用户名: 密码: 验证码:
振动谱表征空间滚动轴承寿命状态方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间滚动轴承是空间运动机构的关键零部件,卫星、航天飞机、宇宙飞船等空间飞行器的机械部件能否正常运转、实现预定功能和达到预期寿命,在很大程度上取决于飞行器内各机械部件中滚动轴承的性能、寿命和可靠性。在空间服役的滚动轴承要承受低温、交变温度、高能粒子辐照、原子氧侵蚀、微尘冲刷等极端环境的综合作用,其失效行为和机理与地面常规环境有很大差异。因此,为了满足空间飞行器高可靠、长寿命的发展需求,亟需在模拟空间环境下开展滚动轴承寿命评估和预测等方面的研究,而研究基础在于寿命状态的描述和识别,即寿命状态的表征。目前,摩擦力矩、温度等参数等不能有效反映空间滚动轴承寿命状态的变化,一个新的思路是以包含运行状态信息丰富的振动信号为切入点研究空间滚动轴承轴承寿命状态的表征方法。当空间滚动轴承的寿命状态发生变化时,轴承振动信号时域中的幅值和概率分布将会发生变化,频域中的频率成分、不同频率成分的能量,以及频谱的主能量谱峰位置也将发生改变。本文以空间滚动轴承为研究对象,开展其寿命状态的振动谱表征方法研究。主要研究内容如下:
     ①针对空间滚动轴承寿命状态的表征问题,提出了时频域特征参数构建空间滚动轴承寿命状态特征向量的方法。空间滚动轴承处于不同的磨损程度即处于不同寿命状态时,其振动情况发生变化,直接表现为振动信号特征的改变。通过振动信号时域波形和频谱特征来反映空间滚动轴承振动信号的时域和频域信息,从而指示不同寿命状态之间的差异性。为了便于对寿命状态的自动识别并全面准确的反映空间滚动轴承的寿命状态,综合利用时域和频域特征参数,选择了16个时域特征参数和14个频域特征参数构造出高维混合域特征向量即空间滚动轴承寿命状态特征向量作为轴承寿命状态的振动谱特征。同时,分析了转速和载荷对空间滚动轴承寿命和振动的影响,提出了空间滚动轴承全寿命试验方法与策略;
     ②针对空间滚动轴承振动信号降噪和背景噪声滤除问题,提出了基于集合经验模式分解(Ensemble Empirical Mode Decomposition,EEMD)的降噪和干扰滤除方法。在模拟真空环境下测试得到的滚动轴承振动信号往往受到测试系统噪声和模拟真空环境设备运行而带入的背景噪声的干扰,为了提高信噪比,准确提取空间轴承寿命状态特征向量,需要将上述两类噪声进行降噪和滤除。对于空间滚动轴承振动信号的降噪,应用EEMD能有效抑制模式混叠的特性,根据白噪声经EEMD分解后其固有模式分量(Intrinsic Mode Functions,IMF)的特性设计了一种自动选取IMF分量重构信号的算法,实现了信号自适应降噪。对于背景噪声的滤除,根据EEMD的滤波特性,通过计算含背景噪声的轴承振动信号的IMF分量和单独测试得到的背景噪声的IMF分量之间的相关系数对IMF分量进行筛选并重构信号,从而将由于模拟真空环境而带入的背景噪声进行了有效滤除。同时,针对EEMD的两个重要参数,即加入白噪声的幅值系数k和总体平均次数M的选取问题,根据不同幅值系数的白噪声对信号极值点分布均匀性影响规律,提出了EEMD自适应参数优化方法,保证了分解精度和计算效率;
     ③针对空间滚动轴承寿命状态识别问题,提出了基于流形学习的空间滚动轴承寿命状态识别方法。轴承振动信号往往呈现出特征信息耦合、时变性强的特点,由其时频域特征参数构成的高维寿命状态特征向量内部的必然存在信息冗余和相互耦合,不利于进行分类识别。为此,利用流形学习方法对寿命状态特征向量进行约简,提取出原始观测空间的真实流形结构,最终得到维数低、敏感性高和分类错误率小的主要特征向量。然后,将经过约简后的训练样本和测试样本的低维寿命状态特征向量输入最近邻分类器(K-Nearest Neighbors Classifier,KNNC),最近邻分类器根据训练样本的邻域信息和类标签信息对测试样本进行分类决策,实现寿命状态的识别。
     ④根据空间滚动轴承振动特点及寿命试验要求,搭建了测试系统硬件平台,开发了集信号自动采集、处理和寿命状态识别等功能为一体的空间滚动轴承寿命状态识别系统。系统不仅可对大量数据文件进行批量管理、分析,还应用数据库技术实现寿命样本库的建立、添加和删除等管理,保证了寿命样本的完整性和安全性。系统主要包括:振动信号采集模块,振动信号基本分析模块(包括波形分析、概率分析、相关分析和自谱分析等)、振动谱瀑布图分析模块、HHT分析模块和寿命状态识别模块。最后,通过对空间滚动轴承寿命状态识别应用实例检验了该系统的可行性和有效性。
     文章最后对本文的工作进行了总结,并展望了下一步的研究方向。
The space rolling bearing is the key components in the space motion mechanism,the spacecraft such as satellite, space shuttle and spaceship, can run normally toachieve a predetermined function and achieve the life expectancy,which largelydepends on the performance,lifetime and reliability of rolling bearing in themechanical components of spacecraft. The rolling bearing service in space is subjectedto comprehensively effect by extreme environments such as low temperature andalternating temperature, high-energy particle radiation, atomic oxygen erosion, dustand erosion. So, there are great differences in failure behavior and mechanism withconventional environment. Therefore, in order to meet development needs of the highreliability and long-life of spacecraft, life evaluation and prediction for space rollingbearing are necessitated to study in the vacuum, and the research foundation is themethods of description and identification of the lifetime state for space rollingbearings,namely the lifetime state indentification for sapace rolling bearing. At present,the friction torque and temperature cann’t effectively reflect the changes in the state ofspace rolling bearing lifetime, and a new thought is obtained,which study the methodsof characterize lifetime state for space rolling bearings based on vibration. While thespace rolling bearing lifetime state changed, the amplitude of the bearing vibrationsignal in the time domain and the probability distribution would be changed, and thefrequency component, the energy of different frequency components, and the mainenergy peak position of the spectrum also would be changed. According to theproblems in characterization and identification for lifetime state of space rollingbearing, the main research work and conclusions are as follows:
     ①For the issue of the characterization of the space rolling bearing lifetime state, themechanism of characterizing lifetime state for space rolling bearing is proposed. Thedifferent lifetime state and the degree of wear of the space rolling bearing is reflectedby the change of vibration signal characteristics. It reflects the space rolling bearingoperation state through the vibration signal features extracted in the time waveformand frequency spectrum. Therefore, the difference among different lifetime state can beindicated clearly. Finally, the accurately characterization and identification for thelifetime status of space rolling bearing is obtained. In order to automatic identify andfully reflect the lifetime state of space rolling bearings, comprehensive utilization of time domain and frequency domain characteristic parameters,16characteristicparameters of the time-domain and14frequency domain characteristic parameters areselected to construct the high-dimensional mixed-domain feature vector ascharacteristics of vibration spectrum for the space rolling bearing. Then, the lifetimestate eigenvectors of space rolling bearing is obtained. At the same time, the effect ofspeed and load for the space rolling bearing lifetime is analysed, and the vibration ofthe space rolling bearing is also analysed in this researched. Then, the methods andstrategies of complete life test for space rolling bearing is proposed;
     ②According to the problems of de-noising and background noise filtering for thespace rolling bearing, the de-noising and filtering methods based on the ensembleempirical mode decomposition(EEMD) for the space rolling bearing are proposed. Thevibration signals of rolling bearing are obtained in the simulation vacuum environment.However they are disturbed by the noise and background noise, amonge which fromtest system and the background noise is from the equipment which maintain analogvacuum environment.In order to increase signal to noise ratio, accurately extract thelifetime state eigenvectors of space rolling bearing, two types of noise should bede-noised and filtered. For vibration signal de-noising of space rolling bearing, theensemble empirical mode decomposition (EEMD) can effectively suppress thephenomenon of mode mixing, and according to the product of the energy density ofintrinsic mode functions (IMFs) from the white noise by EMD and the correspondingaveraged period of IMFs is a constant, an automatic algorithm of choose IMFcomponents to reconstruct signal is designed, and an adaptive de-noising method basedon EEMD for vibration signal is proposed. For background noise filtered, according tothe filtering characteristics of EEMD, calculating the correlation coefficient betweenthe IMF component of the background noise and the IMF component of the vibrationsignal which includes background noise, then, the IMF component is selected based onthe correlation coefficient.At last, the background noise which come from the vacuumenvironment is effectively filtered out. Aim to the selection for two importantparameters, the amplitude coefficient k of the white noise and the number of ensembletrials, M, the adaptive selection methods for EEMD parameters is proposed, based onthe influence law of distribution uniformity on the signal extreme point because ofdifferent amplitude coefficient of wihite noise.In the end,the decomposition accuracyand computational efficiencys is ensured.
