用户名: 密码: 验证码:
黑龙江漠河地区分形成矿远景预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑龙江漠河地区矿产资源分布广泛,以往对该区的研究资料及资源勘查成果显示这一区域具有良好的找矿前景。在这一地区进行矿产资源远景评价,对该区矿产资源开发利用具有十分重要的意义。本文从分形理论及分形模型在黑龙江漠河地区矿产资源预测应用角度出发,建立研究区地质数据分形模型。在此基础上,对地质数据分形模型中无标度区识别问题进行了研究,使用导数识别方法确定元素化探异常范围,得到漠河地区成矿元素异常分形维度值:Au元素2.65,Cu元素3.19,Pb元素2.48,Zn元素3.52。元素异常下限克拉克值分别为:Au元素2.9×10~(-9),Cu元素28.1×10~(-6),Pb元素28.6×10~(-6),Zn元素116.2×10~(-6),在确定研究区成矿元素分维值及异常下限的基础上,圈定元素异常范围。对区内主要断裂构造及各成矿子区断裂分维值进行分形计算,NE向线性构造的分维值为1.22,NW向线性构造分维值为1.05。这一计算结果表明北东向断裂对于区内成矿元素的活化和成矿流体的运移聚集起到主要作用。分形计算得到四个子成矿区断裂构造分维值:二十五站1.26、开库康1.25、东方红林场1.32、塔河1.16。通过以上计算结果得到,断裂体系分维值大的地区矿床空间分布也较为密集,研究区内具有高分维值的构造断裂与成矿具有正相关性。通过与岩体、地层、断裂等成矿地质要素综合分析,最终圈定出五个成矿远景区为西部白卡鲁山—长缨站区,老沟—二十五站,东北部笔架山—马林林场区,中部分布在蒙克山—防火站区,富乐—阿木鲁山区。在此基础上将使用证据权重法及人工神经网络计算方法获得的预测结果与采用分形模型得到的成矿远景区进行对比分析,验证分形方法在成矿预测工作中的有效性。多种方法比较结果表明,通过综合分形成矿远景预测能够获得良好预测效果。
Mohe area is located in the north of North Greater Khingan Range Heilongjiangprovince, at the southeast of the Siberia plate. It is fragmentation development,geologic structure complexity and minerogenetic geological conditions superiority.
     In the field of geology, the geological phenomenon such as energy release andmatter accumulation is nonlinear in nature. The ore body spatial inhomogeneous isdue to the zonation and asymmetry of tectonic stresses, ore-controlling wall rock,mineralization fluids, elemental concentrations, etc. So the traditional statisticsmethod cannot calculate the distribution of elements objectively. Based on fractaltheory and metallogenic theories as the research foundation, object the elementgeochemical data, regional stratigraphy, structure and interpretation of remotesensing information etc, combined with the regional metallogenic background andknown ore to analysis. It has researched of spatial information metallogenicprognosis in Heilongjiang province by adopting the multifractal model, weights ofevidence method etc. Based on the research above, the different methods arecompared, and finally delineate ore-prospecting in the study area. The researchfindings and achievement in this paper are as follows:
     1. The research of fractal calculation method and fractal model. As a kind ofnonlinear analysis method, the fractal model can objectively describe themetallogenic system, metallogenic process, mineralization enrichment regularity andspatial distribution of mineral resources. Meanwhile, it provides an effective and practical method for the quantitative simulation of mineralization and recognition theweak anomaly. In this paper, we state the related concepts and model of thecalculation method of fractal dimension, singularity, generalized self-similarity andmultifractal spectrum. Make a comprehensive exploration about physical sense,mutual relationship and application effect of the fractal. Then form the geologicalpoint of view to study the correlation between multifractal model characteristics anddistribution features of metallogenic system structure
     2. Based on analysis of the geochemical data in Mohe, Heilongjiang province.To calculate the geochemical data of Au, Cu, Zn, Pb elements by fractal model andthen establish the multifractal model of these geochemical data. To research theintegral law of metallogenic elements distribution by the fractal distribution model,and calculate the fractal characteristics of geochemical data in Ershiwuzhan,Kaikukang, Dongfanghong forest farm and Tahe respectively. This research gets theresult that there are different fractal characteristics in different region, and thenpoints out the element enrichment area.
     3. Study of the identification method of fractal model’s non-scale range. In thisresearch, the double logarithm curve of fractal model is divided by derivativeidentification method. And use the mathematical properties of the derivative todetermine the fractal model’s non-scale range of the elements’ geological data.Relative to the traditional identification methods, the derivative identificationmethod has better accuracy and practicality.
