用户名: 密码: 验证码:
滚动轴承打滑动力学模型及振动噪声特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滚动轴承是关键基础零件,它直接影响主机的性能与寿命。滚动轴承的打滑,不仅会加速滚动轴承的磨损,破坏滚动轴承的旋转精度,产生异常振动和噪声,而且会造成滚动轴承的划伤和润滑油温度的升高,导致油膜破损,严重影响滚动轴承的性能和寿命。由于滚动轴承内部接触关系与运动关系的复杂性,尤其是考虑滚动体载荷和速度变化的打滑机理,轴承与轴承座耦合的声振计算方法等未得到很好解决,制约了高精度、低噪声和长寿命滚动轴承的研发。目前,关于滚动轴承打滑的动力学模型及算法,打滑对滚动轴承寿命和振动噪声的影响规律等,已成为该领域的关键共性科学问题,亟待予以解决。因此,开展滚动轴承打滑机理、动力学模型和声振耦合计算方法的研究,具有重要的理论意义和实际工程价值。
     本论文主要围绕滚动体打滑原因,滚动体进入承载区打滑动力学模型及咬入打滑特性,加速工况滚动轴承打滑动力学模型及打滑特性,打滑对滚动轴承振动特性的影响,轴承声振耦合模型及打滑对轴承噪声的影响等方面展开研究。论文的主要工作如下:
     ①在滚动体打滑原因及打滑对轴承影响分析的基础上,综合考虑非线性接触、变摩擦系数、游隙及咬入角等非线性因素,建立滚动体进入承载区打滑动力学模型,研究了滚动体进入承载区的咬入打滑特性,以及轴承转速、载荷等对滚动体打滑的影响;
     ②基于滚动轴承的整体接触模型和滚动体与保持架的相互作用模型,分别推导内圈、滚动体和保持架的运动微分方程,建立加速工况滚动轴承打滑动力学模型,通过与Harris模型计算结果及实验结果的对比,验证了此模型的有效性。研究了加速工况下滚动轴承的打滑特性,以及轴承载荷、内圈角加速度等对轴承打滑特性的影响;
     ③综合考虑滚动轴承时变刚度、游隙及打滑摩擦力等非线性因素,推导了滚动体非线性接触力和打滑产生的摩擦力,建立了滚动轴承振动模型,获得了滚动体打滑激励下的轴承的振动响应,研究了滚动体进入承载区打滑状态下轴承的振动特征;
     ④基于动力学模型、有限元模型和边界元模型相耦合的方法,建立了轴承-轴承座声振耦合模型。通过建立轴承-轴承座系统振动模型,获取轴承的振动响应并以此作为轴承座振动噪声的激励;建立轴承座有限元模型,应用完全法对轴承座进行瞬态动力学分析,获得轴承座的振动响应;建立轴承座的边界元模型,将轴承座表面振动响应作为声学分析边界条件,采用直接边界元法求解Helmholtz方程的边界积分公式,获得轴承座的噪声辐射特性。通过轴承噪声实验,验证了本文提出的轴承声振耦合模型的正确性。基于该模型,研究了滚动体进入承载区打滑状态下轴承的噪声特征,为减振降噪提供了理论基础。
Rolling element bearings are key basic elements, which affect the machines’performance and life directly. Skidding of rolling element bearing does not onlyaccelerate the bearing’s wear, destroy rotary precision and lead to vibration and noiseabnormally, but also cause smearing, elevate the temperature of lubricant and evenbreak the lubricant film, so skidding will seriously affect the performance and life ofrolling element bearing. Because of the complexity of contact mechanism and internalmotion of rolling element bearing, especially when considering the skidding mechanismunder variation of load and speed of the rolling element, acoustic-vibration calculationmethods coupling bearing with the pedestal can not be solved very well. And thus itbecomes a barrier for the research and development of rolling element bearings withhigh precision, low noise and long life. Currently, the topics with respct to skiddingdynamic model and algorithm of rolling element bearing, as well as how skiddinginfluences the rolling element bearing’s life, vibration and noise have become keycommon scientific problems which needs to be solved urgently. So, the studies aboutskidding mechanism of rolling element bearing, dynamic model and acoustic-vibrationcalculation methods have great theoretical significance and practical engineering value.
