: 271–281
    [23] Sandhu K S, Singh N. Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 2007, 101: 1499–1507
    [24] Ji Y, Wong K, Hasjim J, Pollak L M, Duvick S, Jane J, White P J. Structure and function of starch from advanced generations of new corn lines. Carbohydrate Polymers, 2003, 54: 305–319
    [1] Martin C, Smith A M. Starch biosynthesis. The Plant Cell, 1995, 7: 971-985.
    [2]洪雁,顾正彪,李兆丰.蜡质玉米淀粉的性质及其在食品加工中的应用.中国粮油学报, 2005, 20(3):30-34.
    [3] Reddy B V S, Reddy P S, Bidinger F, Blümmel M. Crop management factors influencing yield and quality of crop residues. Field Crops Research, 2003, 84: 57-77.
    [4]董树亭.玉米生态生理与产量品质形成.北京:高等教育出版社, 2006: 149-152, 234-254, 347-379.
    [5] Tolera1 A, Sundst?l F, Said A N. The effect of stage of maturity on yield and quality of maize grain and stover. Animal Feed Science and Technology, 1998, 75: 157-168.
    [6]吴建宇,徐翠莲,任和平,苏祯禄,台国琴.玉米不同收获期的子粒品质研究.河南农业大学学报, 1994, 28(3): 92-94.
    [7]陆芳芳,陆卫平,刘萍,沈新平,王继丰,刘小兵.糯玉米淀粉RVA黏度的杂种优势研究.作物学报, 2006, 32(4): 503-508.
    [8] Chang Y, Lin J, Lii C. Effect of ethanol concentration on the physicochemical properties of waxy corn starch treated by hydrochloric acid. Carbohydrate Polymers, 2004, 57: 89-96.
    [9]刘萍,王从亮,王凤格,陆卫平,郭景伦,王继丰,刘小兵.鲜食糯玉米不同品种授粉后籽粒品质主要成分的变化.中国农业科学, 2007, 40(8): 1817-1821.
    [10] Singh N, Sandhu K S, Kaur M. Physicochemical properties including granular morphology, amylose content, swelling and solubility, thermal and pasting properties of starches from normal, waxy, high amylose and sugary corn. Progress in Food Biopolymer Research, 2005, 1: 43-54.
    [1] Morrison W R. Starch lipids: A reappraisal. Starch/Starke, 1981, 33: 408–410
    [2] Lin P Y, Czuchajowska Z. Role of phosphorus in viscosity, gelatinization, and retrogradation of starch. Cereal Chemistry, 1998, 75: 705–709
    [3] Vasanthan T, Hoover R. Effect of defatting on starch structure and physicochemical properties. Food Chemistry, 1992, 45: 337–347
    [4] Martin M, Fitzgerald M A. Proteins in rice grains influence cooking properties!. Journal of Cereal Science, 2002, 36: 285–294
    [5] Blazek J, Copeland L. Pasting and swelling properties of wheat flour and starch in relation to amylose content. Carbohydrate Polymers, 2008, 71: 380–387
    [6] Singh V, Okadome H, Toyoshima H, Isobe S, Ohtsubo K. Thermal and physicochemical properties of rice grain, flour and starch. Journal of Agricultural and Food Chemistry, 2000, 48: 2639–2647
    [7] Aboubakar, Njintang Y N, Scher J, Mbofung C M F. Physicochemical, thermal properties and microstructure of six varieties of taro (Colocasia esculenta L. Schott) flours and starches. Journal of Food Engineering, 2008, 86: 294–305
    [8] Ahmed J, Ramaswamy H S, Ayad A, Alli I. Thermal and dynamic rheology of insoluble starch frombasmati rice. Food Hydrocolloids, 2008, 22: 278–287
    [9] Iturriaga L, Lopez B, Anon M. Thermal and physicochemical characterization of seven Argentine rice flours and starches. Food Research International, 2004, 37: 439–447
    [10] Sandhu K S, Singh N. Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 2007, 101: 1499–1507
    [11] Sandhu K S, Singh N, Malhi N S. Some properties of corn grains and their flours I: Physicochemical, functional and chapati-making properties of flours. Food Chemistry, 2007, 101: 938–946