     4. This paper takes elements distribution and genesis as the major study object.It is strata developed, magmatism frequency, metamorphic deformation multiphaseand formed the different tectonic environment type and a variety of structure type.The mineralized type of main ore sites in study area is hydrothermal, and thefractures play an important role to control the mineralization. Therefore the fractalcharacteristic of fractures and the deposit ores positions is taking as research content.Research results show that, the ore sites are controlled by the NE fractures and thepositive relationship between the number of ore sites and the value of the dimension.
     5. In order to confirm the validity in the model of the fractal model metallogenic prediction, this study uses the weight evidence to evaluate themineralization beneficial area. The weight evidence is a statistics analysis pattern ofthe similar analogy theory. It gets the final result by compound and overlaps thefactors. The disadvantage of this method is the evidence factor rely on the planar. Ifthe one dimensional ore-controlling elements want to be calculated as a factor layerit must be convert to planar. That’s virtually expanding anomaly area. Comparedwith the weight of evidence method, the fractal model narrows down the favorablemetallogenic area and reduces the background noise.
     6. Through geological significance of the fractal model‘s dimension value toexplain spatial variations and concentration of Au element in the study area. Andthen get the gold anomaly area.According to the relationship among gold elementabnormality areas, the geological characteristics and Cu, Zn, Pb elementsabnormality areas,8regions have gold ore prospecting potential, spread in BaikaluMountain–Changying station, Laogou-ershiwu station,Bijia Mountain-Malin,Menke Mountain-Fire station and Fule-Amulu Mountain. It provide basis for furthermineral prediction and exploitation.
引文
[1].刘世翔,薛林福,郄瑞卿.基于GIS的证据权重法在黑龙江省西北部金矿成矿预测中的应用[J].吉林大学学报:地球科学版,2007,9(5):889-894.
    [2].刘世翔,薛林福,孙丰月.专家证据权中法在矿产评价中的应用[J].地球科学进展,2008,8(8):848-855.
    [3].刘世翔,薛林福,孙丰月.地理信息系统在黑龙江西北部金矿成矿预测中的应用[J].黄金,2007,7(28):7-12.
    [4].成秋明.空间模式的广义自相似性分析与矿产资源评价[J].地球科学:中国地质大学学报,2004,29(6):733-743.
    [5].申维.分形理论与矿产预测[M].北京:地质出版社,2002.
    [6].张磊,申维.分形方法在澳大利亚新南威尔士地区地球化学异常下限确定中的应用[J].地质通报,2009,28(2/3):245-249.
    [7].薛林福,潘保芝,王东坡,李舟波.大尺度盆地计算机定量分析方法[M].北京:石油工业出版社,2004.
    [8].刘书生,丁俊,张林奎.云南麻栗坡地区成矿元素的多重分形特征与成矿预测[J].沉积与特提斯地质,2009,3(29):71-78.
    [9].谢淑云,鲍征宇.地球化学场的连续多重分形模式[J].地球化学,2002,31(2):191-200.
    [10].邹林,彭省临.青海阿尔茨托山地区地球化学(异常)场的多重分形研究[J].中国地质,2004,31(4):436-441.
    [11].成秋明.成矿过程奇异性与矿产预测定量化的新理论与新方法[J].地学前缘,2007,14(5):42-53.
    [12].成秋明.成矿过程奇异性与矿床多重分形分布[J].矿物岩石地球化学通报,2008,27(3):298-305.
    [13].成秋明.非线性成矿预测理论:多重分形奇异性-广义自相似性-分形谱系模型与方法[J].地球科学,2006,31(3):337-346.
    [14].成秋明.多维分形理论和地球化学元素分布规律[J].地球科学,2000,25(3):311-318.
    [15].成秋明.空间模式的广义自相似性分析与矿产资源评价[J].地球科学,2004,29(6):733-743.
    [16].王明志,李闫华,鄢云飞.若干成矿预测理论研究综述[J].资源环境与工程,2007,21(4):363-369.
    [17].赵鹏大.矿产勘查理论与方法[M].武汉:中国地质大学出版社,2005:1-116.
    [18].于广明,张健,赵建锋.含分形断层面岩体破坏的数值模拟及分析[J].岩石力学与工程学报,2002,21(2):2399-2402.
    [19].周江,印萍,程荡敌.基于GIS和分形理论研究的海岸线图像和分维以及长度.海洋地质与第四纪地质,2008,28(4):65-70.
    [20].陈慧琴.分形插值及分形维数的图解法.江西科学,2010,28(4):167-185.