     This paper mainly focuses on: the skidding causes of rolling element, dynamicmodel to investigate skidding of rolling element at entry into the loaded zone, dynamicmodel to investigate whole skidding of rolling element bearing during angularacceleration process,the effect of skidding on the vibration characteristic of rollingelement bearing, acoustic-vibration model for bearing noise and the effects of skiddingon the noise characteristics. The main tasks of this paper are listed as follows:
     ①Based on the analysis of skidding causes of the rolling element and their effectson bearing’s performance, the skidding dynamic model of the rolling element enteringthe loaded zone was built, with taking non-linear contact, variable friction coefficient,clearance, nip angle and other non-linear factors into consideration. Nip skiddingbehavior while rolling element entering the loaded zone was studied, and how theskidding of the rolling element was affected by the bearing’s load and speed was alsoinvestigated;
     ②The complete contact model of the rolling element bearing and the interactionmodel between rolling elements and cage were established, and then the motion differential equations of the inner race, the rolling elements and the cage were derivedrespectively. The complete skidding dynamic model of the rolling element bearingduring angular acceleration was built. It is validated by comparison with the resultsfrom Harris’s model and experiment. The skidding characteristics of rolling elementbearing during angular acceleration process and how they can be affected by the bearingload and the angular acceleration of inner race were studied;
     ③The skidding of the rolling element was taken as the excitation of the bearing’svibration. Taking account time-varying stiffness, clearance, skidding of rolling elementsand other non-linear factors, the non-linear contact forces and sliding friction forces dueto skidding were derived. Then, the vibration model of the rolling element bearing wasestablished. The vibration response of the rolling element bearing was obtained, and thevibration features of the bearing under skidding when the rolling elements entering theloaded zone were studied;
     ④Dynamic model, finite element model and boundary element model werecoupled together to establish the pedestal’s acoustic-vibration model. The vibrationresponse of the outer race was obtained based on the vibration model ofbearing-pedestal system, which was the excitation source of the vibration and noise ofthe pedestal. The finite element model of the pedestal was built, and full method wasused to perform transient dynamic analysis to obtain vibration response of the pedestal.The boundary element model of the pedestal was built, where the pedestal’s surfacevibration response was applied as boundary condition. Direct boundary element methodwas used to solve boundary integral formula in Helmholtz equation, which enables theanalysis of the pedestal’s acoustic characteristics. Validity of the model wasdemonstrated by comparison with experiment results. The noise features of the bearingunder skidding while rolling elements was entering the loaded zone were studied, whichcould provide theoretical basis for the resuction of the vibration and noise.
引文
[1]杨晓蔚.我国滚动轴承与国外有哪些差距[J].中国机电日报,2002.
    [2]陈於学.基于接触力学的圆柱滚子轴承振动研究[D].武汉:华中科技大学,2005.
    [3] T. A. Harris. An analytical model to predict skidding in high speed roller bearings. ASMETrans[J].1966,9:229-241.
    [4] A. B Jones. Ball Motion and Sliding Friction in Ball Bearings[J], ASME Trans.1959:1-12.
    [5] T. A. Harris, An analytical model to predict skidding in thrust-loaded angular-contact ballbearings[J]. Journal of Lubrication Technology.1971:17-24.
    [6] C.T. Walters. The dynamics of ball bearings[J]. Journal of Lubrication Technology.1971,93:1-10.
    [7] P.K. Gupta. Transient ball motion and skid in ball bearings[J]. Journal of LubricationTechnology.1975:261-269.