    [12] Noisuwan A, Bronlund J, Wilkinson B, Hemar Y. Effect of milk protein products on the rheological and thermal (DSC) properties of normal rice starch and waxy rice starch. Food Hydrocolloids, 2008, 22: 174–183
    [13] Peterson S C, Eller F J, Fanta G F, Felker F C, Shogren R L. Effects of critical fluid lipid extraction on the gelatinization and retrogradation of normal dent cornstarch. Carbohydrate Polymers, 2007, 67: 390–397
    [14] Perera C, Hoover R, Martin A M. The effect of hydroxypropylation on the structure and physicochemical properties of native, defatted and heat-moisture treated potato starches. Food Research International, 1991, 30: 235–247
    [15] Martin C, Smith A M. Starch biosynthesis. Plant Cell, 1995, 7:971–985
    [16]洪雁,顾正彪,李兆丰.蜡质玉米淀粉的性质及其在食品加工中的应用.中国粮油学报, 2005, 20(3): 30–34
    [17] Wang S S, Kim Y. The effect of protein and fiber on the kinetics of starch gelatinization and melting in waxy corn flour. Starch/St?rke, 1998, 50: 419–423
    [18] Sandhu K S, Singh N, Malhi N S. Physicochemical and thermal properties of starches separated from corn produced from crosses of two germ pools. Food Chemistry, 2005, 89: 541–548
    [19] Baxter G, Blanchard C, Zhao J. Effects of prolamin on the textural and pasting properties of rice flour and starch. Journal of Cereal Science, 2004, 40: 205–211
    [20] Debet M R, Gidley M J. Three classes of starch granule swelling: Influence of surface proteins and lipids, Carbohydrate Polymers, 2006, 64: 452–465
    [21] Wang Y, Truong V, Wang L. Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydrate Polymers, 2003, 52: 327–333
    [22] Singh N, Inouchi N, Nishinari K. Structural, thermal and viscoelastic characteristics of starches separated from normal, sugary and waxy maize. Food hydrocolloids, 2006, 20: 923–935
    [23] Chang Y, Lin J, Lii C. Effect of ethanol concentration on the physicochemical properties of waxy corn starch treated by hydrochloric acid. Carbohydrate polymers, 2004, 57: 89–96
    [24] Tester R F, Karkalas J, Qi X. Starch-composition, fine structure and architecture. Journal of Cereal Science, 2004, 39: 151–165
    [25] Tester R F, Yousuf R, Karkalas J, Kettlitz B, Roper H. Properties of protease-treated maize starches. Food Chemistry, 2008, 109: 257–263
    [26] Craig S A S, Maningat C C, Seib P A, Hoseney R C. Starch paste clarity. Cereal Chemistry, 1989, 66: 173–182
    [27] Hatcher D W, Lagasse S, Dexter J E, Rossnagel B, Izydorczyk M. Quality characteristics of yellow alkaline noodles enriched with hull-less barley flour. Cereal Chemistry, 2005, 82: 60–69
    [28] Li J Y, Yeh A I, Fan K L. Gelation characteristics and morphology of corn starch/soy protein concentrate composites during heating. Journal of Food Engineering, 2007, 78: 1240–1247
    [29] Svihus B, Uhlen A K, Harstad O M. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Animal Feed Science and Technology, 2005, 122: 303–320
    [30] Jane J, Wong K, McPherson A. Branch-structure difference in. starches of A- and B-type X-ray patterns revealed by their Naegeli dextrins. Carbohydrate Research, 1997, 300: 219–227
    [31] Fujita S, Yamamoto H, Sugimoto Y, Morita N, Yamamori M. Thermal and crystalline properties of waxy wheat (Triticum aestivum L.) starch. Journal of Cereal Science, 1998, 27: 1–5