    [21].白晓宇,袁峰,周涛发.多重分形方法识别铜陵矿区土壤中Cd的地球化学异常.矿物岩石地球化学通报,2008,27(3):306-310.
    [22].施俊法,向运川,王春宁.区域地球化学异常空间分形结构及其意义—以浙江省诸暨地区区域地球化学数据为例[J].矿物学报,2000,20(1):68-72.
    [23].申维.多维自仿射分布及其在地球化学中的应用[J].高校地质学报,1999,5(1):59-65.
    [24].申维.分形求和法及其在地球化学数据分组中的应用[J].物探化探计算技术,2007,29(2):134-137.
    [25].申维.耗散结构、自组织、突变理论与地球科学[M].北京:地质出版社,2008:120.
    [26].施俊法,王春宁.中国金矿床分形分布及其对超大型矿床的勘查意义[J].地球科学—中国地质大学学报,1998,23(6):616619.
    [27].秦海勤,徐可君,江龙平.分形理论应用中无标度区自动识别方法[J].机械工程学报.2006.12,42(12):106-109.
    [28].唐贵基,杜必强,王松岭.转子系统分形故障诊断中无标度区的自动识别[J].动力工程.2009.5,29(5):441-444.
    [29].郑兆苾,张军.分形维数计算结果的可靠性[J].地球物理学进展.1995.5,10(3):106-117.
    [30].党建武,施怡,黄建国.分形研究中无标度区的计算机识别[J].计算机工程与应用.2003.12,31(3):25-27.
    [31].唐依民,雷鸣,聂重军.基于lnC(r)-lnr关系曲线最小曲率值的无标度区的识别[J].湖南科技大学学报(自然科学版).2008.12,23(4):48-52.
    [32].巫兆聪.分形分析中的无标度区确定问题[J].测绘学报.2002.8,31(3):240-244.
    [33].姜健飞,胡良剑,唐俭.数值分析及其MATLAB实验[M].北京:科学出版社,2004.
    [34].巨军让,卓戎.Bp神经网络在MATLAB上的方便实现[J].新疆石油学院学报,1999,11(2):42.
    [35].曾文曲,王向阳.分形理论与分形的计算机模拟[M].沈阳:东北大学出版社,2001.
    [36].汪富泉,罗朝盛,陈国先.G-P算法的改进及其应用[J].计算物理,1993,10(3):345-351.
    [37].杨书申,邵龙义.MATLAB环境下图像分形维数的计算[M].中国矿业大学学报,2006,4(35):478-482.
    [38].陈杨,陈荣娟,郭颖辉.MATLAB6.X图形编程与图像处理[M].西安:西安电子科技大学出版社,2002.
    [39].武生智,魏春玲,马崇武,等.沙粒粗糙度和粒径分布的分形特性[J].兰州大学学报:自然科学版,1999,35(3):53-56.
    [40].成秋明,赵鹏大,张生元.奇异性理论在个旧锡铜矿产资源预测中的应用:综合信息集成与靶区圈定[J].中国地质大学学报,2009,34(2):243-252.
    [41].秦德先,谈树成,范柱国.个旧-大厂地区地质构造演化及锡多金属成矿[J].矿物学报,2004,24(2):118-123.
    [42].成秋明,赵鹏大,陈建国.奇异性理论在个旧锡铜矿产资源预测中的应用:成矿弱信息提取和复合信息分解[J].中国地质大学学报,2009,34(2):232-242.
    [43].徐明钻,朱立新,马生明.多重分形模型在区域地球化学异常分析中的应用探讨[J].地球学报,2010,31(4):611-618.
    [44].敖力布,林鸿溢.分形学导论[M].呼和浩特:内蒙古人民出版社,1996.
    [45].陈建平,唐菊兴,李志军.混沌理论在三江北段成矿地质条件研究上的应用—以玉龙成矿带北段元素地球化学异常分析为例[J].地质与勘探,2003,39(3):1-4.
    [46].陈时军,马丽等.新西兰地区地震活动时空分布的多重分形特征研究[J].地震学报,2003,(03):71-80.
    [47].邓军,方云,杨立强,等.剪切蚀变与物质迁移及金的富集—以胶东矿集区为例[J].地球科学—中国地质大学学报,2000,(04):97-101.
    [48].韩茂安,顾圣士.非线性系统的理论和方法[M].北京:科学出版社,2001.
    [49].侯景儒,郭光裕.矿床统计预测及地质统计学的理论与应用[M].北京:冶金工业出版社,1993.