    [8] N.T. Liao, L.F. Lin. Ball bearing skidding under radial and axial loads[J]. Mechanism andMachine Theory2002,37:91-113.
    [9] F.Hirano. Motion of a ball in angular-contact ball bearing[J]. ASLE Trans.1965,8:425-434.
    [10] R.J. Bones. Minimum load requirements for the prevention of skidding in high speed thrustloaded ball bearings[J]. Journal of Lubrication Technology. Trans. ASME.1981,103:35-39.
    [11] P.K. Gupta. Dynamics of rolling-element bearings-Part I: Cylindrical roller bearinganalysis[J]. Journal of Lubrication Technology.1979:293-304.
    [12] P.K. Gupta. Dynamics of rolling-element bearings-Part II: Cylindrical roller bearingresults[J]. Journal of Lubrication Technology.1979:305-311.
    [13] P.K. Gupta. Dynamics of rolling-element bearings-Part III: Ball bearing analysis[J]. Journalof Lubrication Technology.1979:312-318.
    [14] P.K. Gupta. Dynamics of rolling-element bearings-Part IV: Ball bearing results[J]. Journal ofLubrication Technology.1979:319-326.
    [15]崔立,王黎钦,郑德志,古乐.高速球轴承打滑的临界负荷研究[J].航空动力学报,2007,22(11):1971-1976.
    [16]蒋兴奇,马家驹,顾小兵.主轴轴承最小预负荷的计算[J].轴承,2001,3:1-4.
    [17]殷锋.航空发动机高速轴承打滑检测的一种新方法探讨[J].测控技术,1994,13(6):22-24.
    [18] C. S. Sunnersjo. Varying compliance vibrations of rolling bearings[J]. Journal of Sound andvibration,1978,58:363~373.
    [19] S. Fukata, E.H. Gad, H.Tamura. On the radial vibration of ball bearings (computersimulation)[J]. Bulletin of the JSME,1985,28:899~904.
    [20] B. Mevel and J. L. Guyader. Routes to chaos in ball bearings[J]. Journal of Sound andvibration.1993,162:471~487
    [21] A. Sankaravelu, S.T. Noah, C.P. Burger. Bifurcation and chaos in ball bearings[J].Nonlinear and Stochastic Dynamics,1994,192:313~325.
    [22] D. W. Childs. Fractional frequency rotor motion due to clearance effects[J]. Journal ofEngineering Power.1982,104:533~536.
    [23] S. Saito. Calculation of nonlinear unbalance response of horizontal Jeffcott rotors supportedby ball bearings with radial clearances[J]. Journal of vibration, Acoustics, Stress, andReliability in Design.1985,107:416~420.
    [24] Y. B. Kim and S. T. Noah. Bifurcation analysis for a modified Jeffcott rotor with bearingclearances[J]. Nonlinear Dynamics.1990,1:221~241.
    [25] M. Tiwari, K. Gupta. Effect of radial internal clearance of a ball bearing on the dynamics ofa balanced horizontal rotor[J]. Journal of Sound and Vibration.2000,238(5):723~756
    [26] M. Tiwari, K. Gupta. Dynamic Response of an unbalanced rotor supported on ballbearings[J]. Journal of Sound and Vibration.2000,238(5):757~779.
    [27] S.P. Harsha, K. Sandeep, R. Prakash. The effect of speed of balanced rotor on nonlinearvibrations associated with ball bearings[J]. Mechanical Sciences.2003,45:725~740.
    [28] A.N. Lioulios, I.A. Antoniadis. Effect of rotational speed fluctuations onthe dynamic behaviour of rolling element bearings with radial clearances[J].International Journal of Mechanical Sciences.2006,48:809~829.
    [29] Karthik Kappaganthu, C. Nataraj. Nonlinear modeling and analysis of a rolling elementbearing with a clearance[J]. Commun Nonlinear Sci Numer Simulat.2011,16:4134–4145.