    [32] Zobel H F. Starch crystal transformations and their industrial importance. Starch/Starke, 1998, 40, 1–7
    [33] Kim W, Johnson J W, Graybosch R A, Gaines C S. Physicochemical properties and end-use quality of wheat starch as a function of waxy protein alleles. Journal of Cereal Science, 2003, 7: 195–204
    [34]刘奕,张其芳,程方民.蛋白质对稻米米粉热力学和黏滞特性的影响效应.中国粮油学报. 2005, 21(6): 9–13
    [35]刘奕,徐海明,程方民,赵宁春.稻米脱脂与未脱脂米粉的DSC热力曲线和RVA特征值比较.浙江大学学报(农业与生命科学版), 2005, 31(5): 518–523
    [36] Hoover R, Sailaja Y, Sosulski F. Characterization of starches from wild and long grain brown rice. Food Research International, 1996, 29: 99–107
    [37] Torruco-Uco J, Betancur-Ancona D. Physicochemical and functional properties of makal (Xanthosoma yucatanensis) starch. Food Chemistry, 2007, 101: 1319–1326
    [38] Eiiasson A-C, Gudmundsson M, Svensson G. Thermal behaviour of wheat starch in flour relation to flour quality. LWT, 1995, 28: 227–235
    [39] Matveev Y I, Grinberg V Y, Tolstoguzov B V. The plasticizing effect of water on proteins polysaccharides and their mixtures. Glassy state of biopolymers, food and seeds. Food Hydrocolloids, 2000, 14: 425–437
    [40] Sasaki T, Yasui T, Matsuki J. Effect of amylose content on gelatinization, retrogradation and pasting properties of starches from waxy and non-waxy wheat and their F1 seeds. Cereal Chemistry, 2000, 77: 58–63
    [41] Agunbiade S O, Longe O G. The physico-functional characteristics of starches from cowpea (Vigna unguiculata), pigeon pea (Cajanus cajan) and yambean (Sphenostylis stenocarpa). Food Chemistry, 1999, 65: 469–474
    [42] Han X-Z, Campanella O H, Guan H, Keeling P L, Hamaker B R. Influence of maize starch granule-associated protein on the rheological properties of starch pastes. Part I. large deformation measurements of paste properties. Carbohydrate Polymers, 2002, 49: 315–321
    [43] Xie L, Chen N, Duan B, Zhu Z, Liao X. Impact of proteins on pasting and cooking properties of waxy and non-waxy rice. Journal of Cereal Science, 2008, 47: 372–379
    [44] Adebooye O C, Singh V. Physico-chemical properties of the flours and starches of two cowpea varieties (Vigna unguiculata L. Walp). Innovative Food Science and Emerging Technologies, 2008, 9: 92–100
    [45] Goering K J, Jackson L L, DeHaas B W. Effect of some nonstarch components in corn and barley starch granules on the viscosity of heated starch-water suspensions. Cereal Chemistry, 1975, 52: 493–500
    [46] Kar A, Jacquier J C, Morgan D J, Lyng J G, McKenna B M. Influence of lipid extraction process on the rheological characteristics, swelling power, and granule size of rice starches in excess water. Journal of Agricultural and Food Chemistry, 2005, 53: 8259–8264
    [47] Sayar S, Koksel H, Turhan M. The effects of protein-rich fraction and defatting on pasting behavior of chickpea starch. Starch, 2005, 57: 599–604
    [48] Takahashi S, Seib, P A. Paste and gel properties of prime corn and wheat starches with and without native lipids. Cereal Chemistry, 1988, 65: 474–483
    [49] Vasanthan T, Hoover R. Effect of defatting on starch structure and physicochemical properties. Food Chemistry, 1992, 45: 337–347
    [1] Deffenbaugh L B, Walker C E. Comparison of starch pasting properties in the Brabender Visco amylograph and the Rapid Visco-Analyzer. Cereal Chemistry, 1989, 66:493-499.