    [50].魏民,赵鹏大,刘红光,等.中国岩金矿床品位—吨位模型研究闭.地球科学—中国地质大学学报,2001,(01):43-50.
    [51].吴敏金.分形信息导论[M].上海:上海科学技术文献出版社,1994.
    [52].肖克炎,李景朝,陈郑辉,等.中国铜矿床品位吨位模型[J].地质论评,2004,50(01):50-55.
    [53].赵鹏大.定量地学方法及应用[M].北京:高等教育出版社,2004.
    [54].于青.关联维数计算的分析研究[J].天津理工学院学报,2004,20(4):60-62.
    [55].秦海勤,徐可君,江龙平.分形理论应用中无标度区自动识别方法[J].机械工程学报,2006,42(12):106-109.
    [56].李魁力,胡谨秋,张来斌,等.关联维数无标度区确定方法及诊断应用[J].石油机械,2007,35(4):43-45.
    [57].杨绍清,章新华,肖明杰,等.一种实用的混沌信号相关维的提取算法[J].电子学报,2000,28(1):20-22.
    [58].倪秀静,李健,韩泽华.用MATLAB实现成矿区化学元素的第L次分形插值逼近曲面.物探化探计算技术,2005,27(2):150-153
    [59].李随民,姚书振.基于MapGIS的分形方法确定化探异常[J].地球学报,2005,26(2):187-190.
    [60].陈志海,戴勇,郎兆新.缝洞性油藏油井产量变化分形特征及其意义[J].石油勘探与开发,2006,33(1):95-98.
    [61].韩东昱,龚庆杰等.区域化探数据处理的几种分形方法[J].地质通报.2004,23(7):714-719.
    [62].李平,胡可乐,汪秉宏.多重分形谱在材料分析中的应用研究[J].南京航空航天大学学报,2004,36(1):77-81.
    [63].韩吟文,马振东.地球化学[M].北京:地质出版社,2003.
    [64].曾强聪.Visual Basic6.0程序设计教程[M].北京:中国水利水电出版社,2001:1-16
    [65].曾建军,李世航,王永国等.MATLAB语言与数学建模[M].合肥:安徽大学出版社,2005:1-30.
    [66].秦宣云,任波.逃逸时间法生成Julia集的算法分析和具体实现[J].计算机工程与应用,2007,43(5):30-32.
    [67].王沫然.MATLAB6.0与科学计算[M].北京:电子工业出版社,2001(9).
    [68].李水根.分形[M].北京:高等教育出版社,2004(5):147-151.
    [69].马石安.基于迭代系统的不规则曲线的模拟[J].江汉大学学报,2001,18(6).
    [70].李红达.叶正麟.王小平.分形插值曲面[J].计算机辅助设计与图形学学报,2002,4,14(4).
    [71]. Bansley M F.Fractal everywhere[M].Orlando.FL:Academic Press,1988:172-247.
    [72]. Changjiang Li,Tuhua Ma,Junfa Shi.Application of a fractal method relatingconcentrationsand distances for separation of geochemical anomaliesfrombackground.Journal of Geochemical Exploration,2003,77:167-175.
    [73]. Grassberger P,Procaccia I.Measuring the strangeness of strange attractors [J]. Physica D,1983,9:189-208.
    [74]. Y.C. Lai. Effective Scaling Regime for computing the Correlation Dimension fromChaotic Time Series [J]. Physica D.,1998,115:1-18.
    [75]. J.P. Eckmann, D.Ruelle. Fundamental Limitations for Estimation Dimensions andLyapunov Exponents in dynamical Systems [J]. Physica D,1992,56:185-187.
    [76]. Gupta VK, Waymire E.Statical Self-aimilarity in River Networks Parmeterized byElevation[J].Water Resource research.1989,25(3):463-476.
    [77]. Phillips JD.Spatial Analysis of Shoreline Erosion,Delaware Bay,New Jersey[J].Annals ofthe Association of American Geographers,1986,7(1):50-62.
    [78]. MnadelbortB.B.Self-affineand fractal dimension [J].Physica Scripta,1985,32(4):425-36.
    [79]. MnadelbortB.B.The fractals geometry of nature [M].New York: freeman,1982.
    [80]. Stuttle M C.Laser seanning aids underground mine mapping [J].Mining Engineering,1999,51(3):45-46.
    [81]. Cheng Q,Agterberg F P.Bonham-Carter G F. A Spatial Analysis Method for GeochemicalAnomaly Separation [J]. J Geochem Explor,1996,56:183-195.