    [30] N. Aktu.rk. The Effect of waviness on vibrations associated with ball Bearings[J]. Journal ofTribology.1999,121:667~677.
    [31] S.P. Harsha, K. Sandeep, R. Prakash. Non-linear dynamic behaviors of rolling elementbearings due to surface waviness[J]. Journal of Sound and Vibration.2004,272:557~580.
    [32] S.P. Harsha, P.K. Kankar. Stability analysis of a rotor bearing system due to surfacewaviness and number of balls[J]. International Journal of Mechanical Sciences.2004,46:1057–1081.
    [33] Y.H. Wijnat, J.A. Wensing, G.C. Van Nijen. The influence of lubrication on the dynamicbehaviour of ball bearings[J]. Journal of Sound and Vibration.1999,222(4):579–596.
    [34] J. Sopanen, A. Mikkola. Dynamic model of a deep-groove ball bearing including localizedand distributed defects. Part1: Theory[J]. Proceedings of the Institution of MechanicalEngineers, vol.217, Part K: J. Multi-body Dynamics.2003:201–211.
    [35] J. Sopanen, A. Mikkola. Dynamic model of a deep-groove ball bearing includinglocalized and distributed defects-Part2: Implementation and results[J]. Proceedings of theInstitution of Mechanical Engineers, vol.217Part K: J. Multi-body Dynamics.2003:213–223.
    [36]袁茹,赵凌燕,王三民.滚动轴承-转子系统的非线性动力学特性分析[J].机械科学与技术.2004,24(10):1175~1177.
    [37]唐云冰,高德平,罗贵火.滚动轴承非线性轴承力及其对轴承系统振动特性的影响.航空动力学报[J].2006,21(2):366~373.
    [38]韩宝财,唐六丁,邓四二,李云龙.转子一滚动轴承系统非线性动力学分析[J].噪声与振动控制.2008,4:20~23.
    [39] T. Igarashi. Noise of ball bearing (1st report, case of simple ball bearing)[J]. Bull JSME1960,3(10):220-7.
    [40] T. Igarashi. Noise of ball bearing (2nd report, case of fitted ball bearing)[J]. Bull JSME1962,5(17):184–94.
    [41] T. Igarashi. Noise of ball bearing in electric motor[J]. Bull JSME1964;7(25):200-8.
    [42] R.H. Scalan. Noise in rolling-element bearings[J]. ASME Paper65-WA/MD-61965.
    [43] V.D. Jayaram, F. Jarchow. Experimental studies on ball bearing noise[J]. Wear.1978,46:321-6.
    [44] A. Nagamatsu, M. Fukuda. Sound noise generated from ball bearings in high speedrotation[J]. Bull JSME1978,21(158):1306-10.
    [45] T. Ananthapadmanaban, V. Radhakrishnan. An investigation of the role of surfaceirregularities in the noise spectrum of rolling and sliding contacts[J]. Wear1982,83:399-409.
    [46] T. Igarashi, S. Yabe. Studies on the vibration and sound of defective rolling bearings (secondreport: sound of ball bearings with one defect)[J]. Bull JSME1983,26(220):1791-8.
    [47] N.Tandon, B.C. Nakra. The application of the sound-intensity technique to defect detectionin rolling-element bearings[J]. Appl Acoust1990,29:207-17.
    [48] N. Tandon, A. Choudhury. A review of vibration and acoustic measurement methods for thedetection of defects in rolling element bearings[J]. Tribol Int1999,32:469-80.
    [49] B.H. Rho, K.W. Kim. Acoustical properties of hydrodynamic journal bearings[J]. Tribol Int2003,36(1):61–6.
    [50] B.H. Rho, D.G.Kim, K.W. Kim. Noise analysis of oil-lubricated journal bearings[J].IMechE Part C. J Mech Eng Sci2003,217(3):365-71.
    [51] B.H. Rho, D.G. Kim, K.W. Kim. Effects of design parameters on the noise of rotor-bearingsystems[J]. Tribol Int2004,37(8):599-605.