    [2] Thiewes H J, Steeneken P A M. Comparison of the Brabender Viskograph and the Rapid Visco Analyser. 1. Statistical evaluation of the pasting profile. Starch/Starke, 1997, 49:85-92.
    [3] Thiewes H J, Steeneken P A M. Comparison of the Brabender Viskograph and the Rapid Visco Analyser. 2. Shear conditions. Starch/Starke, 1997, 49:93-96.
    [4]钱建亚,顾林.三种常用淀粉糊化测定方法比较.西部粮油科技, 1999, 4:42-46.
    [5] Waker C E, Ross A S, Wrigley C W, Mac Master G J. Accelerated characterization of starch-paste viscosity and setback with the rapid visco analyzer. Cereal Foods World, 1988, 33:491-494.
    [6] Liu H, Ramsden L, Corke, H. Physical properties and enzymatic digestibility of acetylated ae, wx and normal maize starch. Carbohydrate Polymers, 1997, 34:283-289.
    [7] Perera C, Lu Z, Sell J, Jane J. Comparison of physicochemical properties and structures of sugary-2 corn starch with normal and waxy cultivars. Cereal Chemistry, 2001, 78:249-256.
    [8] Fiedorowicz M, Rebilas K. Physicochemical properties of waxy corn starch and corn amylopectin illuminated with linearly polarized visible light. Carbohydrate Polymers, 2002, 50:315-319.
    [9] Sandhu K S, Singh N. Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 2007, 101:1499-1507.
    [10] Blakeney A B, Welsh L A. The influence of stirring speed on starch paste viscosity. Cereal Foods World, 1993, 38:627.
    [11] Kim C S, Walker C E. Changes in starch pasting properties due to sugars and emulsifiers as determined by viscosity measurements. Journal of Food Science, 1992, 57:1009–1013.
    [12] Chen J J, Lu S, Lii CY. Effects of milling on the physicochemical characteristics of waxy rice in Taiwan. Cereal Chemistry, 1999, 76:796-799.
    [13] Deffenbaugh L B, Walker C E. Use of the Rapid-Visco-Analyzer to measure starch pasting properties. Part I: Effect of sugars. Starch/Starke, 1989, 41:461-467.
    [14] Lim S T, Lee J H, Shin D H, Lim H S. Comparison of protein extraction solutions for rice starch and effects of residual protein content on starch pasting properties. Starch/Starke, 1999, 51:120-125.
    [15] Jacobs H, Eerlington R C, Delcour J A. Factors affecting the Visco-Amylograph and Rapid Visco-Analyzer evaluation of the impact of annealing on starch pasting properties. Starch/Starch, 1999, 48:266-270.
    [16] Jennings S D, Myers D J, Johnson L A, Pooak L M. Effects of maturity on corn starch properties. Cereal Chemistry, 2002, 79:703-706.
    [17]刘奕,张其芳,程方民.蛋白质对稻米米粉热力学和黏滞特性的影响效应.中国粮油学报, 2006, 21:9-13.
    [18] Almeida-Dominguez H D, Suhendro E L, Rooney L W. Factors affecting rapid visco analyzer curves for the determination of maize kernel hardness. Journal of Cereal Science 1997, 25:93-102
    [19] Mariotti M, Zardi M, Lucisano M, Pagani M A. Influence of the heating rate on the pasting properties of various flours. Starch/starke, 2005, 57:564-572
    [20]陆芳芳,陆卫平,刘萍,沈新平,王继丰,刘小兵.糯玉米淀粉RVA黏度的杂种优势分析.作物学报, 2006, 32:503-508.
    [21] Chang Y, Lin J, Lii C. Effect of ethanol concentration on the physicochemical properties of waxy corn starch treated by hydrochloric acid. Carbohydrate polymers, 2004, 57:89-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700