    [82]. Cheng Q,Agterberg F P,Ballantyne S B.The Separation of Geo-Chemical Anomalies fromBackground by Fractal Methods[J]. J Geochem Explor,1994,51:109-130.
    [83]. Peyman Afzal, Younes Fadakar Alghalandis, Ahmad Khakzad.Delineation ofmineralization zones in porphyry Cu deposits by fractal concentration–volume modeling.Journal of Geochemical Exploration,2011,108:220–232.
    [84]. Jun Deng, Qingfei Wang, LiWan.Self-similar fractal analysis of gold mineralization ofDayingezhuang disseminated-veinlet deposit in Jiaodong gold province, China. Journal ofGeochemical Exploration,2009,102:95–102.
    [85]. P. Gumiel, D.J. Sanderson, M. Arias.Analysis of the fractal clustering of ore deposits in theSpanish Iberian Pyrite Belt. Ore Geology Reviews,2010,38:307–318.
    [86]. Qingfei Wang, Jun Deng, Huan Liu.Fractal models for ore reserve estimation. OreGeology Reviews,2010,37:2–14.
    [87]. Emmanuel John M. Carranza, Martiya Sadeghi.Predictive mapping of prospectivity andquantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden). OreGeology Reviews,2010,38:219–241.
    [88]. Qingfei Wang, Jun Deng, Huan Liu.Fractal models for estimating local reserves withdifferent mineralization qualities and spatial variations. Journal of GeochemicalExploration,2011,108:196–208.
    [89]. Agterberg F P.Multifractal modeling of the sizes and grades of giant and surpergiantdeposits [J]. International Geology Review,1995,37:1-8.
    [90]. Agterberg F P, Cheng Qiuming.Introduction to Special Issue on Fractals and Multifractals[J]. Computers and Geosciences,1999,25(9):947-948.
    [91]. Mandelbrot B B.How long is the coast of Britain? Statistical self-similarity and fractionaldimension [J]. Science,1967,156(3775):636-638.
    [92]. Agterberg F P, Cheng Qiuming.Introduction to Special Issue on "Fractals andMultifractals"[J]. Computers and Geosciences,1999,25(9):947-948.
    [93]. Shen W, Cohen D R.Fractally invariant distributions and an appli-cation in geochemicalexploration [J]. Mathematical Geology,2005,37(8):895-913.
    [94]. Tang Huiping, Zhu Jilei,Xi Zhengping.Impact factors of fractal analysis of porousstructure[J]. SCIENCE CHINA,2010,53(2):348-351.
    [95]. Cheng, Q., Agterberg, F.P.Multifractal modeling and spatial point processes [J].Mathematical Geology,1995,27:831-845.
    [96]. Cheng, Q., Agterberg, F.P., Bonham-Carter, G.F.Fractal pattern integration for mineralpotential estimation [J]. Nonrenewable Resources,1996,5:117-130.
    [97]. Agterberg, F.P., Cheng, Q.M., Brown, A.Multifractal modelling of fractures in the LacBonnet Batholiths, Manitoba [J]. Computers and Geosciences,1996,22:497–507.
    [98]. Cheng, Q.M.Spatial and scaling modeling for geochemical anomaly separation [J]. Journalof Geochemical Exploration,1999,65(3):175–194.
    [99]. Aviles, C.A., Scholz, C.H., oatwright, J.Fractal analysis applied to characteristic segmentsof the San Andreas Fault [J]. Journal of Geophysical Research,1987,92(B1):341–344.
    [100]. Deng, J., Wang, Q.F., Yang, L.Q.The structure of ore-controlling strain and stress fields inthe Shangzhuang gold deposit in Shandong Province, China [J]. Acta Geological Sinica,2008,83(5):769–780.
    [101]. Cheng, Q.Non-linear theory and power–law models for information integration andmineral resources quantitative assessments [J]. Mathematical Geosciences,2008,40:503–532.
    [102]. Cheng, Q., Agterberg, F.P., Ballantyne, S.B.The separation of geochemical anomaliesfrom background by fractal methods [J]. Journal of Geochemical Exploration,1994,51:109–130.
    [103]. Yingcheng Lai, David Lerner.Effective Scaling Regime for Computing the CorrelationDimension from Chaotic Time Series [J]. Physica D.1998,115:1-18.
    [104]. Peter Grassberger, Itamar Procaccia.Characterization of Strange Attractors [J]. PhysicalReview Letters.1983.1,50(5):346-349.
    [105]. Peter Grassberger, Itamar Procaccia.Measuring the Strangess of Strange Attractors [J].Physica9D.1983:189-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700