    [52] B.H. Rho, D.G. Kim, K.W..Kim. A noise analysis of cylindrical roller bearings operatingunder zero external load[J]. Tribol Trans2005,48:238-44.
    [53] J.E. Ban,B.H. Rho, K.W. Kim. A study on the sound of roller bearings operating underradial load[J]. Tribol Trans2007,40:21-28.
    [54]孙恩宏,张军,田洪生.对电机轴承噪声音质的探讨[J].轴承,1997,9:31~35.
    [55]齐忠华,智莹.滚动轴承的振动和噪声分析[J].鞍山师范学院学报,1998,19(2):71~74.
    [56]马国华,王芳,胡桂兰.滚动轴承的噪声及产生机理[J].轴承,2001,9:35~37.
    [57]孙立明,单服兵,朱孔敏,郭宝霞.轴承振动、噪声与振动峰值和波峰因素关系[J].洛阳工学学报,2002,23(1):65~70.
    [58]夏新涛,王中宇,孙立明,赵联春.6203-2RZ轴承振动与噪声关系的实验研究[J].中国工程科学,2003,5(8):64~69.
    [59]付刚,夏新涛,孙立明.基于钢球振动所产生的轴承噪声数学模型[J].机床与液压,2003,6:39~40.
    [60]赵惠玲,贾峰一,李旭东,常洪.套圈制造精度对滚动轴承振动与噪声的影响[J].轴承,2003,12:31~33.
    [61]夏新涛,颉谭成,邓四二等.滚动轴承噪声的谐波控制原理[J].声学学报,2003,28(3):255~261.
    [62]夏新涛,王中宇,孙立明,赵联春.滚动轴承振动与噪声关系的灰色研究[J].航空动力学报,2004,19(3):414~428.
    [63]夏新涛,王中宇,孙立明,赵联春.6203-2RZ轴承振动与噪声关系的实验研究[J].中国工程科学,2003,5(8):64~69.
    [64]夏新涛,王中宇,孙立明,赵联春,刘雪峰.滚动轴承噪声的扩展不确定度评价[J].声学学报,2004,29(1):84~88.
    [65]杜迎辉,夏新涛,孙立明,孙龙.滚动轴承噪声与谐波关系回归分析[J].轴承,2005,10:28~30.
    [66]汪久根,章维明.滚动轴承噪声的分析[J].轴承,2005,9:39~42.
    [67]汪久根,章维明.滚动轴承噪声影响因素的群分析[J].润滑与密封,2006,7:39~41.
    [68]陈玉明,王冰.球轴承减振降噪技术探讨[J].哈尔滨轴承,2007,28(3):13~18.
    [69]梁吉波,吴银龙.电机滚动轴承异常振动噪声的分析及处理[J].防爆电机,2008,43(4):46~48.
    [70]王勇.工业电机中的滚动轴承噪声[J].电机与控制应用,2008,35(6):38~43.
    [71]杨晓蔚.国外低噪声轴承振动发展[J].轴承,2002,(4):31-34.
    [72]陶必悦.对我国当前球轴承振动噪声状况的技术探讨[J].轴承,2000,(2):5-8.
    [73]孙立明,陈原,姜韶峰.深沟球轴承振动对比试验研究[J].轴承,1998,(6):37-40.
    [74]宋丽,孙立明,马美玲.深沟球轴承噪声测试分析[J].轴承,2003,(3):34-36.
    [75]赵联春.球轴承振动的研究[D].杭州:浙江大学,2003.
    [76] N. Ghaisas, C.R. Wassgren, F. Sadeghi, Cage instabilities in cylindrical roller bearings[J].Journal of Tribology2004,126:681-689.
    [77] E. Laniado-Jacome, J. Meneses-Alonso, V. Diaz-Lopez. A study of sliding between rollersand races in a roller bearing with a numerical model for mechanical event simulations[J].Tribology International2010.