     ③Aim to the problems of identification of lifetime state for space rolling bearing, the methods of lifetime state identification based on manifold learing is proposed. Thefeatures of imformation couping and time-varying are presented in the vibration signalof bearing, then, the features are presented in the high-dimensional lifetime stateeigenvectors, which go against classification and identification. Thus, thehigh-dimensional lifetime state eigenvectors is compressed based on the excellentperformance characteristics of compression and classification from manifold learning,the real manifold is extracted in the original observation spatial, and the goodclassification characteristics,high sensitivity and low-dimensional life stateeigenvectors is obtained.Then,the low-dimensional feature vector of training samplesand testing samples is inputed into the K-nearest neighbors classifier(KNNC), and thetesting samples is made classification decision of KNNC based on the neighborhoodand the class label information of training samples, at last,the lifetime state for spacerolling bearing is identified.
     ④On the basis of research of this paper, the hardware platform of test system isbuilded based on the vibration characteristics and lifetime testing requirements forspace rolling bearing.The lifetime state identification system of space rolling bearing isimplemented, including signal acquisition signal, processing, lifetime stateidentification and others functions. This system can be used not only for managementof large data set, but also can be management of lifetime state sample database basedon database technology, and the integrity and security of lifetime state sample databaseis ensured. The system mainly includes: vibration signal acquisition module, vibrationsignal analysis module (including waveform analysis, probability analysis, correlationanalysis and spectrum analysis, vibration spectrum), waterfall analysis module, HHTanalysis module and life state identification module. At last, the lifetime state of spacerolling bearing is exact identified using this system and the result shows that thesystem is feasible and valid.
引文
[1] Burt, R. R.&Loffi, R. W. Failure analysis of International Space Station Control MomentGyro[J].In: Proceedings of the10th European Space Mechanisms and Tribology Symposium,2003(9):24-26.
    [2] San Sebastián, Spain. Netherlands: ESA Publications Division[M]. Compiled by R. A. Harris.ESA SP-524, Noordwijk,2003.
    [3] Michael R. Johnson, Russ Gehling, Ray Head. Failure of Harmonic Gears During Verificationof a Two-Axis Gimbal for the Mars Reconnaissance Orbiter Spacecraft[C]. Proceedings of the38Aerospace Mechanisms Symposium,2006.
    [4] Naofumi Hiraoka. Wear life mechanism of journal bearings with bonded MoS2film lubricantsin air and vacuum[J]. Wear,2001,249(10/11):1014-1020.
    [5] ALLEN L J,ANGEL R P,MONGUS J D,et al.. The hubble space telescope optical systemsfailure report[P]. NASA Report, NASA, Washington, D.C,1990.11.
    [6] http://ntrs.nasa.gov/search.jsp.
    [7] http://www.esa.int/esaCP/index.html.
    [8] N.E. Bishop, F.Waldow, M.M. Morlock. Friction moments of large metal-on-metal hip jointbearings and other modern designs[J].Medical Engineering&Physics,2008(30):1057-1064.
    [9] Harris T. BallMotion in Thrust-loaded, Angular-contact Bearings with Coulomb Friction[J]. J.Lubric Tech,1971,93(1):32-38.
    [10] Kitahara Tokio, Okamoto Junzo. Friction Torque of Instrument Ball Bearings UnderCombined Radial and Thrust Load[J]. Journal of Japan Society of Lubrication Engineers,1983,28(4):279-286.
    [11] Murat Taburdagitan, Metin Akkok Determination of surface temperature rise with thermo-elastic analysis of spur gears[J]. Wear,2006,261(56),656-665.
    [12] Handschuh R F, Kicher T P. A method for thermal analysis of spiral bevel gears [J]. Journal ofMechanical Design,1996,118(4):580-585.
    [13] Ebubekir Atan, Serhan Ozdemir. Intelligence modeling of the transient asperity temperaturesin meshing spur gears[J], Mechanism and Machine Theory,2005,40(1):119-127
    [14] S. S¨ochting, I. Sherrington. An evaluation of the effect of simulated launch vibration on thefriction performance and lubrication of ball bearings for space applications[J]. Wear,2006(260):1190–1202.
    [15] Francis J. Clauss, Sanford P. Drake, Jr. Vibration vacuum screening of space lubricants[R].National Aeronautics and Space AdmILntstration Manned Spacecraft Center,1969.
    [16] Paula J. Dempsey,Gary Kreider,Thomas Fichter. Integrating Oil Debris and VibrationMeasurements for Intelligent Machine Health Monitoring[R].Glenn Research Center,Cleveland, Ohio,2003.
    [17]裴礼清,赵丽萍.滚动轴承微动磨损导致的振动分析[J].轴承,2004(5):23-27.