    [78] Sharad Jain, Hugh Hunt. A dynamic model to predict the occurrence of skidding inwind-turbine bearings[C].9th International Conference on Damage Assessment ofStructures2011.
    [79] S. Andersson, A. Soderberg, S. Bjorklund. Friction models for sliding dry, boundary andmixed lubricated contacts[J]. Tribology International.2007,40:580-587.
    [80] T.A. Harris, K. MichealN. Rolling bearing analysis-essential concepts of bearingtechnology[M].5th ed. Taylor and Francis,2007.
    [81]林腾蛟,荣崎,李润方,邵毅敏.深沟球轴承运转过程动态特性有限元分析[J].振动与冲击,2009,28(1):118-122.
    [82]冈本纯三,黄志强.球轴承的设计计算[M].北京:机械工业出版社,2003.
    [83]万长森.滚动轴承的分析方法[M].北京:机械工业出版社,1985.
    [84]吴云鹏,张文平,孙立红.滚动轴承力学模型的研究及其发展趋势[J].轴承,2004,(7):44~46.
    [85] SKF. Bearing failure and their causes. Sweden: Palmeblads Tryckeri AB.1994.
    [86] B.J. Hamrock. Fundamentals of Fluid Film Lubrication[M]. McGraw-Hill, New York,1994.
    [87] J.Sopanen, A.Mikkola. Dynamic model of a deep-groove ball bearing including localizedand distributed defects. Part1: theory. Proceedings of the institution of Mechanicalengineers part k[J]. Journal of multi-body dynamics.2003,217(3):201~211
    [88] D.E. Brewe, B.J. Hamrock, Simplified solution for elliptical-contact deformation betweentwo elastic solids[J]. J. Lubrication Technol.,1977,99,485-487.
    [89] A. Gu. An improved mothod for calculating the spin torque in fully lubricated ball racecontact[J]. Journal of Lubrication Technology, Trans. ASME,1973,93:106-108.
    [90] R. J. Boness, J.J. Chapman, Measurement and analysis of ball motion in high speed, deepgroove ball bearings[C]. ASME/ASLE Lubrication Conference,1974.
    [91]徐弘毅,张晨辉.基于塑性材料模型的滚动轴承有限元分析[J].机械工程学报,2010,46(11):29-35.
    [92] P.K. Gupta. Dynamic loads and cage wear in high-speed rolling bearings[J]. Wear147(1991):119-134.
    [93]王立秋.工程数值分析[M].济南:山东大学出版社,2002.
    [94]杨大地.数值分析[M].北京:科学出版社,2006.
    [95] A. Selvaraj, R. Marappan, Experimental analysis of factors influencing the cage slip incylindrical roller bearing[J]. Inv J Adv Manuf Technol (2010).
    [96] N. Sawalhi, R.B. Randall. Simulation gear and bearing interactions in the presence of faultsPart I. The combined gear bearing dynamic model and the simulation of localised bearingfaults[J]. Mechanical Systems and Signal Processing.2008,22(8):1924~1951
    [97]张朝晖. ANSYS11.0结构分析工程应用实例解析[M].北京:机械工业出版社,2009.
    [98]王呼佳,陈洪军等. ANSYS工程分析进阶实例[M].北京:中国水利水电出版社,2006.
    [99]张雄,王天舒.计算动力学[M].北京:清华大学出版社,2007.
    [100]王雪仁.船用柴油机排气消声器声学性能预测的边界元法及实验研究[D].哈尔滨:哈尔滨工程大学,2007.
    [101]刘文.齿轮系统结构噪声及空气噪声分析与试验研究[D].重庆:重庆大学,2010.
    [102]何琳,朱海潮等.声学理论与工程应用[M].北京:科学出版社,2006.
    [103]李增刚. SYSNOIS Rev5.6详解[M].北京:国防工业出版社,2005.