    [18]吴宝杰,刘庆廉,李兴林,周银生.润滑脂的动态分油能力对轴承振动性能的影响[J].轴承,2003(5):27-30.
    [19]唐云冰,高德平,罗贵火.滚动轴承非线性轴承力及其对轴承系统振动特性的影响[J].航空动力学报,2006,21(2):366-373.
    [20]余俊.滚动轴承寿命计算:额定负荷、当量负荷与寿命[M].北京:高等教育出版社,1993.
    [21]刘泽九,贺士荃.滚动轴承的额定负荷与寿命[M].北京:机械工业出版社,1982.
    [22]龙振宇.机械设计[M].北京:机械工业出版社,2002.
    [23]岗本纯三著,黄志强译.球轴承的设计计算[M].北京:机械工业出版社,2003.
    [24]吴云鹏,张文平,李洪梅.球轴承波纹度激振的机理研究[J].机械设计与制造,2010(4):219-221.
    [25]汪久根,王庆九,章维明.表面粗糙度对轴承振动的影响[J].轴承,2007(1):26-25.
    [26]赵惠玲,贾峰一,李旭东,常洪.套圈制造精度对滚动轴承振动与噪声的影响[J].轴承,2003(12):31-33.
    [27]闻凌峰.真空环境中固体润滑轴承损伤机理研究[D].哈尔滨:哈尔滨工业大学,2009.
    [28]于德洋,汪晓萍.精密角接触球轴承的固体润滑失效分析[J].摩擦学学报,1995(10).
    [29]李新立,刘志全,遇今.航天器机构固体润滑球轴承磨损失效模型[J].航天器工程,2008,17(4):109-113.
    [30] P.W. Gold, J. Loos.Wear resistance of PVD-coatings in roller bearings[J].Wear,2002(253):465-472.
    [31] Makoto Nishimura a, Mineo Suzuki. Solid-lubricated ball bearings for use in avacuum-state-of-the-art[J]. Tribology International,1999(32):637–647.
    [32] A.Vanhulsela, F.Velascob, C,R.Jacobsa, etal. DLC solid lubricant coatings on ball bearings forspace applications[J].Tribology International,2007(40):1186–1194.
    [33] Burt R R,Loffi R W. Failure analysis of international space station control momentgyro[C].The Proceeding10th European Space Mechanisms and Tribology Symposium,SanSebastian,Spain,2003(9):13-25.
    [34] Ogawa T, Konishi K, Aihara S, Sawamoto T. Development of ball bearings with solid film forhigh-vacuum, high-temperature,high-speed application[J]. Lubric Eng1993(49):291–299.
    [35] Yurkowsky W,Schafter R E,Finkelstein J M. Accelerated testing technology [R]. TechnicalReport NO. RADC-TR-67-20,Rome Air Development Center,1967.
    [36] JIANG R Y, MURTHY D N P. Reliability modeling involving two Weibull distributions[J].Reliability Engineering&System Safety,1995,47(3):187-198.
    [37]钱萍.航天电连接器综合应力加速寿命试验与统计分析的研究[D].浙江大学,2009.
    [38] Simon D. Lewis. Accelerated Testing of Liquid Lubricated Spacecraft Mechaniams[C].Proceedings7th European Space Mechanisms&Tribology Symposium, ESTEC, Noordwijk,The Netherlands,1997(10):235-268.
    [39] C.Laborde,L.Nicolle. New Ball Bearings Dry Lubricants in Place of Durold[R].ESA,1997.10.
    [40] http://www.grc.nasa.gov/WWW/spacemech/Graphics/sm-brochure.pdf.
    [41]窦蕴萍,航空发动机主轴承定寿方法的研究,华北水利水电学院学报,199718(3):74-80.
    [42]王坚永,庄中华.滚动轴承可靠性加速寿命试验研究[J].轴承,1996,9:26-28.
    [43] Runqing Huang, Lifeng Xi, Xinglin Li, et al. Residual life predictions for ball bearings basedon self-organizing map and back propagation neural network methods[J]. Mechanical Systemsand Signal Processing,2007,21:196-207.
    [44] Nagi Gebraeel, Mark Lawley, R. Liu, etal. Residual Life Predictions From Vibration-BasedDegradation Signals: A Neural Network Approach[J]. IEEE TRANSACTIONS ONINDUSTRIAL ELECTRONICS,2004,51(3):694-709.
    [45]杨晓蔚.滚动轴承振动测量物理量和测量条件的探讨[J].轴承,2011(9):54-56.
    [46]赵联春.球轴承振动的研究[D].浙江大学,博士学位论文,2003.