    [104]何渝生,邓兆祥等.汽车噪声控制[M].北京:机械工业出版社,1998.
    [105]王攀.内燃机活塞拍击及其噪声研究[D].重庆:重庆大学,2007.
    [106]崔立.航空发动机高速滚动轴承及转子系统的动态性能研究[D].哈尔滨:哈尔滨工业大学,2008.
    [107]唐云冰.航空发动机高速滚动轴承力学特性研究[D].南京:南京航空航天大学,2005.
    [108] http://www.21yibiao.com.滚动轴承故障的主要形式与原因.2009.
    [109] T.A. Harris. Rolling element bearing dynamics[J]. Wear1973,23:311-317.
    [110]梁华.滚动轴承的失效分析[J].理化检验2005,41:99-103.
    [111]侯国安,崔艳宏.滚动轴承失效形式及预防措施[J].石油与化工设备2010,13:54-56.
    [112]于志强,杨振国. SKF滚动轴承的失效分析[J].金属热处理2007,32:359-364.
    [113]王晓青,夏水华.滚动轴承失效影响因素与影响机制[J].轴承2010,11:18-22.
    [114]周银生,全永昕. GCr15轴承钢摩擦副的表面胶合失效研究[J].摩擦学学报1994,14(2):105-114.
    [115]周立廷.齿轮箱结构噪声预测与改进设计研究[D].大连:大连理工大学,2009.
    [116] Yong Li, Z.C Feng. Bifurcation and chaos in friction-induced vibration[J]. Communicationsin Nonlinear Science and Numerical Simulation2004,9(6):633~647.
    [117] Niranjan Ghaisas, Carl R. Wassgren, Farshid Sadeghi. Cage instabilities in cylindrical rollerbearings[J]. Journal of tribology-transactions of the ASME2004,126(4):681~689.
    [118] Christer Spiegelberg, Stefan Bj rklund, S ren Andersson. Simulation of transient friction ofa cylinder between two planes[J]. Wear2003,254(11):1170~1179.
    [119] B. Wikiel, J.M. Hill. Stick–slip motion for two coupled masses with side friction[J].International Journal of Non-Linear Mechanics2000,35(6):953~962.
    [120] Pradeep K. Gupta. Cage unbalance and wear in ball bearings[J]. Wear1991,147(1):93~104.
    [121] L. Qiao, M, Hillmann, R. Sünkel. Tangential loading transportation between roller and flatwith modified Coulomb friction—A three-dimensional roll-contact calculation with thefinite element method[J]. Computers&Structures1996,58(5):1031~1043.
    [122] Pradeep K. Gupta. Cage unbalance and wear in roller bearings[J]. Wear1991,147(1):105~118.
    [123] M. Pasdari, C.R. Gentle. Computer modelling of a deep-groove ball-bearing with hollowballs[J]. Wear.1986,111(1):101~114.
    [124] K.T.O’Brien, C.M. Taylor. Cage Slip in Roller Bearings[J]. Journal of MechanicalEngineering Science.1973,15(5):370~378.
    [125] Wang Liqin, Cui Li, Zheng Dezhi, Gu Le. Nonlinear dynamic behaviors of a rotor rollerbearing system with radial clearance and waviness considered[J]. Chinese Journal ofAeronautics.2008,21(1):86~96.
    [126] Antti K rkk inen, Jussi Sopanen, Aki Mikkola. Dynamic simulation of a flexible rotorduring drop on retainer bearings[J]. Journal of Sound and Vibration.2007,306(3-5):601~617.
    [127] S.P. Harsha. Nonlinear dynamic analysis of a high-speed rotor supported by rolling elementbearings[J]. Journal of Sound and Vibration.2006,290(1-2):65~100.
    [128] Hoon-Voon Liew, Teik C.Lim. Analysis of time-varying rolling element bearingcharacteristic [J]. Journal of Sound and Vibration2005,283(3-5):1163~1179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700