    [47] BS ISO5242-1:Rolling bearings-Measuring methods for vibration-part1fundamentals[S].2004.
    [48] BS ISO15242-2:Rolling bearings-Measuring methods for vibration-part2fundamentals[S].2006.
    [49]刘献栋,杨绍普.基于奇异值分解的突变信息检测新方法及其应用[J].机械工程学报,2002,38(6):102-105.
    [50]吕志民,张武军,徐金梧等.基于奇异谱的降噪方法及其在机械故障诊断中的应用[J].机械工程学报,1999,35(3):85-88.
    [51]李峰,张英堂,王宁,等.基于小波和奇异谱降噪理论的轴承故障诊断研究[J].轴承,2003,7:30-33.
    [52]汤宝平,蒋永华,张详春.基于形态奇异值分解和经验模态分解的滚动轴承故障特征提取方法[J].机械工程学报,2010,46(5):37-42.
    [53] MallatS,HwangWL. Singularity deteetion and proeessing with wavelet[J]. IEEE TransaetionInformation Theory,1992,38(2):617-643.
    [54] XuYan-sun. Wavelet transform domain filters:aspeeially seleetive noise filtration teehnique[J].IEEE Trans Image Proeessing,1994,3(6):747-758.
    [55] Donoho D L.De-noising by Soft-thresholding[J].IEEET ransaetion on Information Theory,1995,41(3):613-627.
    [56] Cai T T, Silverman B W. Ineorporating information on neighboring coeffieients into waveletestimation[J]. The Indian Journal of Statisties,2001,63(2):127-148.
    [57] Huang N E,Chern C C,Huang K,et al.A new spectral representation of earthquake data:Hilbertspectral analysis of Station TCU129,Chi-Chi[J]. Bulletin of the Seismological Society ofAmerica,2001,91(5):1310-1338.
    [58] Patrick Flandrin, Gabriel Rilling, Paulo Goncalvés. Empirical Mode Decomposition as a FilterBank [J]. IEEE SIGNAL PROCESSING LETTERS2004,11(2):112-114.
    [59] Z. Wu and N. E. Huang. A study of the characteristics of white noise using the empirical modedecomposition method[J]. Proc. R. Soc. London A,2004,460,1597-1611.
    [60] RILLING G, FLANDRIN P, GONCALYES P. On empirical mode decomposition and itsalgorithms[C]. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing(NSIPL2003), Grado(1), June,2003:8-11.
    [61] R.T.Rato, M.D.Ortigueira, A.G.Batista.On the HHT, its problems, and some solutions[J].Mechanical Systems and Signal Processing,2008,22:1374-1394
    [62] Norden E. Huang. A new view of non-linearwaves: The Hi-lbert spectrum [J]. AnnualReview of Fluid Mechanics,1999,31:417-457.
    [63]赵进平.异常事件对EMD方法的影响及其解决方法研究[J].青岛海洋大学学报,2001,31(6):805-814.
    [64]曹冲锋,杨世锡,杨将新.大型旋转机械非平稳振动信号的EEMD降噪方法[J].,振动与冲击,2009,9(28):33-38.
    [65] Wu Z H, Huang N E. Ensemble empirical mode decompos-ition: a noise assisted dataanalysis method[J].Advances in Adaptive Data Analysis,2009,1(1):1-41.
    [66] J. J. Broderick, R. F. Burchill, H. L. Clark. Design and fabrication of prototype system forearly warning of impending bearing failure[R]. George C. Marshall Space Flight Center,National Aeronautics and Space Administration,Marshall Space Flight Center, Huntsville,Alabama,1972.
    [67] Thomas Coffin.Signal analysis techniques for incipient failure detection in turbomachinery[R].Hyle Laboratories, Huntsville, Wla.1985.
    [68] Robert Sire, Philip Besuner, Craig Schoof, Techniques for fatigue life predictions frommeasured strains final report[R]. National Aeronautics Space Administration Marshall SpaceFlight Center Huntsville, Alabama,1985
    [69] Paula J. Dempsey, Gary Kreider, Thomas Fichter.Tapered Roller Bearing Damage DetectionUsing Decision Fusion Analysis[R]. Glenn Research Center, Cleveland, Ohio,2006.
    [70] Haitao Liao, Wenbiao Zhao, Ph.D, etal. Predicting Remaining Useful Life of an IndividualUnit Using Proportional Hazards Model and Logistic Regression Model[J].2006IEEE.127-132.
    [71]苗学问.航空发动机主轴承使用寿命预测技术研究[D].北京:北京航空航天大学,2009.
    [72]李常有,徐敏强,郭耸.声信号的主分量分析应用于滚动轴承故障诊断[J].声学技术,2008,27(2):271-275.
    [73]屈微,刘贺平,张徳政.基于独立分量分析特征提取的故障诊断系统[J].北京科技大学学报,2006,28(7):700-703.
    [74]李强,王太勇,王正英等,基于EMD和支持向量数据描述的故障智能诊断[J].中国机械工程,2008,19(22):2718-2721.
    [75] W. X. Yang, W. T. Peter.Development of an advanced noise reduction method for vibrationanalysis based on singular value decomposition[J].NDT&E International,2003,36:419-432.
    [76]陈恩利,吴勇军,申永军等.基于改进奇异值分解技术的齿轮调制故障特征提取[J].振动工程学报,2008,21(5):530-534.
    [77] W. W. Yan, C. K. Zhang, H. H. Shao.Nolinear fault diagnosis method based on kernelprincipal component analysis[J].High Technology Letters,2005,11(2):189-192.
    [78]李锋.基于流形学习的风电机组传动系统故障诊断方法研究[D].重庆大学,博士学位论文,2011.
    [79] Seung H S,Lee D D.The manifold ways of perception[J]. Science,2000,(290):2268-2269.
    [80] Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,(290):2323-2326
    [81] Tenenbaum J B, Silva V D, Langford J C. A global geometric framework for nonlineardimensionality reduction[J]. Science,2000,(290):2319-2323.
    [82] Kai Zhang, Kwok, J.T. Clustered nystr m method for large scale manifold learning anddimension reduction[J]. IEEE Transactions on Neural Networks.2010,10:1576-1587.
    [83] B. Raducanu, F. Dornaika. A supervised non-linear dimensionality reduction approach formanifold learning. Pattern Recognition[J].2012,45:2432-2444.
    [84] D. L. Donoho, C. Grimes.Hessian eigenmaps:locally linear embedding techniques forhigh-dimensional data[J]. PNAS,2003,100(10):5591-5596.
    [85] X. F. He, P. Niyogi. Locality preserving projections: Proceedings of the17th AnnualConference on Neural Information Processing Systems[C]. Cambridge, USA:The MITPress,2003.
    [86]周培毅,张新燕,张华中.基于遗传算法与BP神经网的风力发电机齿轮箱故障诊断研究[J].华北电力,2010(7):6-11.
    [87]吴宗彦,韩煜,张建军,张利.基于模糊神经网络的自动生产线故障诊断方法研究[J].中国机械工程,2008,19(9):1072-1075.
    [88]庄哲民,殷国华,李芬兰等.基于小波神经网络的风力发电机故障诊断[J].电工技术学报,2009,24(4)224-228.
    [89]田旭光,宋彤,刘宇新.结合遗传算法优化BP神经网络的结构和参数[J].计算机应用与软件,2004,21(6):69-71.
    [90]刘瑞斋.神经网络与遗传算法在优化设计中的结合运用[J].舰船电子工程,2008,(7):127-130.
    [91] M. Belkin, P.Niyogi. Laplacian eigenmaps for dimensionality reduction and datarepresentation[J].Neural Computation,2003,15(6):1373-1396.
    [92] Z. Y. Zhang, H. Y. Zha.Principal manifolds and nonlinear dimensionality reduction viatangent space alignment[J].SIAM Journal of Scientific Computing,2005,26(1):313-338.
    [93]温熙森,胡笃庆,邱静.模式识别与状态监控[M].长沙:国防科技大学出版社,1997:1-50.
    [94]高新波.模糊聚类分析及其应用[M].西安:西安电子科技大学出版社,2004:10-25.
    [95]马良玉,王兵树,伶振声等.对分式凝汽器故障诊断的模糊模式识别及神经网络方法[J].中国电机工程学报,2001,21(s):65-73.
    [96] Q. A. Tran,X. Li,H. X. Duan. Efficient performance estimate for one-class support vectormachine[J]. Pattern Recognition Letters,2005,26:1174-1182.
    [97] J. Acevedo-Rodriguez, S. Maldonado-Bascon, S. Lafuente-Arroyo, et al.Computational loadreduction in decision functions using support vector machines [J]. SignalProcessing,2009,89:2066-2071.
    [98]王太勇,何慧龙,王国锋,冷永刚,胥永刚,李强.基于经验模式分解和最小二乘支持矢量机的滚动轴承故障诊断[J].机械工程学报,2007,43(4):88-92.
    [99]于德介,杨宇,程军圣.一种基于SVM和EMD的齿轮故障诊断方法[J].机械工程学报,2005,41(1):140-144.
    [100] S. B. Tan. An effective refinement strategy for KNN text classifier[J]. Expert Systems withApplications,2006,30:290-298.
    [101] X. P. Yu,X. G. Yu. The research on an adaptive k-nearest neighbors classifier[C].Proc.5thIEEE int. Conf. on Cognitive Informatics(ICCI’06),2006:535-540.
    [102] M. A. Tahir, A. Bouridane, F. Kurugollu. Simultaneous feature selection and featureweighting using Hybrid Tabu Search/K-nearest neighbor classifier[J]. Pattern RecognitionLetters,2007,28:438-446.
    [103] X. P. Yu, X. G. Yu. Novel text classification based on K-nearest neighbor[C].Proceedings ofthe Sixth International Conference on Machine Learning and Cybernetics,2007:3425-3430.
    [104]唐茗.滚动轴承故障及故障程度诊断方法研究[D].三峡大学硕士学位论文.2009
    [105]盛兆顺.设备状态监测与故障诊断技术及应用[M].北京:化学工业出版社,2003.5.
    [106]梅宏斌.滚动轴承振动监测与诊断——理论.方法.系统[M].北京:机械工业出版社,1995.
    [107]郑林庆.摩擦学原理[M].北京:高等教育出版社,1994.
    [108] Mezghani S, Zahouani H. Characterisation of the3Dwaviness and roughness motifs[J]. Wear,2004,257:1250-1256.
    [109]汪久根,王庆九,章维明.表面粗糙度对轴承振动的影响[J].轴承,2007(1):26-25.
    [110] ParssinenM. Hertzian contact vibrations under randomexternal excitation and surfaceroughness[J]. JournalofSound and Vibration,1998,214(4):779-783.
    [111] Johnson K L, Gray G G. Development of corrugations on surfaces in rolling contact[J]. Proc.Instn. Mech.Engrs.,1975,189:45-58.
    [112] Hamrock B J, Dowson D. Ball bearing lubrication[M]. New York: JohnW iley&Sons,1981.
    [113]刘振宇.高速主轴用滚动轴承性能分析与试验研究[D].北京工业大学,2006
    [114] Bo Taoa, Limin Zhu, Han Ding, Youlun Xiong. An alternative time-domain index forcondition monitoring of rolling elemen bearings—A comparison study[J]. ReliabilityEngineering and System Safety.2007(92):660~670
    [115] Williams T,Ribadeneira X.and Billingto S. Rolling element bearing diagnostics inrun-to-failure life time testing [J]. Mechanical Systems and Signal Processing,2001,V115(5):979-993
    [116] Y Shao, K Nezu. Prognosis of remaining bearing life using neural networks[J]. Proc InstnMech Engrs,2000,214Part I:217:231.
    [117]孙立明单服兵赵联春. JB/T5314-2002.滚动轴承振动(加速度)测量方法[S].北京:中华人民共和国国家经济贸易委员会,2002.7.16:1-5.
    [118] W.X. Yang, X.M. Ren. Detecting impulses in mechanical signals by wavelets[J]. EURASIPJournal on Applied Signal Processing,2004,8:1156-1162.
    [119] AzzaliniA, FargeM, SchneiderK. Nonlinearwavelet thresholding: A recursive method todetermine the optimal denoising threshold[J]. App.l Comput. Harmon. Ana,l2005,18:177—185.
    [120]曹冲锋,杨世锡,杨将新.大型旋转机械非平稳振动信号的EEMD降噪方法[J].振动与冲击,2009,9(28):33-38.
    [121] Wu Z H, Huang N E. Ensemble empirical mode decompos-ition: a noise assisted dataanalysis method[J].Advances in Adaptive Data Analysis,2009,1(1):1-41.
    [122] N.E.huang, Z.Shen and S.R.Long. A new View of Nonlinear Water Waves: the HilbertSpectrum[J]. Annu. Rev. Fluid Mech..1999.31:417-457
    [123]窦东阳,赵英凯.集合经验模式分解在旋转机械故障诊断中的应用[J].农业工程学报,2010,26(2):190:196.
    [124]陈略,唐歌实,訾艳阳等.自适应EEMD方法在心电信号处理中的应用[J],数据采集与处理,2011,26(3):361:366.
    [125] Z. Wu and N. E. Huang. A study of the characteristics of white noise using the empiricalmode decomposition method[J]. Proc. R. Soc. London A,2004,460,1597–1611.
    [126]陈仁祥,汤宝平,马婧华.基于EEMD的振动信号自适应降噪方法.振动与冲击,2012,31(15):82-86.
    [127] LIU X M, YIN J W, FENG Z L, et al. Orthogonal neighborhood preserving embedding forface recognition[C].2007IEEE International Conference on Image Processing, ICIP2007.New York, USA: IEEE,2007:133-136.
    [128] CAI D, HE X F, HAN J W, et al. Orthogonal laplacianfaces for face recognition[J]. IEEETrans. Image Process,2006,15(11):3608-3614.
    [129] DUCHENE J, LECLERCQ S. An optimal transformation for discriminant and principalcomponent analysis[J]. IEEE Trans. Pattern Anal.Mach. Intell.,1988,10(6):978-983.
    [130]李锋,汤宝平,董绍江.基于正交邻域保持嵌入特征约简的故障诊断模型[J].仪器仪表学报.2011,32(3),621-627.
    [131] He X F, Cai D, Yan S C, et al. Neighborhood Preserving Embedding [C].Proc of the10thIEEE InternationalConference on Computer Vision. Beijing: IEEE,2005:1208-1213.
    [132] BelkinM,Niyogi P·Laplacian eigenmaps for dmiensionality reduction and datarepresentation[J]. Neural Computation,2003,15(6):1373-1396.
    [133] ZHANG TIANHAO, YANG JIE, ZHAO DELI,et al.Linear local tangent space alignmentand application to face recognition [J].Neumcomputing,2007,70(7/9):1547-1553.
    [134]李锋,汤宝平,陈法法.基于线性局部切空间排列维数化简的故障诊断[J].振动与冲击,2012,31(13):36-39.
    [135] T. H. Zhang, J. Yang, D. L. Zhao, et al.Linear local tangent space alignment and applicationto face recognition[J].Neurocomputing,2007,(70):1547-1553.
    [136] Z. Zhang, H. Zha. Principal manifolds and nonlinear dimensionality reduction via tangentspace alignment[J]. SIAM J. Sci. Comput.2004,26(1):313-338.
    [137] Kouropteva, O. Okun. Supervised locally linear embedding algorithm for patternrecognition[J]. Pattern Recognition and Image Analysis,2003,2652(9):386-394.
    [138] D. Cai, X. F. He, J. W. Han, et al. Orthogonal laplacianfaces for face recognition[J]. IEEETrans. Image Process,2006,15(11):3608-3614.
    [139] J. Duchene, S. Leclercq. An optimal transformation for discriminant and principalcomponent analysis[J]. IEEE Trans. Pattern Anal.Mach. Intell.,1988,10(6):978-983.
    [140] Serruya M, Hatsopoulos N, Fellows M, et al. Robustness of Neuroprosthetic DecodingAlgorithms[J]. Biological Cybernetics,2003,88(3):201-209.
    [141] TANG Baoping, LI Feng, QIN Yi. Fault Diagnosis Model Based on Feature Compressionwith Orthogonal Locality Preserving Projection[J]. Chinese Journal of MechanicalEngineering.2011,24(5),897-904.
    [142]李锋,汤宝平,陈法法.基于线性局部切空间排列维数化简的故障诊断[J].振动与冲击,2012,13(31):36-40.
    [143] M. Belkin, P. Niyogi.“Laplacian eigenmaps and spectral techniques for embedding andclustering,” in Advances in Neural Information Processing Systems14[M]. Cambridge, MA:MIT Press,2001:585-591.
    [144] Songbo T. An effective refinement strategy for KNN text classifier[J]. Expert Systems withApplications,2006,30:290-298.
    [145] Yu X P,Yu X G. Novel text classification based on k-nearest neighbor [C]. Proceedings ofSixth International Conference on Machine Learning Cybernetics,Hong Kong,China,2007:3425-3430.
    [146] R.O. Duda, P.E. Hart, D.G. Stork. Pattern classification[R]. NewYork: John Wiley&SonsINC.2001.
    [147] T.M. Cover, P.E. Hart. Nearest neighbor pattern classification[J]. IEEE Trans. on InformationTheory.1968,13:21-27.
    [148]李晓莹.传感器与测试技术[M].北京:高等教育出版社,2004.3.
    [149] Vic.Broqrard著,汪泳等译. MFC应用开发教程[M].北京:清华大学出版社,1999.
    [150] David J. Kruglinski. Programming Visual C++(Fifth Edition)[M]. Microsoft Press,1998.
    [151]赵仕健. Visual C++6.0编程与事例解析[M].北京:科学出版社,2000.
    [152]李陶深,赵文静.面向对象程序设计与方法[M].武汉:武汉理工大学出版社,2003.
    [153] NI9234使用说明和产品规范.Retrieved5/1/2011from: http://www.ni.com/pdf/manuals/374238c_0118.pdf
    [154]什么是NI CompactDAQ?.Retrieved5/1/2011from:http://sine.ni.com/np/app/main/p/ap/daq/lang/zhs/pg/1/sn/n17:daq,n24:cDAQ/fmid/439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700